




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
浙江省溫州東甌中學2025屆高一下數(shù)學期末質(zhì)量檢測試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知向量,且,則m=()A.?8 B.?6C.6 D.82.如圖,在正方體中,已知,分別為棱,的中點,則異面直線與所成的角等于()A.90° B.60°C.45° D.30°3.已知向量、的夾角為,,,則()A. B. C. D.4.已知,,那么是()A.第一象限 B.第二象限 C.第三象限 D.第四象限5.如圖,在中,,用向量,表示,正確的是A. B.C. D.6.實數(shù)數(shù)列為等比數(shù)列,則()A.-2 B.2 C. D.7.已知函數(shù)f(x)=2x+log2x,且實數(shù)a>b>c>0,滿足A.x0<a B.x0>a8.已知,且,則實數(shù)的值為()A.2 B. C.3 D.9.已知圓,直線,點在直線上.若存在圓上的點,使得(為坐標原點),則的取值范圍是A. B. C. D.10.已知函數(shù),若方程有5個解,則的取值范圍是()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.若,且,則=_______.12.函數(shù)的值域是______.13.某餐廳的原料支出與銷售額(單位:萬元)之間有如下數(shù)據(jù),根據(jù)表中提供的數(shù)據(jù),用最小二乘法得出與的線性回歸方程,則表中的值為_________.245682535557514.函數(shù)的部分圖像如圖所示,則的值為________.15.在中,角的對邊分別為.若,則的值為__________.16.在中,,,則角_____.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.為了加強“平安校園”建設,有效遏制涉校案件的發(fā)生,保障師生安全,某校決定在學校門口利用一側(cè)原有墻體,建造一間墻高為3米,底面為24平方米,且背面靠墻的長方體形狀的校園警務室.由于此警務室的后背靠墻,無需建造費用,甲工程隊給出的報價為:屋子前面新建墻體的報價為每平方米400元,左右兩面新建墻體報價為每平方米300元,屋頂和地面以及其他報價共計14400元.設屋子的左右兩面墻的長度均為x米(3≤x≤6).(Ⅰ)當左右兩面墻的長度為多少時,甲工程隊報價最低?并求出最低報價.(Ⅱ)現(xiàn)有乙工程隊也要參與此警務室的建造競標,其給出的整體報價為1800a(1+x)x元(a>0),若無論左右兩面墻的長度為多少米,乙工程隊都能競標成功,試求a18.如圖,已知四棱錐,側(cè)面是正三角形,底面為邊長2的菱形,,.(1)設平面平面,求證:;(2)求多面體的體積;(3)求二面角的余弦值.19.如圖,已知平面,為矩形,分別為的中點,.(1)求證:平面;(2)求證:面平面;(3)求點到平面的距離.20.已知集合,數(shù)列是公比為的等比數(shù)列,且等比數(shù)列的前三項滿足.(1)求通項公式;(2)若是等比數(shù)列的前項和,記,試用等比數(shù)列求和公式化簡(用含的式子表示)21.在直角中,,延長至點D,使得,連接.(1)若,求的值;(2)求角D的最大值.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】
由已知向量的坐標求出的坐標,再由向量垂直的坐標運算得答案.【詳解】∵,又,∴3×4+(﹣2)×(m﹣2)=0,解得m=1.故選D.【點睛】本題考查平面向量的坐標運算,考查向量垂直的坐標運算,屬于基礎(chǔ)題.2、B【解析】
連接,可證是異面直線與所成的角或其補角,求出此角即可.【詳解】連接,因為,分別為棱,的中點,所以,又正方體中,所以是異面直線與所成的角或其補角,是等邊三角形,=60°.所以異面直線與所成的角為60°.故選:B.【點睛】本題考查異面直線所成的角,解題時需根據(jù)定義作出異面直線所成的角,同時給出證明,然后在三角形中計算.3、B【解析】
利用平面向量數(shù)量積和定義計算出,可得出結(jié)果.【詳解】向量、的夾角為,,,則.故選:B.【點睛】本題考查利用平面向量的數(shù)量積來計算平面向量的模,在計算時,一般將模進行平方,利用平面向量數(shù)量積的定義和運算律進行計算,考查計算能力,屬于中等題.4、C【解析】
根據(jù),,可判斷所在象限.【詳解】,在三四象限.,在一三象限,故在第三象限答案為C【點睛】本題考查了三角函數(shù)在每個象限的正負,屬于基礎(chǔ)題型.5、C【解析】
由得,再由向量的加法得,最后把代入,求得答案.【詳解】因為,故選C.【點睛】本題考查向量的加法和數(shù)乘運算的幾何意義,考查平面向量基本定理在圖形中的應用.6、B【解析】
由等比數(shù)列的性質(zhì)計算,注意項與項之間的關(guān)系即可.【詳解】由題意,,又與同號,∴.故選B.【點睛】本題考查等比數(shù)列的性質(zhì),解題時要注意等比數(shù)列中奇數(shù)項同號,偶數(shù)項同號.7、D【解析】
由函數(shù)的單調(diào)性可得:當x0<c時,函數(shù)的單調(diào)性可得:f(a)>0,f(b)>0,f(c)>0,即不滿足f(a)f(b)f(c)【詳解】因為函數(shù)f(x)=2則函數(shù)y=f(x)在(0,+∞)為增函數(shù),又實數(shù)a>b>c>0,滿足f(a)f(b)f(c)<0,則f(a),f(b),f(c)為負數(shù)的個數(shù)為奇數(shù),對于選項A,B,C選項可能成立,對于選項D,當x0函數(shù)的單調(diào)性可得:f(a)>0,f(b)>0,f(c)>0,即不滿足f(a)f(b)f(c)<0,故選項D不可能成立,故選:D.【點睛】本題考查了函數(shù)的單調(diào)性,屬于中檔題.8、D【解析】
根據(jù)二角和與差的正弦公式化簡,,再切化弦,即可求解.【詳解】由題意又解得故選:【點睛】本題考查兩角和與差的正弦公式,屬于基礎(chǔ)題.9、B【解析】
根據(jù)條件若存在圓C上的點Q,使得為坐標原點),等價即可,求出不等式的解集即可得到的范圍【詳解】圓O外有一點P,圓上有一動點Q,在PQ與圓相切時取得最大值.
如果OP變長,那么可以獲得的最大值將變小.可以得知,當,且PQ與圓相切時,,
而當時,Q在圓上任意移動,存在恒成立.
因此滿足,就能保證一定存在點Q,使得,否則,這樣的點Q是不存在的,
點在直線上,,即
,
,
計算得出,,
的取值范圍是,
故選B.考點:正弦定理、直線與圓的位置關(guān)系.10、D【解析】
利用因式分解法,求出方程的解,結(jié)合函數(shù)的性質(zhì),根據(jù)題意可以求出的取值范圍.【詳解】,,或,由題意可知:,由題可知:當時,有2個解且有2個解且,當時,,因為,所以函數(shù)是偶函數(shù),當時,函數(shù)是減函數(shù),故有,函數(shù)是偶函數(shù),所以圖象關(guān)于縱軸對稱,即當時有,,所以,綜上所述;的取值范圍是,故本題選D.【點睛】本題考查了已知方程解的情況求參數(shù)取值問題,正確分析函數(shù)的性質(zhì),是解題的關(guān)鍵.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
由的值及,可得的值,計算可得的值.【詳解】解:由,且,由,可得,故,故答案為:.【點睛】本題主要考查了同角三角函數(shù)的基本關(guān)系,熟練掌握其基本關(guān)系是解題的關(guān)鍵.12、【解析】
先求得函數(shù)的定義域,根據(jù)函數(shù)在定義域內(nèi)的單調(diào)性,求得函數(shù)的值域.【詳解】依題意可知,函數(shù)的定義域為,且函數(shù)在區(qū)間上為單調(diào)遞增函數(shù),故當時,函數(shù)有最小值為,當時,函數(shù)有最大值為.所以函數(shù)函數(shù)的值域是.故答案為:.【點睛】本小題主要考查反正弦函數(shù)的定義域和單調(diào)性,考查正弦函數(shù)的單調(diào)性,考查利用函數(shù)的單調(diào)性求函數(shù)的值域,屬于基礎(chǔ)題.13、60【解析】
由樣本中心過線性回歸方程,求得,,代入即可求得【詳解】由題知:,,將代入得故答案為:60【點睛】本題考查樣本中心與最小二乘法公式的關(guān)系,易錯點為將直接代入求解,屬于中檔題14、【解析】
由圖可得,,求出,得出,利用,然后化簡即可求解【詳解】由題圖知,,所以,所以.由正弦函數(shù)的對稱性知,所以答案:【點睛】本題利用函數(shù)的周期特性求解,難點在于通過圖像求出函數(shù)的解析式和函數(shù)的最小正周期,屬于基礎(chǔ)題15、1009【解析】
利用余弦定理化簡所給等式,再利用正弦定理將邊化的關(guān)系為角的關(guān)系,變形化簡即可得出目標比值.【詳解】由得,即,所以,故.【點睛】本題綜合考查正余弦定理解三角形,屬于中檔題.16、或【解析】
本題首先可以通過解三角形面積公式得出的值,再根據(jù)三角形內(nèi)角的取值范圍得出角的值?!驹斀狻坑山馊切蚊娣e公式可得:即因為,所以或【點睛】在解三角形過程中,要注意求出來的角的值可能有多種情況。三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(Ⅰ)4米時,28800元;(Ⅱ)0<a<12.25.【解析】
(Ⅰ)設甲工程隊的總造價為y元,先求出函數(shù)的解析式,再利用基本不等式求函數(shù)的最值得解;(Ⅱ)由題意可得,1800(x+16x)+14400>從而(x+4)2【詳解】(Ⅰ)設甲工程隊的總造價為y元,則y=3(300×2x+400×1800(x+16當且僅當x=16x,即即當左右兩側(cè)墻的長度為4米時,甲工程隊的報價最低為28800元.(Ⅱ)由題意可得,1800(x+16x)+14400>即(x+4)2x>令x+1=t,(x+4)又y=t+9t+6在t∈[4,7]所以0<a<12.25.【點睛】本題主要考查基本不等式的應用,意在考查學生對該知識的理解掌握水平和分析推理能力.18、(1)證明見解析;(2);(3).【解析】
(1)由,證得平面,再由線面平行的性質(zhì),即可得到;(2)取中點,連結(jié),推得,,得到平面,再由多面體的體積,結(jié)合體積公式,即可求解;(3)由,設的中點為,連結(jié),推得,從而得到就是二面角的平面角,由此可求得二面角的余弦值.【詳解】證明:(1)因為平面平面,所以平面,又平面,平面平面,所以;(2)取中點,連結(jié),由得,同理,又因為,所以平面,在中,,所以,所以多面體的體積;(3)由題意知,底面為邊長2的菱形,,所以,又,所以,設的中點為,連結(jié),由側(cè)面是正三角形知,,所以,因此就是二面角的平面角,在中,,,由余弦定理得,二面角的余弦值為.【點睛】本題主要考查了線面位置關(guān)系的判定,多面體的體積的計算,以及二面角的求解,其中解答中熟記線面位置關(guān)系的判定與性質(zhì),以及而面積的平面角的定義,準確計算是解答的關(guān)鍵,著重考查了推理與論證能力,屬于中檔試題.19、(1)證明見解析;(2)證明見解析;(3).【解析】
(1)利用線面平行的判定定理,尋找面PAD內(nèi)的一條直線平行于MN,即可證出;(2)先證出一條直線垂直于面PCD,依據(jù)第一問結(jié)論知,MN也垂直于面PCD,利用面面垂直的判定定理即可證出;(3)依據(jù)等積法,即可求出點到平面的距離.【詳解】證明:(1)取中點為,連接分別為的中點,是平行四邊形,平面,平面,∴平面證明:(2)因為平面,所以,而,面PAD,而面,所以,由,為的終點,所以由于平面,又由(1)知,平面,平面,∴平面平面解:(3),,,則點到平面的距離為(也可構(gòu)造三棱錐)【點睛】本題主要考查線面平行、面面垂直的判定定理以及等積法求點到面的距離,意在考查學生的直觀想象、邏輯推理、數(shù)學運算能力.20、(1)(2)【解析】
(1)觀察式子特點可知,只有2,4,8三項符合等比數(shù)列特征,再根據(jù)題設條件求解即可;(2)根據(jù)等比數(shù)列通項公式表示出,再采用分組求和法化簡的表達式即可【詳解】(1)由題可知,只有2,4,8三項符合等比數(shù)列特征,又,故,故,;(2),,所以【點睛】本題考查等比數(shù)列
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 林地買賣合同范本(15篇)
- PPRR理論視角下N市地鐵突發(fā)事件應急管理機制研究
- 血管內(nèi)皮生長因子與冠心病的相關(guān)性研究
- 黃河流域旅游產(chǎn)業(yè)結(jié)構(gòu)優(yōu)化對旅游業(yè)碳排放效率的影響研究
- 急性壞疽性膽囊炎的危險因素及診斷預測分析
- 科技企業(yè)網(wǎng)絡視頻營銷的案例解析
- 現(xiàn)代企業(yè)的綠色營銷戰(zhàn)略分析
- 2025年生物可降解塑料項目發(fā)展計劃
- 新型環(huán)形彈簧-橡膠型三維隔振支座與地鐵上蓋振震雙控結(jié)構(gòu)設計方法研究
- 追加擔保 合同范本
- 《湖南省醫(yī)療保險“雙通道”管理藥品使用申請表》
- 2024年高考作文素材積累之6個議論文人物素材及運用示例
- 腎小管壞死中的線粒體功能障礙
- 2023年設備檢修標準化作業(yè)規(guī)范
- 光伏電站除草服務(合同)范本【詳盡多條款】
- 2023年考核銀行安全保衛(wèi)人員真題與答案
- 儲能全系統(tǒng)解決方案及產(chǎn)品手冊
- (高清版)DZT 0309-2017 地質(zhì)環(huán)境監(jiān)測標志
- 人員轉(zhuǎn)移安置實施方案(公司重組)
- 病歷書寫相關(guān)法律法規(guī)
- 老舊小區(qū)加裝電梯方案
評論
0/150
提交評論