2024屆江蘇省南菁中學(xué)中考四模數(shù)學(xué)試題含解析_第1頁(yè)
2024屆江蘇省南菁中學(xué)中考四模數(shù)學(xué)試題含解析_第2頁(yè)
2024屆江蘇省南菁中學(xué)中考四模數(shù)學(xué)試題含解析_第3頁(yè)
2024屆江蘇省南菁中學(xué)中考四模數(shù)學(xué)試題含解析_第4頁(yè)
2024屆江蘇省南菁中學(xué)中考四模數(shù)學(xué)試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩16頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2024屆江蘇省南菁中學(xué)中考四模數(shù)學(xué)試題請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無(wú)效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題(共10小題,每小題3分,共30分)1.如圖,小剛從山腳A出發(fā),沿坡角為的山坡向上走了300米到達(dá)B點(diǎn),則小剛上升了()A.米 B.米 C.米 D.米2.拋物線y=mx2﹣8x﹣8和x軸有交點(diǎn),則m的取值范圍是()A.m>﹣2 B.m≥﹣2 C.m≥﹣2且m≠0 D.m>﹣2且m≠03.計(jì)算-5x2-3x2的結(jié)果是()A.2x2 B.3x2 C.-8x2 D.8x24.如圖,△OAB∽△OCD,OA:OC=3:2,∠A=α,∠C=β,△OAB與△OCD的面積分別是S1和S2,△OAB與△OCD的周長(zhǎng)分別是C1和C2,則下列等式一定成立的是()A. B. C. D.5.如圖,⊙O的半徑OD⊥弦AB于點(diǎn)C,連接AO并延長(zhǎng)交⊙O于點(diǎn)E,連接EC,若AB=8,CD=2,則cos∠ECB為()A. B. C. D.6.已知,,且,則的值為()A.2或12 B.2或 C.或12 D.或7.據(jù)財(cái)政部網(wǎng)站消息,2018年中央財(cái)政困難群眾救濟(jì)補(bǔ)助預(yù)算指標(biāo)約為929億元,數(shù)據(jù)929億元科學(xué)記數(shù)法表示為()A.9.29×109 B.9.29×1010 C.92.9×1010 D.9.29×10118.如圖,在直角坐標(biāo)系中,等腰直角△ABO的O點(diǎn)是坐標(biāo)原點(diǎn),A的坐標(biāo)是(﹣4,0),直角頂點(diǎn)B在第二象限,等腰直角△BCD的C點(diǎn)在y軸上移動(dòng),我們發(fā)現(xiàn)直角頂點(diǎn)D點(diǎn)隨之在一條直線上移動(dòng),這條直線的解析式是()A.y=﹣2x+1 B.y=﹣x+2 C.y=﹣3x﹣2 D.y=﹣x+29.下列四個(gè)函數(shù)圖象中,當(dāng)x<0時(shí),函數(shù)值y隨自變量x的增大而減小的是()A. B. C. D.10.如圖,有5個(gè)相同的小立方體搭成的幾何體如圖所示,則它的左視圖是()A. B. C. D.二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11.如圖,一艘船向正北航行,在A處看到燈塔S在船的北偏東30°的方向上,航行12海里到達(dá)B點(diǎn),在B處看到燈塔S在船的北偏東60°的方向上,此船繼續(xù)沿正北方向航行過(guò)程中距燈塔S的最近距離是_____海里(不近似計(jì)算).12.如圖1是我國(guó)古代著名的“趙爽弦圖”的示意圖,它是由四個(gè)全等的直角三角形圍成.若較短的直角邊BC=5,將四個(gè)直角三角形中較長(zhǎng)的直角邊分別向外延長(zhǎng)一倍,得到圖2所示的“數(shù)學(xué)風(fēng)車”,若△BCD的周長(zhǎng)是30,則這個(gè)風(fēng)車的外圍周長(zhǎng)是_____.13.拋物線y=﹣x2+bx+c的部分圖象如圖所示,若y>0,則x的取值范圍是_____.14.七巧板是我國(guó)祖先創(chuàng)造的一種智力玩具,它來(lái)源于勾股法,如圖①整幅七巧板是由正方形ABCD分割成七小塊(其中:五塊等腰直角三角形、一塊正方形和一塊平行四邊形)組成,如圖②是由七巧板拼成的一個(gè)梯形,若正方形ABCD的邊長(zhǎng)為12cm,則梯形MNGH的周長(zhǎng)是cm(結(jié)果保留根號(hào)).15.一個(gè)不透明的袋子中裝有5個(gè)球,其中3個(gè)紅球、2個(gè)黑球,這些球除顏色外無(wú)其它差別,現(xiàn)從袋子中隨機(jī)摸出一個(gè)球,則它是黑球的概率是_____.16.我們知道,四邊形具有不穩(wěn)定性.如圖,在平面直角坐標(biāo)系中,邊長(zhǎng)為2的正方形ABCD的邊AB在x軸上,AB的中點(diǎn)是坐標(biāo)原點(diǎn)O,固定點(diǎn)A,B,把正方形沿箭頭方向推,使點(diǎn)D落在y軸正半軸上點(diǎn)D'處,則點(diǎn)C的對(duì)應(yīng)點(diǎn)C'的坐標(biāo)為_____.三、解答題(共8題,共72分)17.(8分)如圖1在正方形ABCD的外側(cè)作兩個(gè)等邊三角形ADE和DCF,連接AF,BE.請(qǐng)判斷:AF與BE的數(shù)量關(guān)系是,位置關(guān)系;如圖2,若將條件“兩個(gè)等邊三角形ADE和DCF”變?yōu)椤皟蓚€(gè)等腰三角形ADE和DCF,且EA=ED=FD=FC”,第(1)問(wèn)中的結(jié)論是否仍然成立?請(qǐng)作出判斷并給予證明;若三角形ADE和DCF為一般三角形,且AE=DF,ED=FC,第(1)問(wèn)中的結(jié)論都能成立嗎?請(qǐng)直接寫出你的判斷.18.(8分)如圖,已知△ABC,按如下步驟作圖:①分別以A、C為圓心,以大于12②連接MN,分別交AB、AC于點(diǎn)D、O;③過(guò)C作CE∥AB交MN于點(diǎn)E,連接AE、CD.(1)求證:四邊形ADCE是菱形;(2)當(dāng)∠ACB=90°,BC=6,△ADC的周長(zhǎng)為18時(shí),求四邊形ADCE的面積.19.(8分)兩個(gè)全等的等腰直角三角形按如圖方式放置在平面直角坐標(biāo)系中,OA在x軸上,已知∠COD=∠OAB=90°,OC=,反比例函數(shù)y=的圖象經(jīng)過(guò)點(diǎn)B.求k的值.把△OCD沿射線OB移動(dòng),當(dāng)點(diǎn)D落在y=圖象上時(shí),求點(diǎn)D經(jīng)過(guò)的路徑長(zhǎng).20.(8分)五一期間,小紅到郊野公園游玩,在景點(diǎn)P處測(cè)得景點(diǎn)B位于南偏東45°方向,然后沿北偏東37°方向走200m米到達(dá)景點(diǎn)A,此時(shí)測(cè)得景點(diǎn)B正好位于景點(diǎn)A的正南方向,求景點(diǎn)A與景點(diǎn)B之間的距離.(結(jié)果保留整數(shù))參考數(shù)據(jù):sin37≈0.60,cos37°=0.80,tan37°≈0.7521.(8分)如圖,已知平行四邊形OBDC的對(duì)角線相交于點(diǎn)E,其中O(0,0),B(3,4),C(m,0),反比例函數(shù)y=(k≠0)的圖象經(jīng)過(guò)點(diǎn)B.求反比例函數(shù)的解析式;若點(diǎn)E恰好落在反比例函數(shù)y=上,求平行四邊形OBDC的面積.22.(10分)如圖1,在平面直角坐標(biāo)系xOy中,拋物線y=ax2+bx﹣與x軸交于點(diǎn)A(1,0)和點(diǎn)B(﹣3,0).繞點(diǎn)A旋轉(zhuǎn)的直線l:y=kx+b1交拋物線于另一點(diǎn)D,交y軸于點(diǎn)C.(1)求拋物線的函數(shù)表達(dá)式;(2)當(dāng)點(diǎn)D在第二象限且滿足CD=5AC時(shí),求直線l的解析式;(3)在(2)的條件下,點(diǎn)E為直線l下方拋物線上的一點(diǎn),直接寫出△ACE面積的最大值;(4)如圖2,在拋物線的對(duì)稱軸上有一點(diǎn)P,其縱坐標(biāo)為4,點(diǎn)Q在拋物線上,當(dāng)直線l與y軸的交點(diǎn)C位于y軸負(fù)半軸時(shí),是否存在以點(diǎn)A,D,P,Q為頂點(diǎn)的平行四邊形?若存在,請(qǐng)直接寫出點(diǎn)D的橫坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.23.(12分)已知:如圖,點(diǎn)A,F(xiàn),C,D在同一直線上,AF=DC,AB∥DE,AB=DE,連接BC,BF,CE.求證:四邊形BCEF是平行四邊形.24.九年級(jí)學(xué)生到距離學(xué)校6千米的百花公園去春游,一部分學(xué)生步行前往,20分鐘后另一部分學(xué)生騎自行車前往,設(shè)(分鐘)為步行前往的學(xué)生離開學(xué)校所走的時(shí)間,步行學(xué)生走的路程為千米,騎自行車學(xué)生騎行的路程為千米,關(guān)于的函數(shù)圖象如圖所示.(1)求關(guān)于的函數(shù)解析式;(2)步行的學(xué)生和騎自行車的學(xué)生誰(shuí)先到達(dá)百花公園,先到了幾分鐘?

參考答案一、選擇題(共10小題,每小題3分,共30分)1、A【解析】

利用銳角三角函數(shù)關(guān)系即可求出小剛上升了的高度.【詳解】在Rt△AOB中,∠AOB=90°,AB=300米,BO=AB?sinα=300sinα米.故選A.【點(diǎn)睛】此題主要考查了解直角三角形的應(yīng)用,根據(jù)題意構(gòu)造直角三角形,正確選擇銳角三角函數(shù)得出AB,BO的關(guān)系是解題關(guān)鍵.2、C【解析】

根據(jù)二次函數(shù)的定義及拋物線與x軸有交點(diǎn),即可得出關(guān)于m的一元一次不等式組,解之即可得出m的取值范圍.【詳解】解:∵拋物線和軸有交點(diǎn),,解得:且.故選.【點(diǎn)睛】本題考查了拋物線與x軸的交點(diǎn)、二次函數(shù)的定義以及解一元一次不等式組,牢記“當(dāng)時(shí),拋物線與x軸有交點(diǎn)是解題的關(guān)鍵.3、C【解析】

利用合并同類項(xiàng)法則直接合并得出即可.【詳解】解:故選C.【點(diǎn)睛】此題主要考查了合并同類項(xiàng),熟練應(yīng)用合并同類項(xiàng)法則是解題關(guān)鍵.4、D【解析】A選項(xiàng),在△OAB∽△OCD中,OB和CD不是對(duì)應(yīng)邊,因此它們的比值不一定等于相似比,所以A選項(xiàng)不一定成立;B選項(xiàng),在△OAB∽△OCD中,∠A和∠C是對(duì)應(yīng)角,因此,所以B選項(xiàng)不成立;C選項(xiàng),因?yàn)橄嗨迫切蔚拿娣e比等于相似比的平方,所以C選項(xiàng)不成立;D選項(xiàng),因?yàn)橄嗨迫切蔚闹荛L(zhǎng)比等于相似比,所以D選項(xiàng)一定成立.故選D.5、D【解析】

連接EB,設(shè)圓O半徑為r,根據(jù)勾股定理可求出半徑r=4,從而可求出EB的長(zhǎng)度,最后勾股定理即可求出CE的長(zhǎng)度.利用銳角三角函數(shù)的定義即可求出答案.【詳解】解:連接EB,由圓周角定理可知:∠B=90°,設(shè)⊙O的半徑為r,由垂徑定理可知:AC=BC=4,∵CD=2,∴OC=r-2,∴由勾股定理可知:r2=(r-2)2+42,∴r=5,BCE中,由勾股定理可知:CE=2,∴cos∠ECB==,故選D.【點(diǎn)睛】本題考查垂徑定理,涉及勾股定理,垂直定理,解方程等知識(shí),綜合程度較高,屬于中等題型.6、D【解析】

根據(jù)=5,=7,得,因?yàn)?,則,則=5-7=-2或-5-7=-12.故選D.7、B【解析】

科學(xué)記數(shù)法的表示形式為a×1n的形式,其中1≤|a|<1,n為整數(shù).確定n的值是易錯(cuò)點(diǎn),由于929億有11位,所以可以確定n=11-1=1.【詳解】解:929億=92900000000=9.29×11.故選B.【點(diǎn)睛】此題考查科學(xué)記數(shù)法表示較大的數(shù)的方法,準(zhǔn)確確定a與n值是關(guān)鍵.8、D【解析】

抓住兩個(gè)特殊位置:當(dāng)BC與x軸平行時(shí),求出D的坐標(biāo);C與原點(diǎn)重合時(shí),D在y軸上,求出此時(shí)D的坐標(biāo),設(shè)所求直線解析式為y=kx+b,將兩位置D坐標(biāo)代入得到關(guān)于k與b的方程組,求出方程組的解得到k與b的值,即可確定出所求直線解析式.【詳解】當(dāng)BC與x軸平行時(shí),過(guò)B作BE⊥x軸,過(guò)D作DF⊥x軸,交BC于點(diǎn)G,如圖1所示.∵等腰直角△ABO的O點(diǎn)是坐標(biāo)原點(diǎn),A的坐標(biāo)是(﹣4,0),∴AO=4,∴BC=BE=AE=EO=GF=OA=1,OF=DG=BG=CG=BC=1,DF=DG+GF=3,∴D坐標(biāo)為(﹣1,3);當(dāng)C與原點(diǎn)O重合時(shí),D在y軸上,此時(shí)OD=BE=1,即D(0,1),設(shè)所求直線解析式為y=kx+b(k≠0),將兩點(diǎn)坐標(biāo)代入得:,解得:.則這條直線解析式為y=﹣x+1.故選D.【點(diǎn)睛】本題屬于一次函數(shù)綜合題,涉及的知識(shí)有:待定系數(shù)法確定一次函數(shù)解析式,等腰直角三角形的性質(zhì),坐標(biāo)與圖形性質(zhì),熟練運(yùn)用待定系數(shù)法是解答本題的關(guān)鍵.9、D【解析】

A、根據(jù)函數(shù)的圖象可知y隨x的增大而增大,故本選項(xiàng)錯(cuò)誤;B、根據(jù)函數(shù)的圖象可知在第二象限內(nèi)y隨x的增大而減增大,故本選項(xiàng)錯(cuò)誤;C、根據(jù)函數(shù)的圖象可知,當(dāng)x<0時(shí),在對(duì)稱軸的右側(cè)y隨x的增大而減小,在對(duì)稱軸的左側(cè)y隨x的增大而增大,故本選項(xiàng)錯(cuò)誤;D、根據(jù)函數(shù)的圖象可知,當(dāng)x<0時(shí),y隨x的增大而減??;故本選項(xiàng)正確.故選D.【點(diǎn)睛】本題考查了函數(shù)的圖象,函數(shù)的增減性,熟練掌握各函數(shù)的性質(zhì)是解題的關(guān)鍵.10、C【解析】試題解析:左視圖如圖所示:故選C.二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11、6【解析】試題分析:過(guò)S作AB的垂線,設(shè)垂足為C.根據(jù)三角形外角的性質(zhì),易證SB=AB.在Rt△BSC中,運(yùn)用正弦函數(shù)求出SC的長(zhǎng).解:過(guò)S作SC⊥AB于C.∵∠SBC=60°,∠A=30°,∴∠BSA=∠SBC﹣∠A=30°,即∠BSA=∠A=30°.∴SB=AB=1.Rt△BCS中,BS=1,∠SBC=60°,∴SC=SB?sin60°=1×=6(海里).即船繼續(xù)沿正北方向航行過(guò)程中距燈塔S的最近距離是6海里.故答案為:6.12、71【解析】分析:由題意∠ACB為直角,利用勾股定理求得外圍中一條邊,又由AC延伸一倍,從而求得風(fēng)車的一個(gè)輪子,進(jìn)一步求得四個(gè).詳解:依題意,設(shè)“數(shù)學(xué)風(fēng)車”中的四個(gè)直角三角形的斜邊長(zhǎng)為x,AC=y,則x2=4y2+52,∵△BCD的周長(zhǎng)是30,∴x+2y+5=30則x=13,y=1.∴這個(gè)風(fēng)車的外圍周長(zhǎng)是:4(x+y)=4×19=71.故答案是:71.點(diǎn)睛:本題考查了勾股定理在實(shí)際情況中的應(yīng)用,注意隱含的已知條件來(lái)解答此類題.13、-3<x<1【解析】試題分析:根據(jù)拋物線的對(duì)稱軸為x=﹣1,一個(gè)交點(diǎn)為(1,0),可推出另一交點(diǎn)為(﹣3,0),結(jié)合圖象求出y>0時(shí),x的范圍.解:根據(jù)拋物線的圖象可知:拋物線的對(duì)稱軸為x=﹣1,已知一個(gè)交點(diǎn)為(1,0),根據(jù)對(duì)稱性,則另一交點(diǎn)為(﹣3,0),所以y>0時(shí),x的取值范圍是﹣3<x<1.故答案為﹣3<x<1.考點(diǎn):二次函數(shù)的圖象.14、24+24【解析】

仔細(xì)觀察梯形從而發(fā)現(xiàn)其各邊與原正方形各邊之間的關(guān)系,則不難求得梯形的周長(zhǎng).【詳解】解:觀察圖形得MH=GN=AD=12,HG=AC,AD=DC=12,AC=12,HG=6.梯形MNGH的周長(zhǎng)=HG+HM+MN+NG=2HM+4HG=24+24.故答案為24+24.【點(diǎn)睛】此題主要考查學(xué)生對(duì)等腰梯形的性質(zhì)及正方形的性質(zhì)的運(yùn)用及觀察分析圖形的能力.15、【解析】

用黑球的個(gè)數(shù)除以總球的個(gè)數(shù)即可得出黑球的概率.【詳解】解:∵袋子中共有5個(gè)球,有2個(gè)黑球,∴從袋子中隨機(jī)摸出一個(gè)球,它是黑球的概率為;故答案為.【點(diǎn)睛】本題考查概率的求法:如果一個(gè)事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結(jié)果,那么事件A的概率P(A)=.16、(2,)【解析】過(guò)C作CH于H,由題意得2AO=AD’,所以∠D’AO=60°,AO=1,AD’=2,勾股定理知OD’=,BH=AO所以C’(2,).故答案為(2,).三、解答題(共8題,共72分)17、(1)AF=BE,AF⊥BE;(2)證明見(jiàn)解析;(3)結(jié)論仍然成立【解析】試題分析:(1)根據(jù)正方形和等邊三角形可證明△ABE≌△DAF,然后可得BE=AF,∠ABE=∠DAF,進(jìn)而通過(guò)直角可證得BE⊥AF;(2)類似(1)的證法,證明△ABE≌△DAF,然后可得AF=BE,AF⊥BE,因此結(jié)論還成立;(3)類似(1)(2)證法,先證△AED≌△DFC,然后再證△ABE≌△DAF,因此可得證結(jié)論.試題解析:解:(1)AF=BE,AF⊥BE.(2)結(jié)論成立.證明:∵四邊形ABCD是正方形,∴BA="AD"=DC,∠BAD=∠ADC=90°.在△EAD和△FDC中,∴△EAD≌△FDC.∴∠EAD=∠FDC.∴∠EAD+∠DAB=∠FDC+∠CDA,即∠BAE=∠ADF.在△BAE和△ADF中,∴△BAE≌△ADF.∴BE=AF,∠ABE=∠DAF.∵∠DAF+∠BAF=90°,∴∠ABE+∠BAF=90°,∴AF⊥BE.(3)結(jié)論都能成立.考點(diǎn):正方形,等邊三角形,三角形全等18、(1)詳見(jiàn)解析;(2)1.【解析】

(1)利用直線DE是線段AC的垂直平分線,得出AC⊥DE,即∠AOD=∠COE=90°,從而得出△AOD≌△COE,即可得出四邊形ADCE是菱形.

(2)利用當(dāng)∠ACB=90°時(shí),OD∥BC,即有△ADO∽△ABC,即可由相似三角形的性質(zhì)和勾股定理得出OD和AO的長(zhǎng),即根據(jù)菱形的性質(zhì)得出四邊形ADCE的面積.【詳解】(1)證明:由題意可知:∵分別以A、C為圓心,以大于12∴直線DE是線段AC的垂直平分線,∴AC⊥DE,即∠AOD=∠COE=90°;且AD=CD、AO=CO,又∵CE∥AB,∴∠1=∠2,在△AOD和△COE中∠1=∠2∠AOD=∠COE=∴△AOD≌△COE(AAS),∴OD=OE,∵A0=CO,DO=EO,∴四邊形ADCE是平行四邊形,又∵AC⊥DE,∴四邊形ADCE是菱形;(2)解:當(dāng)∠ACB=90°時(shí),OD∥BC,即有△ADO∽△ABC,∴ODBC又∵BC=6,∴OD=3,又∵△ADC的周長(zhǎng)為18,∴AD+AO=9,即AD=9﹣AO,∴OD=A可得AO=4,∴DE=6,AC=8,∴S=1【點(diǎn)睛】考查線段垂直平分線的性質(zhì),菱形的判定,相似三角形的判定與性質(zhì)等,綜合性比較強(qiáng).19、(1)k=2;(2)點(diǎn)D經(jīng)過(guò)的路徑長(zhǎng)為.【解析】

(1)根據(jù)題意求得點(diǎn)B的坐標(biāo),再代入求得k值即可;(2)設(shè)平移后與反比例函數(shù)圖象的交點(diǎn)為D′,由平移性質(zhì)可知DD′∥OB,過(guò)D′作D′E⊥x軸于點(diǎn)E,交DC于點(diǎn)F,設(shè)CD交y軸于點(diǎn)M(如圖),根據(jù)已知條件可求得點(diǎn)D的坐標(biāo)為(﹣1,1),設(shè)D′橫坐標(biāo)為t,則OE=MF=t,即可得D′(t,t+2),由此可得t(t+2)=2,解方程求得t值,利用勾股定理求得DD′的長(zhǎng),即可得點(diǎn)D經(jīng)過(guò)的路徑長(zhǎng).【詳解】(1)∵△AOB和△COD為全等三的等腰直角三角形,OC=,∴AB=OA=OC=OD=,∴點(diǎn)B坐標(biāo)為(,),代入得k=2;(2)設(shè)平移后與反比例函數(shù)圖象的交點(diǎn)為D′,由平移性質(zhì)可知DD′∥OB,過(guò)D′作D′E⊥x軸于點(diǎn)E,交DC于點(diǎn)F,設(shè)CD交y軸于點(diǎn)M,如圖,∵OC=OD=,∠AOB=∠COM=45°,∴OM=MC=MD=1,∴D坐標(biāo)為(﹣1,1),設(shè)D′橫坐標(biāo)為t,則OE=MF=t,∴D′F=DF=t+1,∴D′E=D′F+EF=t+2,∴D′(t,t+2),∵D′在反比例函數(shù)圖象上,∴t(t+2)=2,解得t=或t=﹣﹣1(舍去),∴D′(﹣1,+1),∴DD′=,即點(diǎn)D經(jīng)過(guò)的路徑長(zhǎng)為.【點(diǎn)睛】本題是反比例函數(shù)與幾何的綜合題,求得點(diǎn)D′的坐標(biāo)是解決第(2)問(wèn)的關(guān)鍵.20、景點(diǎn)A與B之間的距離大約為280米【解析】

由已知作PC⊥AB于C,可得△ABP中∠A=37°,∠B=45°且PA=200m,要求AB的長(zhǎng),可以先求出AC和BC的長(zhǎng).【詳解】解:如圖,作PC⊥AB于C,則∠ACP=∠BCP=90°,由題意,可得∠A=37°,∠B=45°,PA=200m.在Rt△ACP中,∵∠ACP=90°,∠A=37°,∴AC=AP?cosA=200×0.80=160,PC=AP?sinA=200×0.60=1.在Rt△BPC中,∵∠BCP=90°,∠B=45°,∴BC=PC=1.∴AB=AC+BC=160+1=280(米).答:景點(diǎn)A與B之間的距離大約為280米.【點(diǎn)睛】本題考查了解直角三角形的應(yīng)用-方向角問(wèn)題,對(duì)于解一般三角形,求三角形的邊或高的問(wèn)題一般可以轉(zhuǎn)化為解直角三角形的問(wèn)題,解決的方法就是作高線.21、(1)y=;(2)1;【解析】

(1)把點(diǎn)B的坐標(biāo)代入反比例解析式求得k值,即可求得反比例函數(shù)的解析式;(2)根據(jù)點(diǎn)B(3,4)、C(m,0)的坐標(biāo)求得邊BC的中點(diǎn)E坐標(biāo)為(,2),將點(diǎn)E的坐標(biāo)代入反比例函數(shù)的解析式求得m的值,根據(jù)平行四邊形的面積公式即可求解.【詳解】(1)把B坐標(biāo)代入反比例解析式得:k=12,則反比例函數(shù)解析式為y=;(2)∵B(3,4),C(m,0),∴邊BC的中點(diǎn)E坐標(biāo)為(,2),將點(diǎn)E的坐標(biāo)代入反比例函數(shù)得2=,解得:m=9,則平行四邊形OBCD的面積=9×4=1.【點(diǎn)睛】本題為反比例函數(shù)的綜合應(yīng)用,考查的知識(shí)點(diǎn)有待定系數(shù)法、平行四邊形的性質(zhì)、中點(diǎn)的求法.在(1)中注意待定系數(shù)法的應(yīng)用,在(2)中用m表示出E點(diǎn)的坐標(biāo)是解題的關(guān)鍵.22、(1)y=x2+x﹣;(2)y=﹣x+1;(3)當(dāng)x=﹣2時(shí),最大值為;(4)存在,點(diǎn)D的橫坐標(biāo)為﹣3或或﹣.【解析】

(1)設(shè)二次函數(shù)的表達(dá)式為:y=a(x+3)(x﹣1)=ax2+2ax﹣3a,即可求解;(2)OC∥DF,則即可求解;(3)由S△ACE=S△AME﹣S△CME即可求解;(4)分當(dāng)AP為平行四邊形的一條邊、對(duì)角線兩種情況,分別求解即可.【詳解】(1)設(shè)二次函數(shù)的表達(dá)式為:y=a(x+3)(x﹣1)=ax2+2ax﹣3a,即:解得:故函數(shù)的表達(dá)式為:①;(2)過(guò)點(diǎn)D作DF⊥x軸交于點(diǎn)F,過(guò)點(diǎn)E作

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論