湖北省鋼城第四中學(xué)高三一診考試新高考數(shù)學(xué)試卷及答案解析_第1頁
湖北省鋼城第四中學(xué)高三一診考試新高考數(shù)學(xué)試卷及答案解析_第2頁
湖北省鋼城第四中學(xué)高三一診考試新高考數(shù)學(xué)試卷及答案解析_第3頁
湖北省鋼城第四中學(xué)高三一診考試新高考數(shù)學(xué)試卷及答案解析_第4頁
湖北省鋼城第四中學(xué)高三一診考試新高考數(shù)學(xué)試卷及答案解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

湖北省鋼城第四中學(xué)高三一診考試新高考數(shù)學(xué)試卷注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知實數(shù)x,y滿足,則的最小值等于()A. B. C. D.2.已知是圓心為坐標(biāo)原點,半徑為1的圓上的任意一點,將射線繞點逆時針旋轉(zhuǎn)到交圓于點,則的最大值為()A.3 B.2 C. D.3.已知函數(shù),為圖象的對稱中心,若圖象上相鄰兩個極值點,滿足,則下列區(qū)間中存在極值點的是()A. B. C. D.4.某幾何體的三視圖如圖所示,圖中圓的半徑為1,等腰三角形的腰長為3,則該幾何體表面積為()A. B. C. D.5.函數(shù)的大致圖象是A. B. C. D.6.已知,其中是虛數(shù)單位,則對應(yīng)的點的坐標(biāo)為()A. B. C. D.7.已知向量,,且與的夾角為,則()A. B.1 C.或1 D.或98.“紋樣”是中國藝術(shù)寶庫的瑰寶,“火紋”是常見的一種傳統(tǒng)紋樣.為了測算某火紋紋樣(如圖陰影部分所示)的面積,作一個邊長為3的正方形將其包含在內(nèi),并向該正方形內(nèi)隨機投擲200個點,己知恰有80個點落在陰影部分據(jù)此可估計陰影部分的面積是()A. B. C.10 D.9.已知變量x,y間存在線性相關(guān)關(guān)系,其數(shù)據(jù)如下表,回歸直線方程為,則表中數(shù)據(jù)m的值為()變量x0123變量y35.57A.0.9 B.0.85 C.0.75 D.0.510.設(shè)分別是雙線的左、右焦點,為坐標(biāo)原點,以為直徑的圓與該雙曲線的兩條漸近線分別交于兩點(位于軸右側(cè)),且四邊形為菱形,則該雙曲線的漸近線方程為()A. B. C. D.11.已知平面向量,滿足且,若對每一個確定的向量,記的最小值為,則當(dāng)變化時,的最大值為()A. B. C. D.112.某幾何體的三視圖如圖所示,三視圖是腰長為1的等腰直角三角形和邊長為1的正方形,則該幾何體中最長的棱長為().A. B. C.1 D.二、填空題:本題共4小題,每小題5分,共20分。13.根據(jù)如圖所示的偽代碼,輸出的值為______.14.已知集合,若,則__________.15.已知點是直線上的一點,將直線繞點逆時針方向旋轉(zhuǎn)角,所得直線方程是,若將它繼續(xù)旋轉(zhuǎn)角,所得直線方程是,則直線的方程是______.16.記為數(shù)列的前項和.若,則______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù)()(1)函數(shù)在點處的切線方程為,求函數(shù)的極值;(2)當(dāng)時,對于任意,當(dāng)時,不等式恒成立,求出實數(shù)的取值范圍.18.(12分)改革開放40年,我國經(jīng)濟取得飛速發(fā)展,城市汽車保有量在不斷增加,人們的交通安全意識也需要不斷加強.為了解某城市不同性別駕駛員的交通安全意識,某小組利用假期進(jìn)行一次全市駕駛員交通安全意識調(diào)查.隨機抽取男女駕駛員各50人,進(jìn)行問卷測評,所得分?jǐn)?shù)的頻率分布直方圖如圖所示.規(guī)定得分在80分以上為交通安全意識強.安全意識強安全意識不強合計男性女性合計(Ⅰ)求的值,并估計該城市駕駛員交通安全意識強的概率;(Ⅱ)已知交通安全意識強的樣本中男女比例為4:1,完成2×2列聯(lián)表,并判斷有多大把握認(rèn)為交通安全意識與性別有關(guān);(Ⅲ)在(Ⅱ)的條件下,從交通安全意識強的駕駛員中隨機抽取2人,求抽到的女性人數(shù)的分布列及期望.附:,其中0.0100.0050.0016.6357.87910.82819.(12分)已知,,(1)求的最小正周期及單調(diào)遞增區(qū)間;(2)已知銳角的內(nèi)角,,的對邊分別為,,,且,,求邊上的高的最大值.20.(12分)已知函數(shù)(其中是自然對數(shù)的底數(shù))(1)若在R上單調(diào)遞增,求正數(shù)a的取值范圍;(2)若f(x)在處導(dǎo)數(shù)相等,證明:;(3)當(dāng)時,證明:對于任意,若,則直線與曲線有唯一公共點(注:當(dāng)時,直線與曲線的交點在y軸兩側(cè)).21.(12分)過點作傾斜角為的直線與曲線(為參數(shù))相交于M、N兩點.(1)寫出曲線C的一般方程;(2)求的最小值.22.(10分)在中,角、、的對邊分別為、、,且.(1)若,,求的值;(2)若,求的值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】

設(shè),,去絕對值,根據(jù)余弦函數(shù)的性質(zhì)即可求出.【詳解】因為實數(shù),滿足,設(shè),,,恒成立,,故則的最小值等于.故選:.【點睛】本題考查了橢圓的參數(shù)方程、三角函數(shù)的圖象和性質(zhì),考查了運算能力和轉(zhuǎn)化能力,意在考查學(xué)生對這些知識的理解掌握水平.2、C【解析】

設(shè)射線OA與x軸正向所成的角為,由三角函數(shù)的定義得,,,利用輔助角公式計算即可.【詳解】設(shè)射線OA與x軸正向所成的角為,由已知,,,所以,當(dāng)時,取得等號.故選:C.【點睛】本題考查正弦型函數(shù)的最值問題,涉及到三角函數(shù)的定義、輔助角公式等知識,是一道容易題.3、A【解析】

結(jié)合已知可知,可求,進(jìn)而可求,代入,結(jié)合,可求,即可判斷.【詳解】圖象上相鄰兩個極值點,滿足,即,,,且,,,,,,當(dāng)時,為函數(shù)的一個極小值點,而.故選:.【點睛】本題主要考查了正弦函數(shù)的圖象及性質(zhì)的簡單應(yīng)用,解題的關(guān)鍵是性質(zhì)的靈活應(yīng)用.4、C【解析】

幾何體是由一個圓錐和半球組成,其中半球的半徑為1,圓錐的母線長為3,底面半徑為1,計算得到答案.【詳解】幾何體是由一個圓錐和半球組成,其中半球的半徑為1,圓錐的母線長為3,底面半徑為1,故幾何體的表面積為.故選:.【點睛】本題考查了根據(jù)三視圖求表面積,意在考查學(xué)生的計算能力和空間想象能力.5、A【解析】

利用函數(shù)的對稱性及函數(shù)值的符號即可作出判斷.【詳解】由題意可知函數(shù)為奇函數(shù),可排除B選項;當(dāng)時,,可排除D選項;當(dāng)時,,當(dāng)時,,即,可排除C選項,故選:A【點睛】本題考查了函數(shù)圖象的判斷,函數(shù)對稱性的應(yīng)用,屬于中檔題.6、C【解析】

利用復(fù)數(shù)相等的條件求得,,則答案可求.【詳解】由,得,.對應(yīng)的點的坐標(biāo)為,,.故選:.【點睛】本題考查復(fù)數(shù)的代數(shù)表示法及其幾何意義,考查復(fù)數(shù)相等的條件,是基礎(chǔ)題.7、C【解析】

由題意利用兩個向量的數(shù)量積的定義和公式,求的值.【詳解】解:由題意可得,求得,或,故選:C.【點睛】本題主要考查兩個向量的數(shù)量積的定義和公式,屬于基礎(chǔ)題.8、D【解析】

直接根據(jù)幾何概型公式計算得到答案.【詳解】根據(jù)幾何概型:,故.故選:.【點睛】本題考查了根據(jù)幾何概型求面積,意在考查學(xué)生的計算能力和應(yīng)用能力.9、A【解析】

計算,代入回歸方程可得.【詳解】由題意,,∴,解得.故選:A.【點睛】本題考查線性回歸直線方程,解題關(guān)鍵是掌握性質(zhì):線性回歸直線一定過中心點.10、B【解析】

由于四邊形為菱形,且,所以為等邊三角形,從而可得漸近線的傾斜角,求出其斜率.【詳解】如圖,因為四邊形為菱形,,所以為等邊三角形,,兩漸近線的斜率分別為和.故選:B【點睛】此題考查的是求雙曲線的漸近線方程,利用了數(shù)形結(jié)合的思想,屬于基礎(chǔ)題.11、B【解析】

根據(jù)題意,建立平面直角坐標(biāo)系.令.為中點.由即可求得點的軌跡方程.將變形,結(jié)合及平面向量基本定理可知三點共線.由圓切線的性質(zhì)可知的最小值即為到直線的距離最小值,且當(dāng)與圓相切時,有最大值.利用圓的切線性質(zhì)及點到直線距離公式即可求得直線方程,進(jìn)而求得原點到直線的距離,即為的最大值.【詳解】根據(jù)題意,設(shè),則由代入可得即點的軌跡方程為又因為,變形可得,即,且所以由平面向量基本定理可知三點共線,如下圖所示:所以的最小值即為到直線的距離最小值根據(jù)圓的切線性質(zhì)可知,當(dāng)與圓相切時,有最大值設(shè)切線的方程為,化簡可得由切線性質(zhì)及點到直線距離公式可得,化簡可得即所以切線方程為或所以當(dāng)變化時,到直線的最大值為即的最大值為故選:B【點睛】本題考查了平面向量的坐標(biāo)應(yīng)用,平面向量基本定理的應(yīng)用,圓的軌跡方程問題,圓的切線性質(zhì)及點到直線距離公式的應(yīng)用,綜合性強,屬于難題.12、B【解析】

首先由三視圖還原幾何體,進(jìn)一步求出幾何體的棱長.【詳解】解:根據(jù)三視圖還原幾何體如圖所示,所以,該四棱錐體的最長的棱長為.故選:B.【點睛】本題主要考查由三視圖還原幾何體,考查運算能力和推理能力,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、7【解析】

表示初值S=1,i=1,分三次循環(huán)計算得S=10>0,輸出i=7.【詳解】S=1,i=1第一次循環(huán):S=1+1=2,i=1+2=3;第二次循環(huán):S=2+3=5,i=3+2=5;第三次循環(huán):S=5+5=10,i=5+2=7;S=10>9,循環(huán)結(jié)束,輸出:i=7.故答案為:7【點睛】本題考查在程序語句的背景下已知輸入的循環(huán)結(jié)構(gòu)求輸出值問題,屬于基礎(chǔ)題.14、1【解析】

分別代入集合中的元素,求出值,再結(jié)合集合中元素的互異性進(jìn)行取舍可解.【詳解】依題意,分別令,,,由集合的互異性,解得,則.故答案為:【點睛】本題考查集合元素的特性:確定性、互異性、無序性.確定集合中元素,要注意檢驗集合中的元素是否滿足互異性.15、【解析】

求出點坐標(biāo),由于直線與直線垂直,得出直線的斜率為,再由點斜式寫出直線的方程.【詳解】由于直線可看成直線先繞點逆時針方向旋轉(zhuǎn)角,再繼續(xù)旋轉(zhuǎn)角得到,則直線與直線垂直,即直線的斜率為所以直線的方程為,即故答案為:【點睛】本題主要考查了求直線的方程,涉及了求直線的交點以及直線與直線的位置關(guān)系,屬于中檔題.16、1【解析】

由已知數(shù)列遞推式可得數(shù)列是以16為首項,以為公比的等比數(shù)列,再由等比數(shù)列的前項和公式求解.【詳解】由,得,.且,則,即.?dāng)?shù)列是以16為首項,以為公比的等比數(shù)列,則.故答案為:1.【點睛】本題主要考查數(shù)列遞推式,考查等比數(shù)列的前項和,意在考查學(xué)生對這些知識的理解掌握水平.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)極小值為,極大值為.(2)【解析】

(1)根據(jù)斜線的斜率即可求得參數(shù),再對函數(shù)求導(dǎo),即可求得函數(shù)的極值;(2)根據(jù)題意,對目標(biāo)式進(jìn)行變形,構(gòu)造函數(shù),根據(jù)是單調(diào)減函數(shù),分離參數(shù),求函數(shù)的最值即可求得結(jié)果.【詳解】(1)函數(shù)的定義域為,,,,可知,,解得,,可知在,時,,函數(shù)單調(diào)遞增,在時,,函數(shù)單調(diào)遞減,可知函數(shù)的極小值為,極大值為.(2)可以變形為,可得,可知函數(shù)在上單調(diào)遞減,,可得,設(shè),,可知函數(shù)在單調(diào)遞減,,可知,可知參數(shù)的取值范圍為.【點睛】本題考查由切線的斜率求參數(shù)的值,以及對具體函數(shù)極值的求解,涉及構(gòu)造函數(shù)法,以及利用導(dǎo)數(shù)求函數(shù)的值域;第二問的難點在于對目標(biāo)式的變形,屬綜合性中檔題.18、(Ⅰ).0.2(Ⅱ)見解析,有的把握認(rèn)為交通安全意識與性別有關(guān)(Ⅲ)見解析,【解析】

(Ⅰ)直接根據(jù)頻率和為1計算得到答案.(Ⅱ)完善列聯(lián)表,計算,對比臨界值表得到答案.(Ⅲ)的取值為,計算概率得到分布列,計算數(shù)學(xué)期望得到答案.【詳解】(Ⅰ),解得.所以該城市駕駛員交通安全意識強的概率.(Ⅱ)安全意識強安全意識不強合計男性163450女性44650合計2080100,所以有的把握認(rèn)為交通安全意識與性別有關(guān)(Ⅲ)的取值為所以的分布列為期望.【點睛】本題考查了獨立性檢驗,分布列,數(shù)學(xué)期望,意在考查學(xué)生的計算能力和綜合應(yīng)用能力.19、(1)的最小正周期為:;函數(shù)單調(diào)遞增區(qū)間為:;(2).【解析】

(1)根據(jù)誘導(dǎo)公式,結(jié)合二倍角的正弦公式、輔助角公式把函數(shù)的解析式化簡成余弦型函數(shù)解析式形式,利用余弦型函數(shù)的最小正周期公式和單調(diào)性進(jìn)行求解即可;(2)由(1)結(jié)合,求出的大小,再根據(jù)三角形面積公式,結(jié)合余弦定理和基本不等式進(jìn)行求解即可.【詳解】(1)的最小正周期為:;當(dāng)時,即當(dāng)時,函數(shù)單調(diào)遞增,所以函數(shù)單調(diào)遞增區(qū)間為:;(2)因為,所以設(shè)邊上的高為,所以有,由余弦定理可知:(當(dāng)用僅當(dāng)時,取等號),所以,因此邊上的高的最大值.【點睛】本題考查了正弦的二倍角公式、誘導(dǎo)公式、輔助角公式,考查了余弦定理、三角形面積公式,考查了基本不等式的應(yīng)用,考查了數(shù)學(xué)運算能力.20、(1);(2)見解析;(3)見解析【解析】

(1)需滿足恒成立,只需即可;(2)根據(jù)的單調(diào)性,構(gòu)造新函數(shù),并令,根據(jù)的單調(diào)性即可得證;(3)將問題轉(zhuǎn)化為證明有唯一實數(shù)解,對求導(dǎo),判斷其單調(diào)性,結(jié)合題目條件與不等式的放縮,即可得證.【詳解】;令,則恒成立;,;的取值范圍是;(2)證明:由(1)知,在上單調(diào)遞減,在上單調(diào)遞增;;令,;則;令,則;;;(3)證明:,,要證明有唯一實數(shù)解;當(dāng)時,;當(dāng)時,;即對于任意實數(shù),一定有解;;當(dāng)時,有兩個極值點;函數(shù)在,,上單調(diào)遞增,在上單調(diào)遞減;又;只需,在時恒成立;只需;令,其中一個正解是;,;單調(diào)遞增,,(1);;;綜上得證.【點睛】本題考查了利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,考查了利用導(dǎo)數(shù)證明不等式,考查了轉(zhuǎn)化思想、不等式的放縮,屬難題.21、(1);(2).【解析】

(1)將曲線的參數(shù)方程消參得到普通方程;(2)寫出直線MN的參數(shù)方程,將參數(shù)方程代入曲線方程,并將其化為一個關(guān)于的一元二次方程,根據(jù),結(jié)合韋達(dá)定理和余弦函數(shù)的性質(zhì),即可求出的最小值.【詳解】(1)由曲線C的參數(shù)方程(是參數(shù)),可得,即曲線C的一般方程為.(2)直線MN的參數(shù)方程為(t為參數(shù)),將直線MN的參數(shù)方程代入曲線,得,整理得,設(shè)M,N對應(yīng)的對數(shù)分別為,,則,當(dāng)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論