2025屆江蘇宿遷市高一數(shù)學第二學期期末考試試題含解析_第1頁
2025屆江蘇宿遷市高一數(shù)學第二學期期末考試試題含解析_第2頁
2025屆江蘇宿遷市高一數(shù)學第二學期期末考試試題含解析_第3頁
2025屆江蘇宿遷市高一數(shù)學第二學期期末考試試題含解析_第4頁
2025屆江蘇宿遷市高一數(shù)學第二學期期末考試試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2025屆江蘇宿遷市高一數(shù)學第二學期期末考試試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.若實數(shù)滿足,則的最小值為()A.4 B.8 C.16 D.322.某幾何體三視圖如圖所示,則該幾何體中的棱與面相互平行的有()A.2對 B.3對 C.4對 D.5對3.有5支彩筆(除顏色外無差別),顏色分別為紅、黃、藍、綠、紫.從這5支彩筆中任取2支不同顏色的彩筆,則取出的2支彩筆中含有紅色彩筆的概率為A. B. C. D.4.下列四組中的函數(shù),表示同一個函數(shù)的是()A., B.,C., D.,5.已知等差數(shù)列的前項和為,若,則的值為A.10 B.15 C.25 D.306.三邊,滿足,則三角形是()A.銳角三角形 B.鈍角三角形 C.等邊三角形 D.直角三角形7.函數(shù)的圖象如圖所示,則y的表達式為()A. B.C. D.8.圓,那么與圓有相同的圓心,且經(jīng)過點的圓的方程是().A. B.C. D.9.點到直線(R)的距離的最大值為A. B. C.2 D.10.內(nèi)角,,的對邊分別為,,.已知,,,則這樣的三角形有()A.0個 B.1個 C.2個 D.1個或2個二、填空題:本大題共6小題,每小題5分,共30分。11.設等差數(shù)列的前項和為,若,,則的最小值為______.12.已知扇形的半徑為6,圓心角為,則該扇形的面積為_______.13.過拋物線的焦點F的直線交拋物線于A、B兩點,則________.14.已知向量,,則與的夾角等于_______.15.在中,,則______.16.若正四棱錐的底面邊長為,側(cè)棱長為,則該正四棱錐的體積為______.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.設兩個非零向量與不共線,(1)若,,,求證:三點共線;(2)試確定實數(shù),使和同向.18.已知數(shù)列的前項和為,,.(1)求數(shù)列的通項公式;(2)在數(shù)列中,,其前項和為,求的取值范圍.19.已知等差數(shù)列的前項和為,且,.(1)求數(shù)列的通項公式;(2)請確定3998是否是數(shù)列中的項?20.設函數(shù)的定義域為R,當時,,且對任意實數(shù)m、n,有成立,數(shù)列滿足,且.(1)求的值;(2)若不等式對一切都成立,求實數(shù)k的最大值.21.某企業(yè)生產(chǎn),兩種產(chǎn)品,根據(jù)市場調(diào)查與預測,產(chǎn)品的利潤與投資成正比,其關系如圖1,產(chǎn)品的利潤與投資的算術平方根成正比,其關系如圖2,(注:利潤與投資單位:萬元)(1)分別將,兩種產(chǎn)品的利潤表示為投資的函數(shù)關系,并寫出它們的函數(shù)關系式;(2)該企業(yè)已籌集到10萬元資金,全部投入到,兩種產(chǎn)品的生產(chǎn),怎樣分配資金,才能使企業(yè)獲得最大利潤,其最大利潤約為多少萬元(精確到1萬元).

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】

由可以得到,利用基本不等式可求最小值.【詳解】因為,故,因為,故,故,當且僅當時等號成立,故的最小值為8,故選B.【點睛】應用基本不等式求最值時,需遵循“一正二定三相等”,如果原代數(shù)式中沒有積為定值或和為定值,則需要對給定的代數(shù)變形以產(chǎn)生和為定值或積為定值的局部結構.求最值時要關注取等條件的驗證.2、C【解析】

本道題結合三視圖,還原直觀圖,結合直線與平面判定,即可?!驹斀狻拷Y合三視圖,還原直觀圖,得到AB平行平面OCD,DC平行平面OBA,BC平行平面ODA,DA平行平面OBC,故有4對。故選C?!军c睛】本道題考查了三視圖還原直觀圖,難度中等。3、C【解析】選取兩支彩筆的方法有種,含有紅色彩筆的選法為種,由古典概型公式,滿足題意的概率值為.本題選擇C選項.考點:古典概型名師點睛:對于古典概型問題主要把握基本事件的種數(shù)和符合要求的事件種數(shù),基本事件的種數(shù)要注意區(qū)別是排列問題還是組合問題,看抽取時是有、無順序,本題從這5支彩筆中任取2支不同顏色的彩筆,是組合問題,當然簡單問題建議采取列舉法更直觀一些.4、A【解析】

分別判斷兩個函數(shù)的定義域和對應法則是否相同即可.【詳解】.的定義域為,,兩個函數(shù)的定義域相同,對應法則相同,所以,表示同一個函數(shù)..的定義域為,,兩個函數(shù)的定義域相同,對應法則不相同,所以,不能表示同一個函數(shù)..的定義域為,的定義域為,兩個函數(shù)的定義域不相同,所以,不能表示同一個函數(shù)..的定義域為,的定義域,兩個函數(shù)的定義域不相同,對應法則相同,所以,不能表示同一個函數(shù).故選.【點睛】本題主要考查判斷兩個函數(shù)是否為同一函數(shù),判斷的依據(jù)主要是判斷兩個函數(shù)的定義域和對應法則是否相同即可.5、B【解析】

直接利用等差數(shù)列的性質(zhì)求出結果.【詳解】等差數(shù)列{an}的前n項和為Sn,若S17=85,則:85,解得:a9=5,所以:a7+a9+a11=3a9=1.故選:B.【點睛】本題考查的知識要點:等差數(shù)列的通項公式的應用,及性質(zhì)的應用,主要考查學生的運算能力和轉(zhuǎn)化能力,屬于基礎題.6、C【解析】

由基本不等式得出,將三個不等式相加得出,由等號成立的條件可判斷出的形狀.【詳解】為三邊,,由基本不等式可得,將上述三個不等式相加得,當且僅當時取等號,所以,是等邊三角形,故選C.【點睛】本題考查三角形形狀的判斷,考查基本不等式的應用,利用基本不等式要注意“一正、二定、三相等”條件的應用,考查推理能力,屬于中等題.7、B【解析】

根據(jù)圖像最大值和最小值可得,根據(jù)最大值和最小值的所對應的的值,可得周期,然后由,得到,代入點,結合的范圍,得到答案.【詳解】根據(jù)圖像可得,,即,根據(jù),得,所以,代入,得,所以,,所以,又因,所以得,所以得到,故選B.【點睛】本題考查根據(jù)函數(shù)圖像求正弦型函數(shù)的解析式,屬于簡單題.8、B【解析】

圓的標準方程為,圓心,故排除、,代入點,只有項經(jīng)過此點,也可以設出要求的圓的方程:,再代入點,可以求得圓的半徑為.故選.點睛:這個題目主要考查圓的標準方程,因為這是一道選擇題,故根據(jù)與條件中的圓的方程可以得到圓心坐標,進而可以排除幾個選項,如果正規(guī)方法,就可以按照已知圓心,寫出標準方程,代入已知點求出標準方程即可.9、A【解析】

把直線方程化為,得到直線恒過定點,由此可得點P到直線的距離的最大值就是點P到定點的距離,得到答案.【詳解】由題意,直線可化為,令,解得,即直線恒過定點,則點P到直線的距離的最大值就是點P到定點的距離為:,故選A.【點睛】本題主要考查了直線方程的應用,其中解答中把直線方程化為,得出直線恒過定點是解答本題的關鍵,著重考查了轉(zhuǎn)化思想,以及推理與運算能力,屬于基礎題.10、C【解析】

根據(jù)和的大小關系,判斷出解的個數(shù).【詳解】由于,所以,故解的個數(shù)有兩個.如圖所示兩個解.故選:C【點睛】本小題主要考查正弦定理的運用過程中,三角形解的個數(shù)判斷,屬于基礎題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

用基本量法求出數(shù)列的通項公式,由通項公式可得取最小值時的值,從而得的最小值.【詳解】設數(shù)列公差為,則由已知得,解得,∴,,,又,、∴的最小值為.故答案為:..【點睛】本題考查等差數(shù)列的前項和的最值.首項為負且遞增的等差數(shù)列,滿足的最大的使得最小,首項為正且遞減的等差數(shù)列,滿足的最大的使得最大,當然也可把表示為的二次函數(shù),由二次函數(shù)知識求得最值.12、【解析】

用弧度制表示出圓心角,然后根據(jù)扇形面積公式計算出扇形的面積.【詳解】圓心角為對應的弧度為,所以扇形的面積為.故答案為:【點睛】本小題主要考查角度制和弧度制互化,考查扇形面積的計算,屬于基礎題.13、【解析】

討論斜率不存在和斜率存在兩種情況,分別計算得到答案.【詳解】拋物線的焦點F為,當斜率不存在時,易知,故;當斜率存在時,設,故,即,故,.綜上所述:.故答案為:.【點睛】本題考查了拋物線中線段長度問題,意在考查學生的計算能力和轉(zhuǎn)化能力.14、【解析】

由已知向量的坐標求得兩向量的模及數(shù)量積,代入數(shù)量積求夾角公式得答案.【詳解】∵(﹣1,),(,﹣1),∴,,則cos,∴與的夾角等于.故答案為:.【點睛】本題考查平面向量的數(shù)量積運算,考查了由數(shù)量積求向量的夾角,是基礎題.15、【解析】

由已知求得,進一步求得,即可求出.【詳解】由,得,即,,則,,,則.【點睛】本題主要考查應用兩角和的正切公式作三角函數(shù)的恒等變換與化簡求值.16、4.【解析】

設正四棱錐的高為PO,連結AO,在直角三角形POA中,求得高,利用體積公式,即可求解.【詳解】由題意,如圖所示,正四棱錐P-ABCD中,AB=,PA=設正四棱錐的高為PO,連結AO,則AO=,在直角三角形POA中,,∴.【點睛】本題主要考查了正棱錐體積的計算,其中解答中熟記正棱錐的性質(zhì),以及棱錐的體積公式,準確計算是解答的關鍵,著重考查了推理與運算能力.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)【解析】

(1)根據(jù)向量的運算可得,再根據(jù)平面向量共線基本定理即可證明三點共線;(2)根據(jù)平面向量共線基本定理,可設,由向量相等條件可得關于和的方程組,解方程組并由的條件確定實數(shù)的值.【詳解】(1)證明:因為,,,所以.所以共線,又因為它們有公共點,所以三點共線.(2)因為與同向,所以存在實數(shù),使,即.所以.因為是不共線的兩個非零向量,所以解得或又因為,所以.【點睛】本題考查了平面向量共線定理的應用,三點共線的向量證明方法應用,屬于基礎題.18、(1).(2)【解析】

(1)根據(jù)已知的等式,再寫一個關于等式,利用求通項公式;(2)利用裂項相消法求解,再根據(jù)單調(diào)性以及求解的取值范圍.【詳解】解:(1)當時,,,兩式相減得整理得,即,又,,,則,當時,,所以.(2),則,.又,所以數(shù)列單調(diào)遞增,當時,最小值為,又因為,所以的取值范圍為.【點睛】當,且是等差數(shù)列且,則的前項和可用裂項相消法求解:.19、(1)(2)第1000項【解析】

(1)由題意有,解方程組即得數(shù)列的通項公式;(2)假設3998是數(shù)列中的項,有,得,即可判斷得解.【詳解】解:(1)設數(shù)列的公差為,由題意有,解得,則數(shù)列的通項公式為.(2)假設3998是數(shù)列中的項,有,得,故3998是數(shù)列中的第1000項.【點睛】本題主要考查等差數(shù)列基本量的計算,考查某一項是否是等差數(shù)列中的項的判定,意在考查學生對這些知識的理解掌握水平,屬于基礎題.20、(1)(2)【解析】

(1)首先令,得:,根據(jù)得到,即是以,的等差數(shù)列,再計算即可.(2)將題意轉(zhuǎn)化為,設,判斷其單調(diào)性,求出最小值即可得到答案.【詳解】令,得:,.所以.因為,所以.所以,.所以是以,的等差數(shù)列.所以,.(2)因為恒成立.即恒成立.設,知,且,,即,故為關于的增函數(shù),.所以,的最大值為.【點睛】本題主要考查數(shù)列與函數(shù)的綜合,利用函數(shù)的單調(diào)性是解題的關鍵,屬于難題.21、(1)為,為;(2)產(chǎn)品投入3.75萬元,產(chǎn)品投入6.25萬元,最大利潤為4萬元【解析】

(1)根據(jù)題意給出的函數(shù)模型,設;代入圖中

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論