版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2023-2024學年陜西省榆林市綏德中考數(shù)學押題卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.黃河是中華民族的象征,被譽為母親河,黃河壺口瀑布位于我省吉縣城西45千米處,是黃河上最具氣勢的自然景觀.其落差約30米,年平均流量1010立方米/秒.若以小時作時間單位,則其年平均流量可用科學記數(shù)法表示為()A.6.06×104立方米/時 B.3.136×106立方米/時C.3.636×106立方米/時 D.36.36×105立方米/時2.一、單選題點P(2,﹣1)關于原點對稱的點P′的坐標是()A.(﹣2,1) B.(﹣2,﹣1) C.(﹣1,2) D.(1,﹣2)3.已知關于x的一元二次方程(a+1)x2+2bx+(a+1)=0有兩個相等的實數(shù)根,下列判斷正確的是()A.1一定不是關于x的方程x2+bx+a=0的根B.0一定不是關于x的方程x2+bx+a=0的根C.1和﹣1都是關于x的方程x2+bx+a=0的根D.1和﹣1不都是關于x的方程x2+bx+a=0的根4.一元二次方程(x+3)(x-7)=0的兩個根是A.x1=3,x2=-7B.x1=3,x2=7C.x1=-3,x2=7D.x1=-3,x2=-75.如圖,在平面直角坐標系中,A(1,2),B(1,-1),C(2,2),拋物線y=ax2(a≠0)經(jīng)過△ABC區(qū)域(包括邊界),則a的取值范圍是()A.
或
B.
或
C.
或D.6.將拋物線y=A.y=-12C.y=-127.下列函數(shù)是二次函數(shù)的是()A. B. C. D.8.如圖,在矩形ABCD中,AB=5,AD=3,動點P滿足S△PAB=S矩形ABCD,則點P到A、B兩點距離之和PA+PB的最小值為()A. B. C.5 D.9.如圖,△ABC內(nèi)接于半徑為5的⊙O,圓心O到弦BC的距離等于3,則∠A的正切值等于()A.B.C.D.10.如圖,⊙O內(nèi)切于正方形ABCD,邊BC、DC上兩點M、N,且MN是⊙O的切線,當△AMN的面積為4時,則⊙O的半徑r是()A. B.2 C.2 D.4二、填空題(共7小題,每小題3分,滿分21分)11.如果一個正多邊形每一個內(nèi)角都等于144°,那么這個正多邊形的邊數(shù)是____.12.如圖,在兩個同心圓中,三條直徑把大、小圓都分成相等的六個部分,若隨意向圓中投球,球落在黑色區(qū)域的概率是______.13.關于的一元二次方程有兩個相等的實數(shù)根,則________.14.如圖,在平面直角坐標系中,點P(﹣1,a)在直線y=2x+2與直線y=2x+4之間,則a的取值范圍是_____.15.在平面直角坐標系中,已知,A(2,0),C(0,﹣1),若P為線段OA上一動點,則CP+AP的最小值為_____.16.如圖,在△ABC中,DM垂直平分AC,交BC于點D,連接AD,若∠C=28°,AB=BD,則∠B的度數(shù)為_____度.17.半徑是6cm的圓內(nèi)接正三角形的邊長是_____cm.三、解答題(共7小題,滿分69分)18.(10分)已知關于x的方程x2﹣6mx+9m2﹣9=1.(1)求證:此方程有兩個不相等的實數(shù)根;(2)若此方程的兩個根分別為x1,x2,其中x1>x2,若x1=2x2,求m的值.19.(5分)某商場甲、乙兩名業(yè)務員10個月的銷售額(單位:萬元)如下:甲7.29.69.67.89.346.58.59.99.6乙5.89.79.76.89.96.98.26.78.69.7根據(jù)上面的數(shù)據(jù),將下表補充完整:4.0≤x≤4.95.0≤x≤5.96.0≤x≤6.97.0≤x≤7.98.0≤x≤8.99.0≤x≤10.0甲101215乙_______________________________(說明:月銷售額在8.0萬元及以上可以獲得獎金,7.0~7.9萬元為良好,6.0~6.9萬元為合格,6.0萬元以下為不合格)兩組樣本數(shù)據(jù)的平均數(shù)、中位數(shù)、眾數(shù)如表所示:結(jié)論:人員平均數(shù)(萬元)中位數(shù)(萬元)眾數(shù)(萬元)甲8.28.99.6乙8.28.49.7(1)估計乙業(yè)務員能獲得獎金的月份有______個;(2)可以推斷出_____業(yè)務員的銷售業(yè)績好,理由為_______.(至少從兩個不同的角度說明推斷的合理性)20.(8分)如圖,在Rt△ABC中,∠C=90°,翻折∠C,使點C落在斜邊AB上某一點D處,折痕為EF(點E、F分別在邊AC、BC上)若△CEF與△ABC相似.①當AC=BC=2時,AD的長為;②當AC=3,BC=4時,AD的長為;當點D是AB的中點時,△CEF與△ABC相似嗎?請說明理由.21.(10分)為響應學校全面推進書香校園建設的號召,班長李青隨機調(diào)查了若干同學一周課外閱讀的時間(單位:小時),將獲得的數(shù)據(jù)分成四組,繪制了如下統(tǒng)計圖(:,:,:,:),根據(jù)圖中信息,解答下列問題:(1)這項工作中被調(diào)查的總?cè)藬?shù)是多少?(2)補全條形統(tǒng)計圖,并求出表示組的扇形統(tǒng)計圖的圓心角的度數(shù);(3)如果李青想從組的甲、乙、丙、丁四人中先后隨機選擇兩人做讀書心得發(fā)言代表,請用列表或畫樹狀圖的方法求出選中甲的概率.22.(10分)小強想知道湖中兩個小亭A、B之間的距離,他在與小亭A、B位于同一水平面且東西走向的湖邊小道I上某一觀測點M處,測得亭A在點M的北偏東30°,亭B在點M的北偏東60°,當小明由點M沿小道I向東走60米時,到達點N處,此時測得亭A恰好位于點N的正北方向,繼續(xù)向東走30米時到達點Q處,此時亭B恰好位于點Q的正北方向,根據(jù)以上測量數(shù)據(jù),請你幫助小強計算湖中兩個小亭A、B之間的距離.23.(12分)全民學習、終身學習是學習型社會的核心內(nèi)容,努力建設學習型家庭也是一個重要組成部分.為了解“學習型家庭”情況,對部分家庭五月份的平均每天看書學習時間進行了一次抽樣調(diào)查,并根據(jù)收集的數(shù)據(jù)繪制了下面兩幅不完整的統(tǒng)計圖,請根據(jù)圖中提供的信息,解答下列問題:本次抽樣調(diào)查了個家庭;將圖①中的條形圖補充完整;學習時間在2~2.5小時的部分對應的扇形圓心角的度數(shù)是度;若該社區(qū)有家庭有3000個,請你估計該社區(qū)學習時間不少于1小時的約有多少個家庭?24.(14分)如圖,在等腰直角△ABC中,∠C是直角,點A在直線MN上,過點C作CE⊥MN于點E,過點B作BF⊥MN于點F.(1)如圖1,當C,B兩點均在直線MN的上方時,①直接寫出線段AE,BF與CE的數(shù)量關系.②猜測線段AF,BF與CE的數(shù)量關系,不必寫出證明過程.(2)將等腰直角△ABC繞著點A順時針旋轉(zhuǎn)至圖2位置時,線段AF,BF與CE又有怎樣的數(shù)量關系,請寫出你的猜想,并寫出證明過程.(3)將等腰直角△ABC繞著點A繼續(xù)旋轉(zhuǎn)至圖3位置時,BF與AC交于點G,若AF=3,BF=7,直接寫出FG的長度.
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、C【解析】
科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當原數(shù)絕對值>1時,n是正數(shù);當原數(shù)的絕對值<1時,n是負數(shù).【詳解】1010×360×24=3.636×106立方米/時,故選C.【點睛】此題考查科學記數(shù)法的表示方法.科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時關鍵要正確確定a的值以及n的值.2、A【解析】
根據(jù)“關于原點對稱的點,橫坐標與縱坐標都互為相反數(shù)”解答.【詳解】解:點P(2,-1)關于原點對稱的點的坐標是(-2,1).故選A.【點睛】本題考查了關于原點對稱的點的坐標,解決本題的關鍵是掌握好對稱點的坐標規(guī)律:關于原點對稱的點,橫坐標與縱坐標都互為相反數(shù).3、D【解析】
根據(jù)方程有兩個相等的實數(shù)根可得出b=a+1或b=-(a+1),當b=a+1時,-1是方程x2+bx+a=0的根;當b=-(a+1)時,1是方程x2+bx+a=0的根.再結(jié)合a+1≠-(a+1),可得出1和-1不都是關于x的方程x2+bx+a=0的根.【詳解】∵關于x的一元二次方程(a+1)x2+2bx+(a+1)=0有兩個相等的實數(shù)根,∴,∴b=a+1或b=-(a+1).當b=a+1時,有a-b+1=0,此時-1是方程x2+bx+a=0的根;當b=-(a+1)時,有a+b+1=0,此時1是方程x2+bx+a=0的根.∵a+1≠0,∴a+1≠-(a+1),∴1和-1不都是關于x的方程x2+bx+a=0的根.故選D.【點睛】本題考查了根的判別式以及一元二次方程的定義,牢記“當△=0時,方程有兩個相等的實數(shù)根”是解題的關鍵.4、C【解析】
根據(jù)因式分解法直接求解即可得.【詳解】∵(x+3)(x﹣7)=0,∴x+3=0或x﹣7=0,∴x1=﹣3,x2=7,故選C.【點睛】本題考查了解一元二次方程——因式分解法,根據(jù)方程的特點選擇恰當?shù)姆椒ㄟM行求解是解題的關鍵.5、B【解析】試題解析:如圖所示:分兩種情況進行討論:當時,拋物線經(jīng)過點時,拋物線的開口最小,取得最大值拋物線經(jīng)過△ABC區(qū)域(包括邊界),的取值范圍是:當時,拋物線經(jīng)過點時,拋物線的開口最小,取得最小值拋物線經(jīng)過△ABC區(qū)域(包括邊界),的取值范圍是:故選B.點睛:二次函數(shù)二次項系數(shù)決定了拋物線開口的方向和開口的大小,開口向上,開口向下.的絕對值越大,開口越小.6、D【解析】
將拋物線y=12【詳解】由題意得,a=-12設旋轉(zhuǎn)180°以后的頂點為(x′,y′),則x′=2×0-(-2)=2,y′=2×3-5=1,∴旋轉(zhuǎn)180°以后的頂點為(2,1),∴旋轉(zhuǎn)180°以后所得圖象的解析式為:y=-1故選D.【點睛】本題考查了二次函數(shù)圖象的旋轉(zhuǎn)變換,在繞拋物線某點旋轉(zhuǎn)180°以后,二次函數(shù)的開口大小沒有變化,方向相反;設旋轉(zhuǎn)前的的頂點為(x,y),旋轉(zhuǎn)中心為(a,b),由中心對稱的性質(zhì)可知新頂點坐標為(2a-x,2b-y),從而可求出旋轉(zhuǎn)后的函數(shù)解析式.7、C【解析】
根據(jù)一次函數(shù)的定義,二次函數(shù)的定義對各選項分析判斷利用排除法求解.【詳解】A.y=x是一次函數(shù),故本選項錯誤;B.y=是反比例函數(shù),故本選項錯誤;C.y=x-2+x2是二次函數(shù),故本選項正確;D.y=右邊不是整式,不是二次函數(shù),故本選項錯誤.故答案選C.【點睛】本題考查的知識點是二次函數(shù)的定義,解題的關鍵是熟練的掌握二次函數(shù)的定義.8、D【解析】解:設△ABP中AB邊上的高是h.∵S△PAB=S矩形ABCD,∴AB?h=AB?AD,∴h=AD=2,∴動點P在與AB平行且與AB的距離是2的直線l上,如圖,作A關于直線l的對稱點E,連接AE,連接BE,則BE就是所求的最短距離.在Rt△ABE中,∵AB=5,AE=2+2=4,∴BE===,即PA+PB的最小值為.故選D.9、C.【解析】試題分析:如答圖,過點O作OD⊥BC,垂足為D,連接OB,OC,∵OB=5,OD=3,∴根據(jù)勾股定理得BD=4.∵∠A=∠BOC,∴∠A=∠BOD.∴tanA=tan∠BOD=.故選D.考點:1.垂徑定理;2.圓周角定理;3.勾股定理;4.銳角三角函數(shù)定義.10、C【解析】
連接,交于點設則根據(jù)△AMN的面積為4,列出方程求出的值,再計算半徑即可.【詳解】連接,交于點內(nèi)切于正方形為的切線,經(jīng)過點為等腰直角三角形,為的切線,設則△AMN的面積為4,則即解得故選:C.【點睛】考查圓的切線的性質(zhì),等腰直角三角形的性質(zhì),三角形的面積公式,綜合性比較強.二、填空題(共7小題,每小題3分,滿分21分)11、1【解析】
設正多邊形的邊數(shù)為n,然后根據(jù)多邊形的內(nèi)角和公式列方程求解即可.【詳解】解:設正多邊形的邊數(shù)為n,由題意得,=144°,解得n=1.故答案為1.【點睛】本題考查了多邊形的內(nèi)角與外角,熟記公式并準確列出方程是解題的關鍵.12、【解析】
根據(jù)幾何概率的求法:球落在黑色區(qū)域的概率就是黑色區(qū)域的面積與總面積的比值.【詳解】解:由圖可知黑色區(qū)域與白色區(qū)域的面積相等,故球落在黑色區(qū)域的概率是=.【點睛】本題考查幾何概率的求法:首先根據(jù)題意將代數(shù)關系用面積表示出來,一般用陰影區(qū)域表示所求事件(A);然后計算陰影區(qū)域的面積在總面積中占的比例,這個比例即事件(A)發(fā)生的概率.13、-1.【解析】
根據(jù)根的判別式計算即可.【詳解】解:依題意得:∵關于的一元二次方程有兩個相等的實數(shù)根,∴==4-41(-k)=4+4k=0解得,k=-1.故答案為:-1.【點睛】本題考查了一元二次方程根的判別式,當=>0時,方程有兩個不相等的實數(shù)根;當==0時,方程有兩個相等的實數(shù)根;當=<0時,方程無實數(shù)根.14、【解析】
計算出當P在直線上時a的值,再計算出當P在直線上時a的值,即可得答案.【詳解】解:當P在直線上時,,當P在直線上時,,則.故答案為【點睛】此題主要考查了一次函數(shù)與一元一次不等式,關鍵是掌握函數(shù)圖象經(jīng)過的點,必能使解析式左右相等.15、【解析】
可以取一點D(0,1),連接AD,作CN⊥AD于點N,PM⊥AD于點M,根據(jù)勾股定理可得AD=3,證明△APM∽△ADO得,PM=AP.當CP⊥AD時,CP+AP=CP+PM的值最小,最小值為CN的長.【詳解】如圖,取一點D(0,1),連接AD,作CN⊥AD于點N,PM⊥AD于點M,在Rt△AOD中,∵OA=2,OD=1,∴AD==3,∵∠PAM=∠DAO,∠AMP=∠AOD=90°,∴△APM∽△ADO,∴,即,∴PM=AP,∴PC+AP=PC+PM,∴當CP⊥AD時,CP+AP=CP+PM的值最小,最小值為CN的長.∵△CND∽△AOD,∴,即∴CN=.所以CP+AP的最小值為.故答案為:.【點睛】此題考查勾股定理,三角形相似的判定及性質(zhì),最短路徑問題,如何找到AP的等量線段與線段CP相加是解題的關鍵,由此利用勾股定理、相似三角形做輔助線得到垂線段PM,使問題得解.16、1【解析】
根據(jù)線段垂直平分線上的點到兩端點的距離相等可得AD=CD,等邊對等角可得∠DAC=∠C,三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和求出∠ADB=∠C+∠DAC,再次根據(jù)等邊對等角可得可得∠ADB=∠BAD,然后利用三角形的內(nèi)角和等于180°列式計算即可得解.【詳解】∵DM垂直平分AC,∴AD=CD,∴∠DAC=∠C=28°,∴∠ADB=∠C+∠DAC=28°+28°=56°,∵AB=BD,∴∠ADB=∠BAD=56°,在△ABD中,∠B=180°?∠BAD?∠ADB=180°?56°?56°=1°.故答案為1.【點睛】本題考查了等腰三角形的性質(zhì),線段垂直平分線上的點到兩端點的距離相等的性質(zhì),三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和的性質(zhì),三角形的內(nèi)角和定理,熟記各性質(zhì)與定理是解題的關鍵.17、6【解析】
根據(jù)題意畫出圖形,作出輔助線,利用垂徑定理及等邊三角形的性質(zhì)解答即可.【詳解】如圖所示,OB=OA=6,∵△ABC是正三角形,由于正三角形的中心就是圓的圓心,且正三角形三線合一,所以BO是∠ABC的平分線;∠OBD=60°×=30°,BD=cos30°×6=6×=3;根據(jù)垂徑定理,BC=2×BD=6,故答案為6.【點睛】本題主要考查了正多邊形和圓,正三角形的性質(zhì),熟練掌握等邊三角形的性質(zhì)是解題的關鍵,根據(jù)圓的內(nèi)接正三角形的特點,求出內(nèi)心到每個頂點的距離,可求出內(nèi)接正三角形的邊長.三、解答題(共7小題,滿分69分)18、(1)見解析;(2)m=2【解析】
(1)根據(jù)一元二次方程根的判別式進行分析解答即可;(2)用“因式分解法”解原方程,求得其兩根,再結(jié)合已知條件分析解答即可.【詳解】(1)∵在方程x2﹣6mx+9m2﹣9=1中,△=(﹣6m)2﹣4(9m2﹣9)=26m2﹣26m2+26=26>1.∴方程有兩個不相等的實數(shù)根;(2)關于x的方程:x2﹣6mx+9m2﹣9=1可化為:[x﹣(2m+2)][x﹣(2m﹣2)]=1,解得:x=2m+2和x=2m-2,∵2m+2>2m﹣2,x1>x2,∴x1=2m+2,x2=2m﹣2,又∵x1=2x2,∴2m+2=2(2m﹣2)解得:m=2.【點睛】(1)熟知“一元二次方程根的判別式:在一元二次方程中,當時,原方程有兩個不相等的實數(shù)根,當時,原方程有兩個相等的實數(shù)根,當時,原方程沒有實數(shù)根”是解答第1小題的關鍵;(2)能用“因式分解法”求得關于x的方程x2﹣6mx+9m2﹣9=1的兩個根是解答第2小題的關鍵.19、填表見解析;(1)6;(2)甲;甲的銷售額的中位數(shù)較大,并且甲月銷售額在9萬元以上的月份多.【解析】
(1)月銷售額在8.0萬元及以上可以獲得獎金,去銷售額中找到乙大于8.0的個數(shù)即可解題,(2)根據(jù)中位數(shù)和平均數(shù)即可解題.【詳解】解:如圖,銷售額數(shù)量x人員4.0≤x≤4.95.0≤x≤5.96.0≤x≤6.97.0≤x≤7.98.0≤x≤8.99.0≤x≤10.0甲101215乙013024(1)估計乙業(yè)務員能獲得獎金的月份有6個;(2)可以推斷出甲業(yè)務員的銷售業(yè)績好,理由為:甲的銷售額的中位數(shù)較大,并且甲月銷售額在9萬元以上的月份多.故答案為0,1,3,0,2,4;6;甲,甲的銷售額的中位數(shù)較大,并且甲月銷售額在9萬元以上的月份多.【點睛】本題考查了統(tǒng)計的相關知識,眾數(shù),平均數(shù)的應用,屬于簡單題,將圖表信息轉(zhuǎn)換成有用信息是解題關鍵.20、解:(1)①.②或.(2)當點D是AB的中點時,△CEF與△ABC相似.理由見解析.【解析】
(1)①當AC=BC=2時,△ABC為等腰直角三角形;
②若△CEF與△ABC相似,分兩種情況:①若CE:CF=3:4,如圖1所示,此時EF∥AB,CD為AB邊上的高;②若CF:CE=3:4,如圖2所示.由相似三角形角之間的關系,可以推出∠A=∠ECD與∠B=∠FCD,從而得到CD=AD=BD,即D點為AB的中點;
(2)當點D是AB的中點時,△CEF與△ABC相似.可以推出∠CFE=∠A,∠C=∠C,從而可以證明兩個三角形相似.【詳解】(1)若△CEF與△ABC相似.①當AC=BC=2時,△ABC為等腰直角三角形,如答圖1所示,此時D為AB邊中點,AD=AC=.②當AC=3,BC=4時,有兩種情況:(I)若CE:CF=3:4,如答圖2所示,∵CE:CF=AC:BC,∴EF∥BC.由折疊性質(zhì)可知,CD⊥EF,∴CD⊥AB,即此時CD為AB邊上的高.在Rt△ABC中,AC=3,BC=4,∴BC=1.∴cosA=.∴AD=AC?cosA=3×=.(II)若CF:CE=3:4,如答圖3所示.∵△CEF∽△CAB,∴∠CEF=∠B.由折疊性質(zhì)可知,∠CEF+∠ECD=90°.又∵∠A+∠B=90°,∴∠A=∠ECD,∴AD=CD.同理可得:∠B=∠FCD,CD=BD.∴AD=BD.∴此時AD=AB=×1=.綜上所述,當AC=3,BC=4時,AD的長為或.(2)當點D是AB的中點時,△CEF與△CBA相似.理由如下:
如圖所示,連接CD,與EF交于點Q.
∵CD是Rt△ABC的中線
∴CD=DB=AB,
∴∠DCB=∠B.
由折疊性質(zhì)可知,∠CQF=∠DQF=90°,
∴∠DCB+∠CFE=90°,
∵∠B+∠A=90°,
∴∠CFE=∠A,
又∵∠ACB=∠ACB,
∴△CEF∽△CBA.21、(1)50人;(2)補全圖形見解析,表示A組的扇形統(tǒng)計圖的圓心角的度數(shù)為108°;(3).【解析】分析:(1)、根據(jù)B的人數(shù)和百分比得出樣本容量;(2)、根據(jù)總?cè)藬?shù)求出C組的人數(shù),根據(jù)A組的人數(shù)占總?cè)藬?shù)的百分比得出扇形的圓心角度數(shù);(3)、根據(jù)題意列出樹狀圖,從而得出概率.詳解:(1)被調(diào)查的總?cè)藬?shù)為19÷38%=50人;(2)C組的人數(shù)為50﹣(15+19+4)=12(人),補全圖形如下:表示A組的扇形統(tǒng)計圖的圓心角的度數(shù)為360°×=108°;(3)畫樹狀圖如下,共有12個可能的結(jié)果,恰好選中甲的結(jié)果有6個,∴P(恰好選中甲)=.點睛:本題主要考查的是條形統(tǒng)計圖和扇形統(tǒng)計圖以及概率的計算法則,屬于基礎題型.理解頻數(shù)、頻率與樣本容量之間的關系是解題的關鍵.22、1m【解析】
連接AN、BQ,過B作BE⊥AN于點E.在Rt△AMN和在Rt△BMQ中,根據(jù)三角函數(shù)就可以求得AN,BQ,求得NQ,AE的長,在直角△ABE中,依據(jù)勾股定理即可求得AB的長.【詳解】連接AN、BQ,∵點A在點N的正北方向,點B在點Q的正北方向,∴AN⊥l,BQ⊥l,在Rt△AMN中:tan∠AMN=,∴AN=1,在Rt△BMQ中:tan∠BMQ=,∴BQ=30,過B作BE⊥AN于點E,則BE=NQ=30,∴AE=AN-BQ=30,在Rt△ABE中,AB2=AE2+BE2,AB2=(30)2+302,∴AB=1.答:湖中兩個小亭A、B之間的距離為1米.【點睛】本題考查勾股定理、解直角三角形等知識,解題的關鍵是學會添加常用輔助線,構(gòu)造直角三角形解決問題.23、(1)200;(2)見解析;(3)36;(4)該社區(qū)學習時間不少于1小時的家庭約有2100個.【解析】
(1)根據(jù)1.5~2小時的圓心角度數(shù)求出1.5~2小時所占的百分比,再用1.5~2小時的人數(shù)除以所占的百分比,即可得出本次抽樣調(diào)查的總家庭數(shù);(2)用抽查的總?cè)藬?shù)乘以學習0.5-1小時的家庭所占的百分比求出學習0.5-1小時的家庭數(shù),再用總?cè)藬?shù)減去其它家庭數(shù),求出學習2-2.5小時的家庭數(shù),從而補全統(tǒng)計圖;(3)用360°乘以學習時間在2~2.5小時所占的百分比,即可求出學習時間在2~2.5小時的部分對應的扇形圓心角的度數(shù);(4)用該社區(qū)所有家庭數(shù)乘以學習時間不少于1小時的家庭數(shù)所占的百分比即可得出答案.【詳解】解:(1)本次抽樣調(diào)查的家庭數(shù)是:30÷=200(個);故答案為200;(2)學習0.5﹣1小時的家庭數(shù)有:200×=60(個),學習2﹣2.5小時的家庭數(shù)有:200﹣60﹣90﹣30=20(個),補圖如下:(3)學習時間在2~2.5小時的部分對應的扇形圓心角的度數(shù)是:360×=36°;故答案為36;(4)根據(jù)題意得:
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年度醫(yī)療服務合同
- 2024年國際快遞服務代理與合作合同
- 2024年城市成品油配送服務合同
- 2024年度信息技術咨詢服務合同
- 2024年度設備維修保養(yǎng)服務合同
- 2024年度貨物采購合同標的質(zhì)量保證與安全生產(chǎn)責任書
- 做課件步驟教學課件
- 倉庫個人年終工作總結(jié)
- 2024國際貨運代理及供應鏈管理服務合同
- 2024年建筑垃圾無害化處理合同
- 現(xiàn)澆鋼筋混凝土水池施工方法
- 胸腰椎壓縮骨折中醫(yī)治療難點及解決思路和措施
- 急性缺血性腦卒中血管內(nèi)治療流程圖
- 氣管切開術及環(huán)甲膜穿刺術演示文稿
- 中華詩詞學會會員登記表上網(wǎng)
- 煙葉分級知識考試題庫(含答案)
- 中建三局施工現(xiàn)場安全防護標準化圖冊
- 變應性支氣管肺曲霉病ABPA中國專家共識
- 結(jié)節(jié)病課件完整版
- 用電安全專項檢查表
- 網(wǎng)絡安全管理中心系統(tǒng)平臺建設方案建議
評論
0/150
提交評論