




版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
安徽省亳州地區(qū)2024年中考考前最后一卷數(shù)學試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.2018年,我國將加大精準扶貧力度,今年再減少農(nóng)村貧困人口1000萬以上,完成異地扶貧搬遷280萬人.其中數(shù)據(jù)280萬用科學計數(shù)法表示為()A.2.8×105 B.2.8×106 C.28×105 D.0.28×1072.若二次函數(shù)的圖象經(jīng)過點(﹣1,0),則方程的解為()A., B., C., D.,3.某班
30名學生的身高情況如下表:身高人數(shù)134787則這
30
名學生身高的眾數(shù)和中位數(shù)分別是A., B.,C., D.,4.如圖,⊙O的半徑為1,△ABC是⊙O的內(nèi)接三角形,連接OB、OC,若∠BAC與∠BOC互補,則弦BC的長為()A. B.2 C.3 D.1.55.如圖是我市4月1日至7日一周內(nèi)“日平均氣溫變化統(tǒng)計圖”,在這組數(shù)據(jù)中,眾數(shù)和中位數(shù)分別是()A.13;13 B.14;10 C.14;13 D.13;146.如圖,CE,BF分別是△ABC的高線,連接EF,EF=6,BC=10,D、G分別是EF、BC的中點,則DG的長為()A.6 B.5 C.4 D.37.若α,β是一元二次方程3x2+2x-9=0的兩根,則的值是(
).A. B.- C.- D.8.已知點A(1﹣2x,x﹣1)在第二象限,則x的取值范圍在數(shù)軸上表示正確的是()A. B.C. D.9.若x是2的相反數(shù),|y|=3,則的值是()A.﹣2 B.4 C.2或﹣4 D.﹣2或410.一元二次方程x2﹣8x﹣2=0,配方的結果是()A.(x+4)2=18 B.(x+4)2=14 C.(x﹣4)2=18 D.(x﹣4)2=14二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,在平面直角坐標系中,矩形OACB的頂點O是坐標原點,頂點A、B分別在x軸、y軸的正半軸上,OA=3,OB=4,D為邊OB的中點.若E為邊OA上的一個動點,當△CDE的周長最小時,則點E的坐標____________.12.如圖,AB、CD相交于點O,AD=CB,請你補充一個條件,使得△AOD≌△COB,你補充的條件是_____.13.如圖,矩形OABC的邊OA,OC分別在x軸,y軸上,點B在第一象限,點D在邊BC上,且∠AOD=30°,四邊形OA′B′D與四邊形OABD關于直線OD對稱(點A′和A,點B′和B分別對應).若AB=2,反比例函數(shù)y=(k≠0)的圖象恰好經(jīng)過A′,B,則k的值為_____.14.如圖,在△ABC中,AB=AC=2,∠BAC=120°,點D、E都在邊BC上,∠DAE=60°.若BD=2CE,則DE的長為________.15.股市規(guī)定:股票每天的漲、跌幅均不超過10%,即當漲了原價的10%后,便不能再漲,叫做漲停;當?shù)嗽瓋r的10%后,便不能再跌,叫做跌停.若一支股票某天跌停,之后兩天時間又漲回到原價,若這兩天此股票股價的平均增長率為x,則x滿足的方程是_____.16.已知關于x的不等式組只有四個整數(shù)解,則實數(shù)a的取值范是______.三、解答題(共8題,共72分)17.(8分)計算(﹣)﹣2﹣(π﹣3)0+|﹣2|+2sin60°;18.(8分)如圖,建筑物AB的高為6cm,在其正東方向有個通信塔CD,在它們之間的地面點M(B,M,D三點在一條直線上)處測得建筑物頂端A、塔項C的仰角分別為37°和60°,在A處測得塔頂C的仰角為30°,則通信塔CD的高度.(sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,=1.73,精確到0.1m)19.(8分)已知線段a及如圖形狀的圖案.(1)用直尺和圓規(guī)作出圖中的圖案,要求所作圖案中圓的半徑為a(保留作圖痕跡)(2)當a=6時,求圖案中陰影部分正六邊形的面積.20.(8分)計算:﹣22+(π﹣2018)0﹣2sin60°+|1﹣|21.(8分)列方程解應用題:某商場用8萬元購進一批新款襯衫,上架后很快銷售一空,商場又緊急購進第二批這種襯衫,數(shù)量是第一次的2倍,但進價漲了4元/件,結果共用去17.6萬元.該商場第一批購進襯衫多少件?商場銷售這種襯衫時,每件定價都是58元,剩至150件時按八折出售,全部售完.售完這兩批襯衫,商場共盈利多少元?22.(10分)在?ABCD中,過點D作DE⊥AB于點E,點F在CD上,CF=AE,連接BF,AF.(1)求證:四邊形BFDE是矩形;(2)若AF平分∠BAD,且AE=3,DE=4,求tan∠BAF的值.23.(12分)已知拋物線y=ax2+bx+c.(Ⅰ)若拋物線的頂點為A(﹣2,﹣4),拋物線經(jīng)過點B(﹣4,0)①求該拋物線的解析式;②連接AB,把AB所在直線沿y軸向上平移,使它經(jīng)過原點O,得到直線l,點P是直線l上一動點.設以點A,B,O,P為頂點的四邊形的面積為S,點P的橫坐標為x,當4+6≤S≤6+8時,求x的取值范圍;(Ⅱ)若a>0,c>1,當x=c時,y=0,當0<x<c時,y>0,試比較ac與l的大小,并說明理由.24.某電器商場銷售甲、乙兩種品牌空調(diào),已知每臺乙種品牌空調(diào)的進價比每臺甲種品牌空調(diào)的進價高20%,用7200元購進的乙種品牌空調(diào)數(shù)量比用3000元購進的甲種品牌空調(diào)數(shù)量多2臺.求甲、乙兩種品牌空調(diào)的進貨價;該商場擬用不超過16000元購進甲、乙兩種品牌空調(diào)共10臺進行銷售,其中甲種品牌空調(diào)的售價為2500元/臺,乙種品牌空調(diào)的售價為3500元/臺.請您幫該商場設計一種進貨方案,使得在售完這10臺空調(diào)后獲利最大,并求出最大利潤.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、B【解析】分析:科學記數(shù)法的表示形式為的形式,其中為整數(shù).確定的值時,要看把原數(shù)變成時,小數(shù)點移動了多少位,的絕對值與小數(shù)點移動的位數(shù)相同.當原數(shù)絕對值>1時,是正數(shù);當原數(shù)的絕對值<1時,是負數(shù).詳解:280萬這個數(shù)用科學記數(shù)法可以表示為故選B.點睛:考查科學記數(shù)法,掌握絕對值大于1的數(shù)的表示方法是解題的關鍵.2、C【解析】
∵二次函數(shù)的圖象經(jīng)過點(﹣1,0),∴方程一定有一個解為:x=﹣1,∵拋物線的對稱軸為:直線x=1,∴二次函數(shù)的圖象與x軸的另一個交點為:(3,0),∴方程的解為:,.故選C.考點:拋物線與x軸的交點.3、A【解析】
找中位數(shù)要把數(shù)據(jù)按從小到大的順序排列,位于最中間的一個數(shù)或兩個數(shù)的平均數(shù)為中位數(shù);眾數(shù)是一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù).【詳解】解:這組數(shù)據(jù)中,出現(xiàn)的次數(shù)最多,故眾數(shù)為,
共有30人,
第15和16人身高的平均數(shù)為中位數(shù),
即中位數(shù)為:,
故選:A.【點睛】本題考查了眾數(shù)和中位數(shù)的知識,一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù)叫做眾數(shù);將一組數(shù)據(jù)按照從小到大或從大到小的順序排列,如果這組數(shù)據(jù)的個數(shù)是偶數(shù),則中間兩個數(shù)據(jù)的平均數(shù)就是這組數(shù)據(jù)的中位數(shù).4、A【解析】分析:作OH⊥BC于H,首先證明∠BOC=120,在Rt△BOH中,BH=OB?sin60°=1×,即可推出BC=2BH=,詳解:作OH⊥BC于H.∵∠BOC=2∠BAC,∠BOC+∠BAC=180°,∴∠BOC=120°,∵OH⊥BC,OB=OC,∴BH=HC,∠BOH=∠HOC=60°,在Rt△BOH中,BH=OB?sin60°=1×=,∴BC=2BH=.故選A.點睛:本題考查三角形的外接圓與外心、銳角三角函數(shù)、垂徑定理等知識,解題的關鍵是學會添加常用輔助線.5、C【解析】
根據(jù)統(tǒng)計圖,利用眾數(shù)與中位數(shù)的概念即可得出答案.【詳解】從統(tǒng)計圖中可以得出這一周的氣溫分別是:12,15,14,10,13,14,11所以眾數(shù)為14;將氣溫按從低到高的順序排列為:10,11,12,13,14,14,15所以中位數(shù)為13故選:C.【點睛】本題主要考查中位數(shù)和眾數(shù),掌握中位數(shù)和眾數(shù)的求法是解題的關鍵.6、C【解析】
連接EG、FG,根據(jù)斜邊中線長為斜邊一半的性質(zhì)即可求得EG=FG=BC,因為D是EF中點,根據(jù)等腰三角形三線合一的性質(zhì)可得GD⊥EF,再根據(jù)勾股定理即可得出答案.【詳解】解:連接EG、FG,EG、FG分別為直角△BCE、直角△BCF的斜邊中線,∵直角三角形斜邊中線長等于斜邊長的一半∴EG=FG=BC=×10=5,∵D為EF中點∴GD⊥EF,即∠EDG=90°,又∵D是EF的中點,∴,在中,,故選C.【點睛】本題考查了直角三角形中斜邊上中線等于斜邊的一半的性質(zhì)、勾股定理以及等腰三角形三線合一的性質(zhì),本題中根據(jù)等腰三角形三線合一的性質(zhì)求得GD⊥EF是解題的關鍵.7、C【解析】分析:根據(jù)根與系數(shù)的關系可得出α+β=-、αβ=-3,將其代入=中即可求出結論.詳解:∵α、β是一元二次方程3x2+2x-9=0的兩根,∴α+β=-,αβ=-3,∴===.故選C.點睛:本題考查了根與系數(shù)的關系,牢記兩根之和等于-、兩根之積等于是解題的關鍵.8、B【解析】
先分別求出每一個不等式的解集,再根據(jù)口訣:同大取大、同小取小、大小小大中間找、大大小小無解了確定不等式組的解集.【詳解】解:根據(jù)題意,得:,解不等式①,得:x>,解不等式②,得:x>1,∴不等式組的解集為x>1,故選:B.【點睛】本題主要考查解一元一次不等式組,關鍵要掌握解一元一次不等式的方法,牢記確定不等式組解集方法.9、D【解析】
直接利用相反數(shù)以及絕對值的定義得出x,y的值,進而得出答案.【詳解】解:∵x是1的相反數(shù),|y|=3,∴x=-1,y=±3,∴y-x=4或-1.故選D.【點睛】此題主要考查了有理數(shù)的混合運算,正確得出x,y的值是解題關鍵.10、C【解析】x2-8x=2,
x2-8x+16=1,
(x-4)2=1.
故選C.【點睛】本題考查了解一元二次方程-配方法:將一元二次方程配成(x+m)2=n的形式,再利用直接開平方法求解,這種解一元二次方程的方法叫配方法.二、填空題(本大題共6個小題,每小題3分,共18分)11、(1,0)【解析】分析:由于C、D是定點,則CD是定值,如果的周長最小,即有最小值.為此,作點D關于x軸的對稱點D′,當點E在線段CD′上時的周長最?。斀猓喝鐖D,作點D關于x軸的對稱點D′,連接CD′與x軸交于點E,連接DE.若在邊OA上任取點E′與點E不重合,連接CE′、DE′、D′E′由DE′+CE′=D′E′+CE′>CD′=D′E+CE=DE+CE,可知△CDE的周長最小,∵在矩形OACB中,OA=3,OB=4,D為OB的中點,∴BC=3,D′O=DO=2,D′B=6,∵OE∥BC,∴Rt△D′OE∽Rt△D′BC,有∴OE=1,∴點E的坐標為(1,0).故答案為:(1,0).點睛:考查軸對稱-最短路線問題,坐標與圖形性質(zhì),相似三角形的判定與性質(zhì)等,找出點E的位置是解題的關鍵.12、∠A=∠C或∠ADC=∠ABC【解析】
本題證明兩三角形全等的三個條件中已經(jīng)具備一邊和一角,所以只要再添加一組對應角或邊相等即可.【詳解】添加條件可以是:∠A=∠C或∠ADC=∠ABC.∵添加∠A=∠C根據(jù)AAS判定△AOD≌△COB,添加∠ADC=∠ABC根據(jù)AAS判定△AOD≌△COB,故填空答案:∠A=∠C或∠ADC=∠ABC.【點睛】本題考查了三角形全等的判定方法;判定兩個三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.添加時注意:AAA、SSA不能判定兩個三角形全等,不能添加,根據(jù)已知結合圖形及判定方法選擇條件是正確解題的關鍵.13、【解析】
解:∵四邊形ABCO是矩形,AB=1,∴設B(m,1),∴OA=BC=m,∵四邊形OA′B′D與四邊形OABD關于直線OD對稱,∴OA′=OA=m,∠A′OD=∠AOD=30°∴∠A′OA=60°,過A′作A′E⊥OA于E,∴OE=m,A′E=m,∴A′(m,m),∵反比例函數(shù)(k≠0)的圖象恰好經(jīng)過點A′,B,∴m?m=m,∴m=,∴k=故答案為14、1-1.【解析】
將△ABD繞點A逆時針旋轉120°得到△ACF,取CF的中點G,連接EF、EG,由AB=AC=2、∠BAC=120°,可得出∠ACB=∠B=10°,根據(jù)旋轉的性質(zhì)可得出∠ECG=60°,結合CF=BD=2CE可得出△CEG為等邊三角形,進而得出△CEF為直角三角形,通過解直角三角形求出BC的長度以及證明全等找出DE=FE,設EC=x,則BD=CF=2x,DE=FE=6-1x,在Rt△CEF中利用勾股定理可得出FE=x,利用FE=6-1x=x可求出x以及FE的值,此題得解.【詳解】將△ABD繞點A逆時針旋轉120°得到△ACF,取CF的中點G,連接EF、EG,如圖所示.∵AB=AC=2,∠BAC=120°,∴∠ACB=∠B=∠ACF=10°,∴∠ECG=60°.∵CF=BD=2CE,∴CG=CE,∴△CEG為等邊三角形,∴EG=CG=FG,∴∠EFG=∠FEG=∠CGE=10°,∴△CEF為直角三角形.∵∠BAC=120°,∠DAE=60°,∴∠BAD+∠CAE=60°,∴∠FAE=∠FAC+∠CAE=∠BAD+∠CAE=60°.在△ADE和△AFE中,,∴△ADE≌△AFE(SAS),∴DE=FE.設EC=x,則BD=CF=2x,DE=FE=6-1x,在Rt△CEF中,∠CEF=90°,CF=2x,EC=x,EF==x,∴6-1x=x,x=1-,∴DE=x=1-1.故答案為:1-1.【點睛】本題考查了全等三角形的判定與性質(zhì)、勾股定理以及旋轉的性質(zhì),通過勾股定理找出方程是解題的關鍵.15、.【解析】
股票一次跌停就跌到原來價格的90%,再從90%的基礎上漲到原來的價格,且漲幅只能≤10%,設這兩天此股票股價的平均增長率為x,每天相對于前一天就上漲到1+x,由此列出方程解答即可.【詳解】設這兩天此股票股價的平均增長率為x,由題意得(1﹣10%)(1+x)2=1.故答案為:(1﹣10%)(1+x)2=1.【點睛】本題主要考查了由實際問題抽象出一元二次方程,關鍵是掌握平均變化率的方法,若設變化前的量為,變化后的量為,平均變化率為,則經(jīng)過兩次變化后的數(shù)量關系為16、-3<a≤-2【解析】分析:求出不等式組中兩不等式的解集,根據(jù)不等式取解集的方法:同大取大;同小取小;大大小小無解;大小小大取中間的法則表示出不等式組的解集,由不等式組只有四個整數(shù)解,根據(jù)解集取出四個整數(shù)解,即可得出a的范圍.詳解:由不等式①解得:由不等式②移項合并得:?2x>?4,解得:x<2,∴原不等式組的解集為由不等式組只有四個整數(shù)解,即為1,0,?1,?2,可得出實數(shù)a的范圍為故答案為點睛:考查一元一次不等式組的整數(shù)解,求不等式的解集,根據(jù)不等式組有4個整數(shù)解覺得實數(shù)的取值范圍.三、解答題(共8題,共72分)17、1【解析】
原式利用零指數(shù)冪、負整數(shù)指數(shù)冪法則,絕對值的代數(shù)意義,以及特殊角的三角函數(shù)值計算即可得到結果.【詳解】原式=4-1+2-+=1.【點睛】此題考查了實數(shù)的運算,絕對值,零指數(shù)冪、負整數(shù)指數(shù)冪,以及特殊角的三角函數(shù)值,熟練掌握運算法則是解本題的關鍵.18、通信塔CD的高度約為15.9cm.【解析】
過點A作AE⊥CD于E,設CE=xm,解直角三角形求出AE,解直角三角形求出BM、DM,即可得出關于x的方程,求出方程的解即可.【詳解】過點A作AE⊥CD于E,則四邊形ABDE是矩形,設CE=xcm,在Rt△AEC中,∠AEC=90°,∠CAE=30°,所以AE=xcm,在Rt△CDM中,CD=CE+DE=CE+AB=(x+6)cm,DM=cm,在Rt△ABM中,BM=cm,∵AE=BD,∴,解得:x=+3,∴CD=CE+ED=+9≈15.9(cm),答:通信塔CD的高度約為15.9cm.【點睛】本題考查了解直角三角形,能通過解直角三角形求出AE、BM的長度是解此題的關鍵.19、(1)如圖所示見解析,(2)當半徑為6時,該正六邊形的面積為【解析】試題分析:(1)先畫一半徑為a的圓,再作所畫圓的六等分點,如圖所示,連接所得六等分點,作出兩個等邊三角形即可;(2)如下圖,連接OA、OB、OC、OD,作OE⊥AB于點E,由已知條件先求出AB和OE的長,再求出CD的長,即可求得△OCD的面積,這樣即可由S陰影=6S△OCD求出陰影部分的面積了.試題解析:(1)所作圖形如下圖所示:(2)如下圖,連接OA、OB、OC、OD,作OE⊥AB于點E,則由題意可得:OA=OB=6,∠AOB=120°,∠OEB=90°,AE=BE,△BOC,△AOD都是等腰三角形,△OCD的三邊三角形,∴∠ABO=30°,BC=OC=CD=AD,∴BE=OB·cos30°=,OE=3,∴AB=,∴CD=,∴S△OCD=,∴S陰影=6S△OCD=.20、-4【解析】分析:第一項根據(jù)乘方的意義計算,第二項非零數(shù)的零次冪等于1,第三項根據(jù)特殊角銳角三角函數(shù)值計算,第四項根據(jù)絕對值的意義化簡.詳解:原式=-4+1-2×+-1=-4點睛:本題考查了實數(shù)的運算,熟練掌握乘方的意義,零指數(shù)冪的意義,及特殊角銳角三角函數(shù),絕對值的意義是解答本題的關鍵.21、(1)2000件;(2)90260元.【解析】
(1)設該商場第一批購進襯衫x件,則第二批購進襯衫2x件,根據(jù)單價=總價÷數(shù)量結合第二批比第一批的進價漲了4元/件,即可得出關于x的分式方程,解之經(jīng)檢驗后即可得出結論;(2)用(1)的結論×2可求出第二批購進該種襯衫的數(shù)量,再利用總利潤=銷售收入-成本,即可得出結論.【詳解】解:(1)設該商場第一批購進襯衫x件,則第二批購進襯衫2x件,根據(jù)題意得:-=4,解得:x=2000,經(jīng)檢驗,x=2000是所列分式方程的解,且符合題意.答:商場第一批購進襯衫2000件.(2)2000×2=4000(件),(2000+4000-150)×58+150×58×0.8-80000-176000=90260(元).答:售完這兩批襯衫,商場共盈利90260元.【點睛】本題考查了分式方程的應用,解題的關鍵是:(1)找準等量關系,正確列出分式方程;(2)根據(jù)數(shù)量關系,列式計算.22、(1)證明見解析(2)【解析】分析:(1)由已知條件易得BE=DF且BE∥DF,從而可得四邊BFDE是平行四邊形,結合∠EDB=90°即可得到四邊形BFDE是矩形;(2)由已知易得AB=5,由AF平分∠DAB,DC∥AB可得∠DAF=∠BAF=∠DFA,由此可得DF=AD=5,結合BE=DF可得BE=5,由此可得AB=8,結合BF=DE=4即可求得tan∠BAF=.詳解:(1)∵四邊形ABCD是平行四邊形,∴AB∥CD,AB=CD,∵AE=CF,∴BE=DF,∴四邊形BFDE是平行四邊形.∵DE⊥AB,∴∠DEB=90°,∴四邊形BFDE是矩形;(2)在Rt△BCF中,由勾股定理,得AD=,∵四邊形ABCD是平行四邊形,∴AB∥DC,∴∠DFA=∠FAB.∵AF平分∠DAB∴∠DAF=∠FAB,∴∠DAF=∠DFA,∴DF=AD=5,∵四邊形BFDE是矩形,∴BE=DF=5,BF=DE=4,∠ABF=90°,∴AB=AE+BE=8,∴tan∠BAF=.點睛:(1)熟悉平行四邊形的性質(zhì)和矩形的判定方法是解答第1小題的關鍵;(2)能由AF平分∠DAB,DC∥AB得到∠DAF=∠BAF=∠DFA,進而推得DF=AD=5是解答第2小題的關鍵.23、(Ⅰ)①y=x2+3x②當3+6≤S≤6+2時,x的取值范圍為是≤x≤或≤x≤(Ⅱ)ac≤1【解析】
(I)①由拋物線的頂點為A(-2,-3),可設拋物線的解析式為y=a(x+2)2-3,代入點B的坐標即可求出a值,此問得解,②根據(jù)點A、B的坐標利用待定系數(shù)法可求出直線AB的解析式,進而可求出直線l的解析式,分點P在第二象限及點P在第四象限兩種情況考慮:當點P在第二象限時,x<0,通過分割圖形求面積法結合3+6≤S≤6+2,即可求出x的取值范圍,當點P在第四象限時,x>0,通過分割圖形求面積法結合3+6≤S≤6+2,即可求出x的取值范圍,綜上即可得出結論,(2)由當x=c時y=0,可得出b=-ac-1,由當0<x<c時y>0,可得出拋物線的對稱軸x=≥c,進而可得出b≤-2ac,結合b=-ac-1即可得出ac≤1.【詳解】(I)①設拋物線的解析式為y=a(x+2)2﹣3,∵拋物線經(jīng)過點B(﹣3,0),∴0=a(﹣3+2)2﹣3,解得:a=1,∴該拋物線的解析式為y=(x+2)2﹣3=x2+3x.②設直線AB的解析式為y=kx+m(k≠0),將A(﹣2,﹣3)、B(﹣3,0)代入y=kx+m,得:,解得:,∴直線AB的解析式為y=﹣2x﹣2.∵直線l與AB平行,且過原點,∴直線l的解析式為y=﹣2x.當點P在第二象限時,x<0,如圖所示.S△POB=×3×(﹣2x)=﹣3x,S△AOB=×3×3=2,∴S=S△POB+S△AOB=﹣3x+2(x<0).∵3+6≤S≤6+2,∴,即,解得:≤x≤,∴x的取值范圍是≤x≤.當點P′在第四象限時,x>0,過點A作AE⊥x軸,垂足為點E,過點P′作P′F⊥x軸,垂足為點F,則S四邊形AEOP′=S梯形AEFP′﹣S△OFP′=?(x+2)﹣?x?(2x)=3x+3.∵S△ABE=×2×3=3,∴S=S四邊形AEOP′+S△ABE=3x+2(x>0).∵3+6≤S≤6+2,∴,即,解得:≤x≤,∴x的取值范圍為≤x≤.綜上所述:當3+6≤S≤6+2時,x的取值范圍為是≤x≤或≤x≤.(II)ac≤1,理由如下:∵當x=c時,y=0,∴ac2+bc+c=0,∵c>1,∴ac+b+1=0,b=﹣ac﹣1.由x=c時,y=0,可知拋物線與x軸的一個交點為(c,0).把x=0代入y=ax2+bx+
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 包車旅游有合同范本
- 出售店鋪合同范本
- 農(nóng)村護欄轉讓合同范本
- 買賣協(xié)議車子合同范本
- 冰品購銷合同范本
- 區(qū)塊鏈認證合同范本
- 修建電站合同范本
- 企業(yè)合同范本清單
- 單位保密合同范本
- 貨款協(xié)議合同范本
- 橋梁鋼筋制作安裝施工方案
- 2025年語言文字工作計劃
- 金融類競聘主管
- 《國防動員準備》課件
- 2024年688個高考英語高頻詞匯
- 商標合資經(jīng)營合同
- 第六講當前就業(yè)形勢與實施就業(yè)優(yōu)先戰(zhàn)略-2024年形勢與政策
- 2024-2030年中國家政服務行業(yè)經(jīng)營策略及投資規(guī)劃分析報告
- 2025年護士資格證考核題庫及答案
- 湖北省黃岡市2023-2024學年五年級上學期數(shù)學期中試卷(含答案)
評論
0/150
提交評論