版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2023-2024學(xué)年浙江省湖州市第四中學(xué)中考數(shù)學(xué)押題卷注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時(shí),選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項(xiàng)的答案信息點(diǎn)涂黑;如需改動(dòng),用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動(dòng),先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.在△ABC中,AD和BE是高,∠ABE=45°,點(diǎn)F是AB的中點(diǎn),AD與FE,BE分別交于點(diǎn)G、H.∠CBE=∠BAD,有下列結(jié)論:①FD=FE;②AH=2CD;③BC?AD=AE2;④S△BEC=S△ADF.其中正確的有()A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)2.如圖,一把帶有60°角的三角尺放在兩條平行線間,已知量得平行線間的距離為12cm,三角尺最短邊和平行線成45°角,則三角尺斜邊的長度為()A.12cm B.12cm C.24cm D.24cm3.如圖,⊙O的直徑AB垂直于弦CD,垂足為E.若,AC=3,則CD的長為A.6 B. C. D.34.下列標(biāo)志中,可以看作是軸對稱圖形的是()A. B. C. D.5.如圖,直線AB與?MNPQ的四邊所在直線分別交于A、B、C、D,則圖中的相似三角形有()A.4對B.5對C.6對D.7對6.下列各數(shù)中負(fù)數(shù)是()A.﹣(﹣2)B.﹣|﹣2|C.(﹣2)2D.﹣(﹣2)37.如圖,AB是⊙O的一條弦,點(diǎn)C是⊙O上一動(dòng)點(diǎn),且∠ACB=30°,點(diǎn)E,F(xiàn)分別是AC,BC的中點(diǎn),直線EF與⊙O交于G,H兩點(diǎn),若⊙O的半徑為6,則GE+FH的最大值為()A.6 B.9 C.10 D.128.我市某小區(qū)開展了“節(jié)約用水為環(huán)保作貢獻(xiàn)”的活動(dòng),為了解居民用水情況,在小區(qū)隨機(jī)抽查了10戶家庭的月用水量,結(jié)果如下表:月用水量(噸)8910戶數(shù)262則關(guān)于這10戶家庭的月用水量,下列說法錯(cuò)誤的是()A.方差是4 B.極差是2 C.平均數(shù)是9 D.眾數(shù)是99.-3的倒數(shù)是()A.3 B.13 C.-110.若分式有意義,則的取值范圍是()A.; B.; C.; D..二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11.如圖,正方形ABCD邊長為1,以AB為直徑作半圓,點(diǎn)P是CD中點(diǎn),BP與半圓交于點(diǎn)Q,連結(jié)DQ.給出如下結(jié)論:①DQ=1;②;③S△PDQ=;④cos∠ADQ=.其中正確結(jié)論是_________.(填寫序號)12.甲、乙、丙3名學(xué)生隨機(jī)排成一排拍照,其中甲排在中間的概率是_____.13.如圖,矩形ABCD中,AB=3,BC=4,點(diǎn)E是BC邊上一點(diǎn),連接AE,把∠B沿AE折疊,使點(diǎn)B落在點(diǎn)處,當(dāng)△為直角三角形時(shí),BE的長為.14.如圖,直線交于點(diǎn),,與軸負(fù)半軸,軸正半軸分別交于點(diǎn),,,的延長線相交于點(diǎn),則的值是_________.15.如圖,在平面直角坐標(biāo)系中,函數(shù)y=x和y=﹣x的圖象分別為直線l1,l2,過點(diǎn)A1(1,﹣)作x軸的垂線交11于點(diǎn)A2,過點(diǎn)A2作y軸的垂線交l2于點(diǎn)A3,過點(diǎn)A3作x軸的垂線交l1于點(diǎn)A4,過點(diǎn)A4作y軸的垂線交l2于點(diǎn)A5,…依次進(jìn)行下去,則點(diǎn)A2018的橫坐標(biāo)為_____.16.關(guān)于x的方程ax=x+2(a1)的解是________.三、解答題(共8題,共72分)17.(8分)如圖,在平面直角坐標(biāo)系中,反比例函數(shù)的圖像與邊長是6的正方形的兩邊,分別相交于,兩點(diǎn).若點(diǎn)是邊的中點(diǎn),求反比例函數(shù)的解析式和點(diǎn)的坐標(biāo);若,求直線的解析式及的面積18.(8分)如圖,AB是圓O的直徑,AC是圓O的弦,過點(diǎn)C的切線交AB的延長線于點(diǎn)D,若∠A=∠D,CD=2.(1)求∠A的度數(shù).(2)求圖中陰影部分的面積.19.(8分)已知是關(guān)于的方程的一個(gè)根,則__20.(8分)如圖,在平面直角坐標(biāo)系中,A為y軸正半軸上一點(diǎn),過點(diǎn)A作x軸的平行線,交函數(shù)的圖象于B點(diǎn),交函數(shù)的圖象于C,過C作y軸和平行線交BO的延長線于D.(1)如果點(diǎn)A的坐標(biāo)為(0,2),求線段AB與線段CA的長度之比;(2)如果點(diǎn)A的坐標(biāo)為(0,a),求線段AB與線段CA的長度之比;(3)在(1)條件下,四邊形AODC的面積為多少?21.(8分)如圖1,在Rt△ABC中,∠A=90°,AB=AC,點(diǎn)D,E分別在邊AB,AC上,AD=AE,連接DC,點(diǎn)M,P,N分別為DE,DC,BC的中點(diǎn).(1)觀察猜想圖1中,線段PM與PN的數(shù)量關(guān)系是,位置關(guān)系是;(2)探究證明把△ADE繞點(diǎn)A逆時(shí)針方向旋轉(zhuǎn)到圖2的位置,連接MN,BD,CE,判斷△PMN的形狀,并說明理由;(3)拓展延伸把△ADE繞點(diǎn)A在平面內(nèi)自由旋轉(zhuǎn),若AD=4,AB=10,請直接寫出△PMN面積的最大值.22.(10分)圖1是某市2009年4月5日至14日每天最低氣溫的折線統(tǒng)計(jì)圖.圖2是該市2007年4月5日至14日每天最低氣溫的頻數(shù)分布直方圖,根據(jù)圖1提供的信息,補(bǔ)全圖2中頻數(shù)分布直方圖;在這10天中,最低氣溫的眾數(shù)是____,中位數(shù)是____,方差是_____.請用扇形圖表示出這十天里溫度的分布情況.23.(12分)小方與同學(xué)一起去郊游,看到一棵大樹斜靠在一小土坡上,他想知道樹有多長,于是他借來測角儀和卷尺.如圖,他在點(diǎn)C處測得樹AB頂端A的仰角為30°,沿著CB方向向大樹行進(jìn)10米到達(dá)點(diǎn)D,測得樹AB頂端A的仰角為45°,又測得樹AB傾斜角∠1=75°.(1)求AD的長.(2)求樹長AB.24.如圖,已知點(diǎn)、在直線上,且,于點(diǎn),且,以為直徑在的左側(cè)作半圓,于,且.若半圓上有一點(diǎn),則的最大值為________;向右沿直線平移得到;①如圖,若截半圓的的長為,求的度數(shù);②當(dāng)半圓與的邊相切時(shí),求平移距離.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解析】
根據(jù)題意和圖形,可以判斷各小題中的結(jié)論是否成立,從而可以解答本題.【詳解】∵在△ABC中,AD和BE是高,∴∠ADB=∠AEB=∠CEB=90°,∵點(diǎn)F是AB的中點(diǎn),∴FD=AB,F(xiàn)E=AB,∴FD=FE,①正確;∵∠CBE=∠BAD,∠CBE+∠C=90°,∠BAD+∠ABC=90°,∴∠ABC=∠C,∴AB=AC,∵AD⊥BC,∴BC=2CD,∠BAD=∠CAD=∠CBE,在△AEH和△BEC中,,∴△AEH≌△BEC(ASA),∴AH=BC=2CD,②正確;∵∠BAD=∠CBE,∠ADB=∠CEB,∴△ABD∽△BCE,∴,即BC?AD=AB?BE,∵∠AEB=90°,AE=BE,∴AB=BEBC?AD=BE?BE,∴BC?AD=AE2;③正確;設(shè)AE=a,則AB=a,∴CE=a﹣a,∴=,即,∵AF=AB,∴,∴S△BEC≠S△ADF,故④錯(cuò)誤,故選:C.【點(diǎn)睛】本題考查相似三角形的判定與性質(zhì)、全等三角形的判定與性質(zhì)、直角三角形斜邊上的中線,解答本題的關(guān)鍵是明確題意,找出所求問題需要的條件,利用數(shù)形結(jié)合的思想解答.2、D【解析】
過A作AD⊥BF于D,根據(jù)45°角的三角函數(shù)值可求出AB的長度,根據(jù)含30°角的直角三角形的性質(zhì)求出斜邊AC的長即可.【詳解】如圖,過A作AD⊥BF于D,∵∠ABD=45°,AD=12,∴=12,又∵Rt△ABC中,∠C=30°,∴AC=2AB=24,故選:D.【點(diǎn)睛】本題考查解直角三角形,在直角三角形中,30°角所對的直角邊等于斜邊的一半,熟記特殊角三角函數(shù)值是解題關(guān)鍵.3、D【解析】
解:因?yàn)锳B是⊙O的直徑,所以∠ACB=90°,又⊙O的直徑AB垂直于弦CD,,所以在Rt△AEC中,∠A=30°,又AC=3,所以CE=AB=,所以CD=2CE=3,故選D.【點(diǎn)睛】本題考查圓的基本性質(zhì);垂經(jīng)定理及解直角三角形,綜合性較強(qiáng),難度不大.4、D【解析】
根據(jù)軸對稱圖形與中心對稱圖形的概念求解.【詳解】解:A、不是軸對稱圖形,是中心對稱圖形,不符合題意;
B、不是軸對稱圖形,是中心對稱圖形,不符合題意;
C、不是軸對稱圖形,是中心對稱圖形,不符合題意;
D、是軸對稱圖形,符合題意.
故選D.【點(diǎn)睛】本題考查了中心對稱圖形和軸對稱圖形的定義,掌握中心對稱圖形與軸對稱圖形的概念,解答時(shí)要注意:判斷軸對稱圖形的關(guān)鍵是尋找對稱軸,圖形兩部沿對稱軸疊后可重合;判斷中心對稱圖形是要尋找對稱中心,圖形旋轉(zhuǎn)180度后與原圖重合.5、C【解析】由題意,AQ∥NP,MN∥BQ,∴△ACM∽△DCN,△CDN∽△BDP,△BPD∽△BQA,△ACM∽△ABQ,△DCN∽△ABQ,△ACM∽△DBP,所以圖中共有六對相似三角形.故選C.6、B【解析】
首先利用相反數(shù),絕對值的意義,乘方計(jì)算方法計(jì)算化簡,進(jìn)一步利用負(fù)數(shù)的意義判定即可.【詳解】A、-(-2)=2,是正數(shù);B、-|-2|=-2,是負(fù)數(shù);C、(-2)2=4,是正數(shù);D、-(-2)3=8,是正數(shù).故選B.【點(diǎn)睛】此題考查負(fù)數(shù)的意義,利用相反數(shù),絕對值的意義,乘方計(jì)算方法計(jì)算化簡是解決問題的關(guān)鍵.7、B【解析】
首先連接OA、OB,根據(jù)圓周角定理,求出∠AOB=2∠ACB=60°,進(jìn)而判斷出△AOB為等邊三角形;然后根據(jù)⊙O的半徑為6,可得AB=OA=OB=6,再根據(jù)三角形的中位線定理,求出EF的長度;最后判斷出當(dāng)弦GH是圓的直徑時(shí),它的值最大,進(jìn)而求出GE+FH的最大值是多少即可.【詳解】解:如圖,連接OA、OB,,∵∠ACB=30°,∴∠AOB=2∠ACB=60°,∵OA=OB,∴△AOB為等邊三角形,∵⊙O的半徑為6,∴AB=OA=OB=6,∵點(diǎn)E,F(xiàn)分別是AC、BC的中點(diǎn),∴EF=AB=3,要求GE+FH的最大值,即求GE+FH+EF(弦GH)的最大值,∵當(dāng)弦GH是圓的直徑時(shí),它的最大值為:6×2=12,∴GE+FH的最大值為:12﹣3=1.故選:B.【點(diǎn)睛】本題結(jié)合動(dòng)點(diǎn)考查了圓周角定理,三角形中位線定理,有一定難度.確定GH的位置是解題的關(guān)鍵.8、A【解析】分析:根據(jù)極差=最大值-最小值;平均數(shù)指在一組數(shù)據(jù)中所有數(shù)據(jù)之和再除以數(shù)據(jù)的個(gè)數(shù);一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù)叫做眾數(shù),以及方差公式S2=[(x1-)2+(x2-)2+…+(xn-)2],分別進(jìn)行計(jì)算可得答案.詳解:極差:10-8=2,平均數(shù):(8×2+9×6+10×2)÷10=9,眾數(shù)為9,方差:S2=[(8-9)2×2+(9-9)2×6+(10-9)2×2]=0.4,故選A.點(diǎn)睛:此題主要考查了極差、眾數(shù)、平均數(shù)、方差,關(guān)鍵是掌握各知識(shí)點(diǎn)的計(jì)算方法.9、C【解析】
由互為倒數(shù)的兩數(shù)之積為1,即可求解.【詳解】∵-3×-13=1,∴故選C10、B【解析】
分式的分母不為零,即x-2≠1.【詳解】∵分式有意義,∴x-2≠1,∴.故選:B.【點(diǎn)睛】考查了分式有意義的條件,(1)分式無意義?分母為零;(2)分式有意義?分母不為零;(3)分式值為零?分子為零且分母不為零.二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11、①②④【解析】
①連接OQ,OD,如圖1.易證四邊形DOBP是平行四邊形,從而可得DO∥BP.結(jié)合OQ=OB,可證到∠AOD=∠QOD,從而證到△AOD≌△QOD,則有DQ=DA=1;
②連接AQ,如圖4,根據(jù)勾股定理可求出BP.易證Rt△AQB∽R(shí)t△BCP,運(yùn)用相似三角形的性質(zhì)可求出BQ,從而求出PQ的值,就可得到的值;③過點(diǎn)Q作QH⊥DC于H,如圖4.易證△PHQ∽△PCB,運(yùn)用相似三角形的性質(zhì)可求出QH,從而可求出S△DPQ的值;④過點(diǎn)Q作QN⊥AD于N,如圖3.易得DP∥NQ∥AB,根據(jù)平行線分線段成比例可得,把AN=1-DN代入,即可求出DN,然后在Rt△DNQ中運(yùn)用三角函數(shù)的定義,就可求出cos∠ADQ的值.【詳解】解:①連接OQ,OD,如圖1.易證四邊形DOBP是平行四邊形,從而可得DO∥BP.結(jié)合OQ=OB,可證到∠AOD=∠QOD,從而證到△AOD≌△QOD,則有DQ=DA=1.故①正確;②連接AQ,如圖4.則有CP=,BP=.易證Rt△AQB∽R(shí)t△BCP,運(yùn)用相似三角形的性質(zhì)可求得BQ=,則PQ=,∴.故②正確;③過點(diǎn)Q作QH⊥DC于H,如圖4.易證△PHQ∽△PCB,運(yùn)用相似三角形的性質(zhì)可求得QH=,∴S△DPQ=DP?QH=××=.故③錯(cuò)誤;④過點(diǎn)Q作QN⊥AD于N,如圖3.易得DP∥NQ∥AB,根據(jù)平行線分線段成比例可得,則有,解得:DN=.由DQ=1,得cos∠ADQ=.故④正確.綜上所述:正確結(jié)論是①②④.故答案為:①②④.【點(diǎn)睛】本題主要考查了圓周角定理、平行四邊形的判定與性質(zhì)、相似三角形的判定與性質(zhì)、全等三角形的判定與性質(zhì)、平行線分線段成比例、等腰三角形的性質(zhì)、平行線的性質(zhì)、銳角三角函數(shù)的定義、勾股定理等知識(shí),綜合性比較強(qiáng),常用相似三角形的性質(zhì)、勾股定理、三角函數(shù)的定義來建立等量關(guān)系,應(yīng)靈活運(yùn)用.12、【解析】列舉出所有情況,看甲排在中間的情況占所有情況的多少即為所求的概率.
根據(jù)題意,列出甲、乙、丙三個(gè)同學(xué)排成一排拍照的所有可能:
甲乙丙,甲丙乙,乙甲丙,乙丙甲,丙甲乙,丙乙甲,全部6種情況,
只有2種甲在中間,所以甲排在中間的概率是=.
故答案為;點(diǎn)睛:本題主要考查了列舉法求概率,用到的知識(shí)點(diǎn)為:概率等于所求情況數(shù)與總情況數(shù)之比,關(guān)鍵是列舉出同等可能的所有情況.13、1或.【解析】
當(dāng)△CEB′為直角三角形時(shí),有兩種情況:
①當(dāng)點(diǎn)B′落在矩形內(nèi)部時(shí),如答圖1所示.
連結(jié)AC,先利用勾股定理計(jì)算出AC=5,根據(jù)折疊的性質(zhì)得∠AB′E=∠B=90°,而當(dāng)△CEB′為直角三角形時(shí),只能得到∠EB′C=90°,所以點(diǎn)A、B′、C共線,即∠B沿AE折疊,使點(diǎn)B落在對角線AC上的點(diǎn)B′處,則EB=EB′,AB=AB′=1,可計(jì)算出CB′=2,設(shè)BE=x,則EB′=x,CE=4-x,然后在Rt△CEB′中運(yùn)用勾股定理可計(jì)算出x.
②當(dāng)點(diǎn)B′落在AD邊上時(shí),如答圖2所示.此時(shí)ABEB′為正方形.【詳解】當(dāng)△CEB′為直角三角形時(shí),有兩種情況:
①當(dāng)點(diǎn)B′落在矩形內(nèi)部時(shí),如答圖1所示.
連結(jié)AC,
在Rt△ABC中,AB=1,BC=4,
∴AC==5,
∵∠B沿AE折疊,使點(diǎn)B落在點(diǎn)B′處,
∴∠AB′E=∠B=90°,
當(dāng)△CEB′為直角三角形時(shí),只能得到∠EB′C=90°,
∴點(diǎn)A、B′、C共線,即∠B沿AE折疊,使點(diǎn)B落在對角線AC上的點(diǎn)B′處,
∴EB=EB′,AB=AB′=1,
∴CB′=5-1=2,
設(shè)BE=x,則EB′=x,CE=4-x,
在Rt△CEB′中,
∵EB′2+CB′2=CE2,
∴x2+22=(4-x)2,解得,
∴BE=;
②當(dāng)點(diǎn)B′落在AD邊上時(shí),如答圖2所示.
此時(shí)ABEB′為正方形,∴BE=AB=1.
綜上所述,BE的長為或1.
故答案為:或1.14、【解析】
連接,根據(jù)可得,并且根據(jù)圓的半徑相等可得△OAD、△OBE都是等腰三角形,由三角形的內(nèi)角和,可得∠C=45°,則有是等腰直角三角形,可得即可求求解.【詳解】解:如圖示,連接,∵,∴,∵,,∴,,∴,∴,∵是直徑,∴,∴是等腰直角三角形,∴.【點(diǎn)睛】本題考查圓的性質(zhì)和直角三角形的性質(zhì),能夠根據(jù)圓性質(zhì)得出是等腰直角三角形是解題的關(guān)鍵.15、1【解析】
根據(jù)題意可以發(fā)現(xiàn)題目中各點(diǎn)的坐標(biāo)變化規(guī)律,從而可以解答本題.【詳解】解:由題意可得,A1(1,-),A2(1,1),A3(-2,1),A4(-2,-2),A5(4,-2),…,∵2018÷4=504…2,2018÷2=1009,∴點(diǎn)A2018的橫坐標(biāo)為:1,故答案為1.【點(diǎn)睛】本題考查一次函數(shù)圖象上點(diǎn)的坐標(biāo)特征,解答本題的關(guān)鍵是明確題意,找出題目中點(diǎn)的橫坐標(biāo)的變化規(guī)律.16、【解析】分析:依據(jù)等式的基本性質(zhì)依次移項(xiàng)、合并同類項(xiàng)、系數(shù)化為1即可得出答案.詳解:移項(xiàng),得:ax﹣x=1,合并同類項(xiàng),得:(a﹣1)x=1.∵a≠1,∴a﹣1≠0,方程兩邊都除以a﹣1,得:x=.故答案為x=.點(diǎn)睛:本題主要考查解一元一次方程的能力,熟練掌握等式的基本性質(zhì)及解一元一次方程的基本步驟是解題的關(guān)鍵.三、解答題(共8題,共72分)17、(1),N(3,6);(2)y=-x+2,S△OMN=3.【解析】
(1)求出點(diǎn)M坐標(biāo),利用待定系數(shù)法即可求得反比例函數(shù)的解析式,把N點(diǎn)的縱坐標(biāo)代入解析式即可求得橫坐標(biāo);
(2)根據(jù)M點(diǎn)的坐標(biāo)與反比例函數(shù)的解析式,求得N點(diǎn)的坐標(biāo),利用待定系數(shù)法求得直線MN的解析式,根據(jù)△OMN=S正方形OABC-S△OAM-S△OCN-S△BMN即可得到答案.【詳解】解:(1)∵點(diǎn)M是AB邊的中點(diǎn),∴M(6,3).∵反比例函數(shù)y=經(jīng)過點(diǎn)M,∴3=.∴k=1.∴反比例函數(shù)的解析式為y=.當(dāng)y=6時(shí),x=3,∴N(3,6).(2)由題意,知M(6,2),N(2,6).設(shè)直線MN的解析式為y=ax+b,則,解得,∴直線MN的解析式為y=-x+2.∴S△OMN=S正方形OABC-S△OAM-S△OCN-S△BMN=36-6-6-2=3.【點(diǎn)睛】本題考查了反比例函數(shù)的系數(shù)k的幾何意義,待定系數(shù)法求一次函數(shù)的解析式和反比例函數(shù)的解析式,正方形的性質(zhì),求得M、N點(diǎn)的坐標(biāo)是解題的關(guān)鍵.18、(1)∠A=30°;(2)【解析】
(1)連接OC,由過點(diǎn)C的切線交AB的延長線于點(diǎn)D,推出OC⊥CD,推出∠OCD=90°,即∠D+∠COD=90°,由OA=OC,推出∠A=∠ACO,由∠A=∠D,推出∠A=∠ACO=∠D再由∠A+∠ACD+∠D=180°﹣90°=90°即可得出.(2)先求∠COD度數(shù)及OC長度,即可求出圖中陰影部分的面積.【詳解】解:(1)連結(jié)OC∵CD為⊙O的切線∴OC⊥CD∴∠OCD=90°又∵OA=OC∴∠A=∠ACO又∵∠A=∠D∴∠A=∠ACO=∠D而∠A+∠ACD+∠D=180°﹣90°=90°∴∠A=30°(2)由(1)知:∠D=∠A=30°∴∠COD=60°又∵CD=2∴OC=2∴S陰影=.【點(diǎn)睛】本題考查的知識(shí)點(diǎn)是扇形面積的計(jì)算及切線的性質(zhì),解題的關(guān)鍵是熟練的掌握扇形面積的計(jì)算及切線的性質(zhì).19、10【解析】
利用一元二次方程的解的定義得到,再把變形為,然后利用整體代入的方法計(jì)算.【詳解】解:是關(guān)于的方程的一個(gè)根,,,.故答案為10.【點(diǎn)睛】本題考查了一元二次方程的解:能使一元二次方程左右兩邊相等的未知數(shù)的值是一元二次方程的解.20、(1)線段AB與線段CA的長度之比為;(2)線段AB與線段CA的長度之比為;(3)1.【解析】試題分析:(1)由題意把y=2代入兩個(gè)反比例函數(shù)的解析式即可求得點(diǎn)B、C的橫坐標(biāo),從而得到AB、AC的長,即可得到線段AB與AC的比值;(2)由題意把y=a代入兩個(gè)反比例函數(shù)的解析式即可求得用“a”表示的點(diǎn)B、C的橫坐標(biāo),從而可得到AB、AC的長,即可得到線段AB與AC的比值;(3)由(1)可知,AB:AC=1:3,由此可得AB:BC=1:4,利用OA=2和平行線分線段成比例定理即可求得CD的長,從而可由梯形的面積公式求出四邊形AODC的面積.試題解析:(1)∵A(0,2),BC∥x軸,∴B(﹣1,2),C(3,2),∴AB=1,CA=3,∴線段AB與線段CA的長度之比為;(2)∵B是函數(shù)y=﹣(x<0)的一點(diǎn),C是函數(shù)y=(x>0)的一點(diǎn),∴B(﹣,a),C(,a),∴AB=,CA=,∴線段AB與線段CA的長度之比為;(3)∵=,∴=,又∵OA=a,CD∥y軸,∴,∴CD=4a,∴四邊形AODC的面積為=(a+4a)×=1.21、(1)PM=PN,PM⊥PN;(2)△PMN是等腰直角三角形,理由詳見解析;(3).【解析】
(1)利用三角形的中位線得出PM=CE,PN=BD,進(jìn)而判斷出BD=CE,即可得出結(jié)論,再利用三角形的中位線得出PM∥CE得出∠DPM=∠DCA,最后用互余即可得出結(jié)論;(2)先判斷出△ABD≌△ACE,得出BD=CE,同(1)的方法得出PM=BD,PN=BD,即可得出PM=PN,同(1)的方法即可得出結(jié)論;(3)方法1、先判斷出MN最大時(shí),△PMN的面積最大,進(jìn)而求出AN,AM,即可得出MN最大=AM+AN,最后用面積公式即可得出結(jié)論.方法2、先判斷出BD最大時(shí),△PMN的面積最大,而BD最大是AB+AD=14,即可.【詳解】解:(1)∵點(diǎn)P,N是BC,CD的中點(diǎn),∴PN∥BD,PN=BD,∵點(diǎn)P,M是CD,DE的中點(diǎn),∴PM∥CE,PM=CE,∵AB=AC,AD=AE,∴BD=CE,∴PM=PN,∵PN∥BD,∴∠DPN=∠ADC,∵PM∥CE,∴∠DPM=∠DCA,∵∠BAC=90°,∴∠ADC+∠ACD=90°,∴∠MPN=∠DPM+∠DPN=∠DCA+∠ADC=90°,∴PM⊥PN,故答案為:PM=PN,PM⊥PN,(2)由旋轉(zhuǎn)知,∠BAD=∠CAE,∵AB=AC,AD=AE,∴△ABD≌△ACE(SAS),∴∠ABD=∠ACE,BD=CE,同(1)的方法,利用三角形的中位線得,PN=BD,PM=CE,∴PM=PN,∴△PMN是等腰三角形,同(1)的方法得,PM∥CE,∴∠DPM=∠DCE,同(1)的方法得,PN∥BD,∴∠PNC=∠DBC,∵∠DPN=∠DCB+∠PNC=∠DCB+∠DBC,∴∠MPN=∠DPM+∠DPN=∠DCE+∠DCB+∠DBC=∠BCE+∠DBC=∠ACB+∠ACE+∠DBC=∠ACB+∠ABD+∠DBC=∠ACB+∠ABC,∵∠BAC=90°,∴∠ACB+∠ABC=90°,∴∠MPN=90°,∴△PMN是等腰直角三角形,(3)方法1、如圖2,同(2)的方法得,△PMN是等腰直角三角形,∴MN最大時(shí),△PMN的面積最大,∴DE∥BC且DE在頂點(diǎn)A上面,∴MN最大=AM+AN,連接AM,AN,在△ADE中,AD=AE=4,∠DAE=90°,∴AM=2,在Rt△ABC中,AB=AC=10,AN=5,∴MN最大=2+5=7,∴S△PMN最大=PM2=×MN2=×(7)2=.方法2、由(2)知,△PMN是等腰直角三角形,PM=PN=BD,∴PM最大時(shí),△PMN面積最大,∴點(diǎn)D在BA的延長線上,∴BD=AB+AD=14,∴PM=7,∴S△PMN最大=PM2=×72=【點(diǎn)睛】本題考查旋轉(zhuǎn)中的三角形,關(guān)鍵在于對三角形的所有知識(shí)點(diǎn)熟練掌握.22、(1)作圖見解析;(2)7,7.5,2.8;(3)見解析.【解析】
(1)根據(jù)圖1找出8、9、10℃的天數(shù),然后補(bǔ)全統(tǒng)計(jì)圖即可;(2)根據(jù)眾數(shù)的定義,找出出現(xiàn)頻率最高的溫度;按照從低到高排列,求出第5、6兩個(gè)溫度的平均數(shù)即為中位數(shù);先求出平均數(shù),再根據(jù)方差的定義列式進(jìn)行計(jì)算即可得解;(3)求出7、8、9、10、11℃的天數(shù)在扇形統(tǒng)計(jì)圖中所占的度數(shù),然后作出扇形統(tǒng)計(jì)圖即可.【詳解】(1)由圖1可知,8℃有2天,9℃有0天,10℃有2天,補(bǔ)全統(tǒng)計(jì)圖如圖;(2)根據(jù)條形統(tǒng)計(jì)圖,7℃出現(xiàn)的頻率最高,為3天,所以,眾數(shù)是7;按照溫度從小到大的順序排列,第5個(gè)溫度為7℃,第6個(gè)溫度為8℃,所以,中位數(shù)為(7+8)=7.5;平均數(shù)為(6×2+7×3+8×2+10×2+11)=×80=8,所以,方差=[2×(6﹣8)2+3×(7﹣8)2+2×(
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 臨時(shí)工勞動(dòng)合同范本參考
- 2025年平安保險(xiǎn)公司特定疾病終身保險(xiǎn)賠付合同
- 業(yè)務(wù)合作合同格式樣本
- 不銹鋼采購與銷售合同
- 個(gè)人借款質(zhì)押合同書樣本
- 專用線鐵路物流服務(wù)合同細(xì)則
- 個(gè)人與企業(yè)租賃合同范本大全
- 采購標(biāo)準(zhǔn)合同書
- 專業(yè)講師聘任合同范本
- 萬畝高標(biāo)準(zhǔn)農(nóng)田建設(shè)項(xiàng)目合同
- 《采暖空調(diào)節(jié)能技術(shù)》課件
- 游戲綜合YY頻道設(shè)計(jì)模板
- arcgis軟件操作解析課件
- 中興ZCTP 5GC高級工程師認(rèn)證考試題庫匯總(含答案)
- 大學(xué)生創(chuàng)新創(chuàng)業(yè)教程PPT全套完整教學(xué)課件
- 小學(xué)科學(xué)項(xiàng)目化作業(yè)的設(shè)計(jì)與實(shí)施研究
- 2023年考研考博-考博英語-西安建筑科技大學(xué)考試歷年真題摘選含答案解析
- 2020年中考生物試卷及答案
- MCNP-5A程序使用說明書
- java基礎(chǔ)知識(shí)大全
- SMM英國建筑工程標(biāo)準(zhǔn)計(jì)量規(guī)則中文 全套
評論
0/150
提交評論