內(nèi)蒙古師范大第二附中2025屆數(shù)學(xué)九上期末教學(xué)質(zhì)量檢測模擬試題含解析_第1頁
內(nèi)蒙古師范大第二附中2025屆數(shù)學(xué)九上期末教學(xué)質(zhì)量檢測模擬試題含解析_第2頁
內(nèi)蒙古師范大第二附中2025屆數(shù)學(xué)九上期末教學(xué)質(zhì)量檢測模擬試題含解析_第3頁
內(nèi)蒙古師范大第二附中2025屆數(shù)學(xué)九上期末教學(xué)質(zhì)量檢測模擬試題含解析_第4頁
內(nèi)蒙古師范大第二附中2025屆數(shù)學(xué)九上期末教學(xué)質(zhì)量檢測模擬試題含解析_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

內(nèi)蒙古師范大第二附中2025屆數(shù)學(xué)九上期末教學(xué)質(zhì)量檢測模擬試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(每小題3分,共30分)1.如圖,正比例函數(shù)y=x與反比例函數(shù)y=的圖象相交于A,C兩點.AB⊥x軸于B,CD⊥x軸于D,當(dāng)四邊形ABCD的面積為6時,則k的值是()A.6 B.3 C.2 D.2.下列方程中,關(guān)于x的一元二次方程是()A.x2﹣x(x+3)=0 B.a(chǎn)x2+bx+c=0C.x2﹣2x﹣3=0 D.x2﹣2y﹣1=03.一次函數(shù)y=ax+b與反比例函數(shù),其中ab<0,a、b為常數(shù),它們在同一坐標(biāo)系中的圖象可以是()A. B. C. D.4.下列運算正確的是()A. B.C. D.5.小明、小亮、小梅、小花四人共同探究函數(shù)的值的情況,他們作了如下分工:小明負(fù)責(zé)找函數(shù)值為1時的值,小亮負(fù)責(zé)找函數(shù)值為0時的值,小梅負(fù)責(zé)找最小值,小花負(fù)責(zé)找最大值.幾分鐘后,各自通報探究的結(jié)論,其中錯誤的是()A.小明認(rèn)為只有當(dāng)時,函數(shù)值為1;B.小亮認(rèn)為找不到實數(shù),使函數(shù)值為0;C.小花發(fā)現(xiàn)當(dāng)取大于2的實數(shù)時,函數(shù)值隨的增大而增大,因此認(rèn)為沒有最大值;D.小梅發(fā)現(xiàn)函數(shù)值隨的變化而變化,因此認(rèn)為沒有最小值6.如圖,點E為菱形ABCD邊上的一個動點,并延A→B→C→D的路徑移動,設(shè)點E經(jīng)過的路徑長為x,△ADE的面積為y,則下列圖象能大致反映y與x的函數(shù)關(guān)系的是()A. B.C. D.7.反比例函數(shù)與在同一坐標(biāo)系的圖象可能為()A. B. C. D.8.若函數(shù)的圖象在其象限內(nèi)y的值隨x值的增大而增大,則m的取值范圍是()A.m>﹣2 B.m<﹣2C.m>2 D.m<29.如圖,一條公路環(huán)繞山腳的部分是一段圓弧形狀(O為圓心),過A,B兩點的切線交于點C,測得∠C=120°,A,B兩點之間的距離為60m,則這段公路AB的長度是()A.10πm B.20πm C.10πm D.60m10.如圖所示,矩形紙片中,,把它分割成正方形紙片和矩形紙片后,分別裁出扇形和半徑最大的圓,恰好能作為一個圓錐的側(cè)面和底面,則的長為()A. B. C. D.二、填空題(每小題3分,共24分)11.某一時刻,一棵樹高15m,影長為18m.此時,高為50m的旗桿的影長為_____m.12.如圖,一個半徑為,面積為的扇形紙片,若添加一個半徑為的圓形紙片,使得兩張紙片恰好能組合成一個圓錐體,則添加的圓形紙片的半徑為____.13.在矩形中,,,繞點順時針旋轉(zhuǎn)到,連接,則________.14.有4根細(xì)木棒,它們的長度分別是2cm、4cm、6cm、8cm.從中任取3根恰好能搭成一個三角形的概率是_____.15.已知二次函數(shù)(a是常數(shù),a≠0),當(dāng)自變量x分別取-6、-4時,對應(yīng)的函數(shù)值分別為y1、y2,那么y1、y2的大小關(guān)系是:y1__y2(填“>”、“<”或“=”).16.將二次函數(shù)y=x2﹣1的圖象向上平移3個單位長度,得到的圖象所對應(yīng)的函數(shù)表達式是_____.17..甲、乙、丙、丁四位同學(xué)在五次數(shù)學(xué)測驗中他們成績的平均分相等,方差分別是2.3,3.8,5.2,6.2,則成績最穩(wěn)定的同學(xué)是______.18.如圖,AC是⊙O的直徑,B,D是⊙O上的點,若⊙O的半徑為3,∠ADB=30°,則的長為____.三、解答題(共66分)19.(10分)已知是的反比例函數(shù),下表給出了與的一些值:141(1)寫出這個反比例函數(shù)表達式;(2)將表中空缺的值補全.20.(6分)某果園有100棵桃樹,一棵桃樹平均結(jié)1000個桃子,現(xiàn)準(zhǔn)備多種一些桃樹以提高產(chǎn)量,試驗發(fā)現(xiàn),每多種一棵桃樹,每棵樹的產(chǎn)量就會減少2個,但多種的桃樹不能超過100棵,如果要使產(chǎn)量增加15.2%,那么應(yīng)多種多少棵桃樹?21.(6分)如圖1,直線y=2x+2分別交x軸、y軸于點A、B,點C為x軸正半軸上的點,點D從點C處出發(fā),沿線段CB勻速運動至點B處停止,過點D作DE⊥BC,交x軸于點E,點C′是點C關(guān)于直線DE的對稱點,連接EC′,若△DEC′與△BOC的重疊部分面積為S,點D的運動時間為t(秒),S與t的函數(shù)圖象如圖2所示.(1)VD,C坐標(biāo)為;(2)圖2中,m=,n=,k=.(3)求出S與t之間的函數(shù)關(guān)系式(不必寫自變量t的取值范圍).22.(8分)如圖,平面直角坐標(biāo)中,把矩形OABC沿對角線OB所在的直線折疊,點A落在點D處,OD與BC交于點E.OA、OC的長是關(guān)于x的一元二次方程x2﹣9x+18=0的兩個根(OA>OC).(1)求A、C的坐標(biāo).(2)直接寫出點E的坐標(biāo),并求出過點A、E的直線函數(shù)關(guān)系式.(3)點F是x軸上一點,在坐標(biāo)平面內(nèi)是否存在點P,使以點O、B、P、F為頂點的四邊形為菱形?若存在請直接寫出P點坐標(biāo);若不存在,請說明理由.23.(8分)已知:關(guān)于x的方程(1)求證:m取任何值時,方程總有實根.(2)若二次函數(shù)的圖像關(guān)于y軸對稱.a、求二次函數(shù)的解析式b、已知一次函數(shù),證明:在實數(shù)范圍內(nèi),對于同一x值,這兩個函數(shù)所對應(yīng)的函數(shù)值均成立.(3)在(2)的條件下,若二次函數(shù)的象經(jīng)過(-5,0),且在實數(shù)范圍內(nèi),對于x的同一個值,這三個函數(shù)所對應(yīng)的函數(shù)值均成立,求二次函數(shù)的解析式.24.(8分)中國古代有著輝煌的數(shù)學(xué)成就,《周髀算經(jīng)》,《九章算術(shù)》,《海島算經(jīng)》,《孫子算經(jīng)》等是我國古代數(shù)學(xué)的重要文獻.(1)小聰想從這4部數(shù)學(xué)名著中隨機選擇1部閱讀,則他選中《九章算術(shù)》的概率為;(2)某中學(xué)擬從這4部數(shù)學(xué)名著中選擇2部作為“數(shù)學(xué)文化”校本課程學(xué)習(xí)內(nèi)容,求恰好選中《九章算術(shù)》和《孫子算經(jīng)》的概率.25.(10分)某班級組織了“我和我的祖國”演講比賽,甲、乙兩隊各有10人參加本次比賽,成績?nèi)缦?10分制)甲10879810109109乙789710109101010(1)甲隊成績的眾數(shù)是分,乙隊成績的中位數(shù)是分.(2)計算乙隊成績的平均數(shù)和方差.(3)已知甲隊成績的方差是1分2,則成績較為整齊的是隊.26.(10分)不透明袋子中裝有紅、綠小球各一個,除顏色外無其他差別,隨機摸出一個小球后,放回并搖勻,再隨機摸出一個,求下列事件的概率.(1)兩次都摸到紅球;(2)第一次摸到紅球,第二次摸到綠球.

參考答案一、選擇題(每小題3分,共30分)1、B【分析】根據(jù)反比例函數(shù)的對稱性可知:OB=OD,AB=CD,再由反比例函數(shù)y=中k的幾何意義,即可得到結(jié)論.【詳解】解:∵正比例函數(shù)y=x與反比例函數(shù)y=的圖象相交于A,C兩點,AB⊥x軸于B,CD⊥x軸于D,∴AB=OB=OD=CD,∴四邊形ABCD是平行四邊形,∴k=2S△AOB=2×=3,故選:B.【點睛】本題考查反比例函數(shù)與正比例函數(shù)的結(jié)合題型,關(guān)鍵在于熟悉反比例函數(shù)k值的幾何意義.2、C【分析】一元二次方程必須滿足四個條件:(1)未知數(shù)的最高次數(shù)是2;(2)二次項系數(shù)不為0;(3)是整式方程;(4)含有一個未知數(shù).由這四個條件對四個選項進行驗證,滿足這四個條件者為正確答案.【詳解】解:A、x2﹣x(x+3)=0,化簡后為﹣3x=0,不是關(guān)于x的一元二次方程,故此選項不合題意;B、ax2+bx+c=0,當(dāng)a=0時,不是關(guān)于x的一元二次方程,故此選項不合題意;C、x2﹣2x﹣3=0是關(guān)于x的一元二次方程,故此選項符合題意;D、x2﹣2y﹣1=0含有2個未知數(shù),不是關(guān)于x的一元二次方程,故此選項不合題意;故選:C.【點睛】此題主要考查了一元二次方程的定義,判斷一個方程是否是一元二次方程應(yīng)注意抓住5個方面:“化簡后”;“一個未知數(shù)”;“未知數(shù)的最高次數(shù)是2”;“二次項的系數(shù)不等于0”;“整式方程”.3、C【分析】根據(jù)一次函數(shù)的位置確定a、b的大小,看是否符合ab<0,計算a-b確定符號,確定雙曲線的位置.【詳解】A.由一次函數(shù)圖象過一、三象限,得a>0,交y軸負(fù)半軸,則b<0,滿足ab<0,∴a?b>0,∴反比例函數(shù)y=的圖象過一、三象限,所以此選項不正確;B.由一次函數(shù)圖象過二、四象限,得a<0,交y軸正半軸,則b>0,滿足ab<0,∴a?b<0,∴反比例函數(shù)y=的圖象過二、四象限,所以此選項不正確;C.由一次函數(shù)圖象過一、三象限,得a>0,交y軸負(fù)半軸,則b<0,滿足ab<0,∴a?b>0,∴反比例函數(shù)y=的圖象過一、三象限,所以此選項正確;D.由一次函數(shù)圖象過二、四象限,得a<0,交y軸負(fù)半軸,則b<0,滿足ab>0,與已知相矛盾所以此選項不正確;故選C.【點睛】此題考查反比例函數(shù)的圖象,一次函數(shù)的圖象,解題關(guān)鍵在于確定a、b的大小4、D【分析】根據(jù)題意利用合并同類項法則、完全平方公式、同底數(shù)冪的乘法運算法則及冪的乘方運算法則,分別化簡求出答案.【詳解】解:A.合并同類項,系數(shù)相加字母和指數(shù)不變,,此選項不正確;B.,是完全平方公式,(a-b)2=a2-2ab+b2,此選項錯誤;C.,同底數(shù)冪乘法底數(shù)不變指數(shù)相加,a2·a3=a5,此選項不正確;D.,冪的乘方底數(shù)不變指數(shù)相乘,(-a)4=(-1)4.a4=a4,此選項正確.故選:D【點睛】本題考查了有理式的運算法則,合并同類項的關(guān)鍵正確判斷同類項,然后按照合并同類項的法則進行合并;遇到冪的乘方時,需要注意若括號內(nèi)有“-”時,其結(jié)果的符號取決于指數(shù)的奇偶性.5、D【分析】根據(jù)二次函數(shù)的最值及圖象上點的坐標(biāo)特點回答即可.【詳解】因為該拋物線的頂點是,所以正確;根據(jù)二次函數(shù)的頂點坐標(biāo),知它的最小值是1,所以正確;根據(jù)圖象,知對稱軸的右側(cè),即時,y隨x的增大而增大,所以正確;因為二次項系數(shù)1>0,有最小值,所以錯誤;故選:D.【點睛】本題主要考查了二次函數(shù)圖象與最值問題,準(zhǔn)確分析是解題的關(guān)鍵.6、D【解析】點E沿A→B運動,△ADE的面積逐漸變大;點E沿B→C移動,△ADE的面積不變;點E沿C→D的路徑移動,△ADE的面積逐漸減?。蔬xD.點睛:本題考查函數(shù)的圖象.分三段依次考慮△ADE的面積變化情況是解題的關(guān)鍵.7、B【分析】根據(jù)反比例函數(shù)和一次函數(shù)的性質(zhì)逐個對選項進行分析即可.【詳解】A根據(jù)反比例函數(shù)的圖象可知,k>0,因此可得一次函數(shù)的圖象應(yīng)該遞減,但是圖象是遞增的,所以A錯誤;B根據(jù)反比例函數(shù)的圖象可知,k>0,,因此一次函數(shù)的圖象應(yīng)該遞減,和圖象吻合,所以B正確;C根據(jù)反比例函數(shù)的圖象可知,k<0,因此一次函數(shù)的圖象應(yīng)該遞增,并且過(0,1)點,但是根據(jù)圖象,不過(0,1),所以C錯誤;D根據(jù)反比例函數(shù)的圖象可知,k<0,因此一次函數(shù)的圖象應(yīng)該遞增,但是根據(jù)圖象一次函數(shù)的圖象遞減,所以D錯誤.故選B【點睛】本題主要考查反比例函數(shù)和一次函數(shù)的性質(zhì),關(guān)鍵點在于系數(shù)的正負(fù)判斷,根據(jù)系數(shù)識別圖象.8、B【分析】根據(jù)反比例函數(shù)的性質(zhì),可得m+1<0,從而得出m的取值范圍.【詳解】∵函數(shù)的圖象在其象限內(nèi)y的值隨x值的增大而增大,∴m+1<0,解得m<-1.故選B.9、B【分析】連接OA,OB,OC,根據(jù)切線的性質(zhì)得到∠OAC=∠OBC=90°,AC=BC,推出△AOB是等邊三角形,得到OA=AB=60,根據(jù)弧長的計算公式即可得到結(jié)論.【詳解】解:連接OA,OB,OC,∵AC與BC是⊙O的切線,∠C=120°,∴∠OAC=∠OBC=90°,AC=BC,∴∠AOB=60°,∵OA=OB,∴△AOB是等邊三角形,∴OA=AB=60,∴公路AB的長度==20πm,故選:B.【點睛】本題主要考察切線的性質(zhì)及弧長,解題關(guān)鍵是連接OA,OB,OC推出△AOB是等邊三角形.10、B【分析】設(shè)AB=xcm,則DE=(6-x)cm,根據(jù)扇形的弧長等于圓錐底面圓的周長列出方程,求解即可.【詳解】設(shè),則DE=(6-x)cm,由題意,得,解得.故選B.【點睛】本題考查了圓錐的計算,矩形的性質(zhì),正確理解圓錐的側(cè)面展開圖與原來的扇形之間的關(guān)系是解決本題的關(guān)鍵,理解圓錐的母線長是扇形的半徑,圓錐的底面圓周長是扇形的弧長.二、填空題(每小題3分,共24分)11、1【分析】設(shè)旗桿的影長為xm,然后利用同一時刻物高與影長成正比例列方程求解即可.【詳解】解:設(shè)旗桿的影長BE為xm,如圖:∵AB∥CD∴△ABE∽△DCE∴,由題意知AB=50,CD=15,CE=18,即,,解得x=1,經(jīng)檢驗,x=1是原方程的解,即高為50m的旗桿的影長為1m.故答案為:1.【點睛】此題主要考查比例的性質(zhì),解題的關(guān)鍵是熟知同一時刻物高與影長成正比例.12、1【分析】能組合成圓錐體,那么扇形的弧長等于圓形紙片的周長.應(yīng)先利用扇形的面積=圓錐的弧長×母線長÷1,得到圓錐的弧長=1扇形的面積÷母線長,進而根據(jù)圓錐的底面半徑=圓錐的弧長÷1π求解.【詳解】解:∵圓錐的弧長=1×11π÷6=4π,

∴圓錐的底面半徑=4π÷1π=1cm,

故答案為1.【點睛】解決本題的難點是得到圓錐的弧長與扇形面積之間的關(guān)系,注意利用圓錐的弧長等于底面周長這個知識點.13、【分析】根據(jù)勾股定理求出BD,再根據(jù)等腰直角三角形的性質(zhì),BF=BD計算即可.【詳解】解:∵四邊形ABCD是矩形,

∴AD=BC=8,∠A=90°,

∵AB=6,

∴BD===10,

∵△BEF是由△ABD旋轉(zhuǎn)得到,

∴△BDF是等腰直角三角形,

∴DF=BD=10,

故答案為10.【點睛】本題考查旋轉(zhuǎn)的性質(zhì)、矩形的性質(zhì)、勾股定理等知識,解題的關(guān)鍵是靈活運用勾股定理解決問題,屬于中考??碱}型.14、【分析】根據(jù)題意列舉出所有4種等可能的結(jié)果數(shù),再根據(jù)題意得出能夠構(gòu)成三角形的結(jié)果數(shù),最后根據(jù)概率公式即可求解.【詳解】從中任取3根共有4種等可能的結(jié)果數(shù),它們?yōu)?、4、6;2、4、8;2、6、8;、4、6、8,其中恰好能搭成一個三角形為4、6、8,所以恰好能搭成一個三角形的概率=.故答案為.【點睛】本題考查列表法或樹狀圖法和三角形三邊關(guān)系,解題的關(guān)鍵是通過列表法或樹狀圖法展示出所有等可能的結(jié)果數(shù)及求出構(gòu)成三角形的結(jié)果數(shù).15、>【分析】先求出拋物線的對稱軸為,由,則當(dāng),y隨x的增大而減小,即可判斷兩個函數(shù)值的大小.【詳解】解:∵二次函數(shù)(a是常數(shù),a≠0),∴拋物線的對稱軸為:,∵,∴當(dāng),y隨x的增大而減小,∵,∴;故答案為:.【點睛】本題考查了二次函數(shù)的性質(zhì),解題的關(guān)鍵是熟練掌握二次函數(shù)的性質(zhì)進行解題.16、y=x1+1【解析】分析:先確定二次函數(shù)y=x1﹣1的頂點坐標(biāo)為(0,﹣1),再根據(jù)點平移的規(guī)律得到點(0,﹣1)平移后所得對應(yīng)點的坐標(biāo)為(0,1),然后根據(jù)頂點式寫出平移后的拋物線解析式.詳解:二次函數(shù)y=x1﹣1的頂點坐標(biāo)為(0,﹣1),把點(0,﹣1)向上平移3個單位長度所得對應(yīng)點的坐標(biāo)為(0,1),所以平移后的拋物線解析式為y=x1+1.故答案為y=x1+1.點睛:本題考查了二次函數(shù)圖象與幾何變換:由于拋物線平移后的形狀不變,故a不變,所以求平移后的拋物線解析式通??衫脙煞N方法:一是求出原拋物線上任意兩點平移后的坐標(biāo),利用待定系數(shù)法求出解析式;二是只考慮平移后的頂點坐標(biāo),即可求出解析式.17、甲【分析】方差反映了一組數(shù)據(jù)的波動情況,方差越小越穩(wěn)定,據(jù)此可判斷.【詳解】∵2.3<3.8<5.2<6.2,∴,∴成績最穩(wěn)定的是甲.故答案為:甲.【點睛】本題考查了方差的概念,正確理解方差所表示的意義是解題的關(guān)鍵.18、2π.【分析】根據(jù)圓周角定理求出∠AOB,得到∠BOC的度數(shù),根據(jù)弧長公式計算即可.【詳解】解:由圓周角定理得,∠AOB=2∠ADB=60°,∴∠BOC=180°﹣60°=120°,∴的長=,故答案為:2π.【點睛】本題考查的是圓周角定理、弧長的計算,掌握圓周角定理、弧長公式是解題的關(guān)鍵.三、解答題(共66分)19、(1);(2),-4,,-1,3,2,3,【分析】(1)設(shè)出反比例函數(shù)解析式,把代入解析式即可得出答案;(2)讓的乘積等于3計算可得表格中未知字母的值.【詳解】解:(1)設(shè),,∴(2)=,=-4,=,=-1,=3,=2,=3,=.故答案為:,-4,,-1,3,2,3,.【點睛】本題考查了反比例函數(shù)的解析式,熟練掌握解析式的求法是解題的關(guān)鍵.20、20【分析】每多種一棵桃樹,每棵桃樹的產(chǎn)量就會減少2個,所以多種棵樹每棵桃樹的產(chǎn)量就會減少個(即是平均產(chǎn)個),桃樹的總共有棵,所以總產(chǎn)量是個.要使產(chǎn)量增加,達到個.【詳解】解:設(shè)應(yīng)多種棵桃樹,根據(jù)題意,得整理方程,得解得,,∵多種的桃樹不能超過100棵,∴(舍去)∴答:應(yīng)多種20棵桃樹?!军c睛】本題考查一元二次方程的應(yīng)用,解題關(guān)鍵在于搞懂題意去列出方程即可.21、(1)點D的運動速度為1單位長度/秒,點C坐標(biāo)為(4,0).(2);;.(3)①當(dāng)點C′在線段BC上時,S=t2;②當(dāng)點C′在CB的延長線上,S=?t2+t?;③當(dāng)點E在x軸負(fù)半軸,S=t2?4t+1.【分析】(1)根據(jù)直線的解析式先找出點B的坐標(biāo),結(jié)合圖象可知當(dāng)t=時,點C′與點B重合,通過三角形的面積公式可求出CE的長度,結(jié)合勾股定理可得出OE的長度,由OC=OE+EC可得出OC的長度,即得出C點的坐標(biāo),再由勾股定理得出BC的長度,根據(jù)CD=BC,結(jié)合速度=路程÷時間即可得出結(jié)論;(2)結(jié)合D點的運動以及面積S關(guān)于時間t的函數(shù)圖象的拐點,即可得知當(dāng)“當(dāng)t=k時,點D與點B重合,當(dāng)t=m時,點E和點O重合”,結(jié)合∠C的正余弦值通過解直角三角形即可得出m、k的值,再由三角形的面積公式即可得出n的值;(3)隨著D點的運動,按△DEC′與△BOC的重疊部分形狀分三種情況考慮:①通過解直角三角形以及三角形的面積公式即可得出此種情況下S關(guān)于t的函數(shù)關(guān)系式;②由重合部分的面積=S△CDE?S△BC′F,通過解直角三角形得出兩個三角形的各邊長,結(jié)合三角形的面積公式即可得出結(jié)論;③通過邊與邊的關(guān)系以及解直角三角形找出BD和DF的值,結(jié)合三角形的面積公式即可得出結(jié)論.【詳解】(1)令x=0,則y=2,即點B坐標(biāo)為(0,2),∴OB=2.當(dāng)t=時,B和C′點重合,如圖1所示,此時S=×CE?OB=,∴CE=,∴BE=.∵OB=2,∴OE=,∴OC=OE+EC=+=4,BC=,CD=,÷=1(單位長度/秒),∴點D的運動速度為1單位長度/秒,點C坐標(biāo)為(4,0).故答案為:1單位長度/秒;(4,0);(2)根據(jù)圖象可知:當(dāng)t=k時,點D與點B重合,此時k==2;當(dāng)t=m時,點E和點O重合,如圖2所示.sin∠C===,cos∠C=,OD=OC?sin∠C=4×=,CD=OC?cos∠C=4×=.∴m==,n=BD?OD=×(2?)×=.故答案為:;;2.(3)隨著D點的運動,按△DEC′與△BOC的重疊部分形狀分三種情況考慮:①當(dāng)點C′在線段BC上時,如圖3所示.此時CD=t,CC′=2t,0<CC′≤BC,∴0<t≤.∵tan∠C=,∴DE=CD?tan∠C=t,此時S=CD?DE=t2;②當(dāng)點C′在CB的延長線上,點E在線段OC上時,如圖4所示.此時CD=t,BC′=2t?2,DE=CD?tan∠C=t,CE==t,OE=OC?CE=4?t,∵,即,解得:<t≤.由(1)可知tan∠OEF==,∴OF=OE?tan∠OEF=t,BF=OB?OF=,∴FM=BF?cos∠C=.此時S=CD?DE?BC′?FM=?;③當(dāng)點E在x軸負(fù)半軸,點D在線段BC上時,如圖5所示.此時CD=t,BD=BC?CD=2?t,CE=t,DF=,∵,即,∴<t≤2.此時S=BD?DF=×2×(2?t)2=t2?4t+1.綜上,當(dāng)點C′在線段BC上時,S=t2;當(dāng)點C′在CB的延長線上,S=?t2+t?;當(dāng)點E在x軸負(fù)半軸,S=t2?4t+1.【點睛】本題考查了勾股定理、解直角三角形以及三角形的面積公式,解題的關(guān)鍵是:(1)求出BC、OC的長度;(2)根據(jù)圖象能夠了解當(dāng)t=m和t=k時,點DE的位置;(3)分三種情況求出S關(guān)于t的函數(shù)關(guān)系式.本題屬于中檔題,(1)(2)難度不大;(3)需要畫出圖形,利用數(shù)形結(jié)合,通過解直角三角形以及三角形的面積公式找出S關(guān)于t的函數(shù)解析式.22、(1)A(6,0),C(0,3);(2)E(,3),y=﹣x+;(3)滿足條件的點P坐標(biāo)為(6﹣3,3)或(6+3,3)或(,3)或(6,﹣3).【解析】(1)解方程求出OA、OC的長即可解決問題;

(2)首先證明EO=EB,設(shè)EO=EB=x,在Rt△ECO中,EO2=OC2+CE2,構(gòu)建方程求出x,可得點E坐標(biāo),再利用待定系數(shù)法即可解決問題;

(3)分情形分別求解即可解決問題;【詳解】(1)由x2﹣9x+18=0可得x=3或6,∵OA、OC的長是關(guān)于x的一元二次方程x2﹣9x+18=0的兩個根(OA>OC),∴OA=6,OC=3,∴A(6,0),C(0,3).(2)如圖1中,∵OA∥BC,∴∠EBC=∠AOB,根據(jù)翻折不變性可知:∠EOB=∠AOB,∴∠EOB=∠EBO,∴EO=EB,設(shè)EO=EB=x,在Rt△ECO中,∵EO2=OC2+CE2,∴x2=32+(6﹣x)2,解得x=,∴CE=BC﹣EB=6﹣=,∴E(,3),設(shè)直線AE的解析式為y=kx+b,則有,解得,∴直線AE的函數(shù)解析式為y=﹣x+.(3)如圖,OB==3.①當(dāng)OB為菱形的邊時,OF1=OB=BP1=3=,故P1(6﹣3,3),OF3=P3F3=BP3=3,故P3(6+3,3).②當(dāng)OB為菱形的對角線時,∵直線OB的解析式為y=x,∴線段OB的垂直平分線的解析式為y=﹣2x+,可得P2(,3),③當(dāng)OF4問問對角線時,可得P4(6,﹣3)綜上所述,滿足條件的點P坐標(biāo)為(6﹣3,3)或(6+3,3)或(,3)或(6,﹣3).【點睛】本題考查的是一次函數(shù)的綜合題,熟練掌握一次函數(shù)是解題的關(guān)鍵.23、(1)證明見解析;(2)a、y1=x2-1;b、證明見解析;(3).【解析】(1)首先此題的方程并沒有明確是一次方程還是二次方程,所以要分類討論:①m=0,此時方程為一元一次方程,經(jīng)計算可知一定有實數(shù)根;②m≠0,此時方程為二元一次方程,可表示出方程的根的判別式,然后結(jié)合非負(fù)數(shù)的性質(zhì)進行證明.(2)①由于拋物線的圖象關(guān)于y軸對稱,那么拋物線的一次項系數(shù)必為0,可據(jù)此求出m的值,從而確定函數(shù)的解析式;②此題可用作差法求解,令y1-y2,然后綜合運用完全平方式和非負(fù)數(shù)的性質(zhì)進行證明.(3)根據(jù)②的結(jié)論,易知y1、y2的交點為(1,0),由于y1≥y3≥y2成立,即三個函數(shù)都交于(1,0),結(jié)合點(-5,0)的坐標(biāo),可用a表示出y3的函數(shù)解析式;已知y3≥y2,可用作差法求解,令y=y3-y2,可得到y(tǒng)的表達式,由于y3≥y2,所以y≥0,可據(jù)此求出a的值,即可得到拋物線的解析式.【詳解】解:(1)分兩種情況:當(dāng)m=0時,原方程可化為3x-3=0,即x=1;∴m=0時,原方程有實數(shù)根;當(dāng)m≠0時,原方程為關(guān)于x的一元二次方程,∵△=[-3(m-1)]2-4m(2m-3)=m2-6m+9=(m-3)2≥0,∴方程有兩個實數(shù)根;綜上可知:m取任何實數(shù)時,方程總有實數(shù)根;(2)①∵關(guān)于x的二次函數(shù)y1=mx2-3(m-1)x+2m-3的圖象關(guān)于y軸對稱;∴3(m-1)=0,即m=1;∴拋物線的解析式為:y1=x2-1;②∵y1-y2=x2-1-(2x-2)=(x-1)2≥0,∴y1≥y2(當(dāng)且僅當(dāng)x=1時,等號成立);(3)由②知,當(dāng)x=1時,y1=y2=0,即y1、y2的圖象都經(jīng)過(1,0);∵對應(yīng)x的同一個值,y1≥y3≥y2成立,∴y3=ax2+bx+c的圖象必經(jīng)過(1,0),又∵y3=ax2+bx+c經(jīng)過(-5,0),∴y3=a(x-1)(x+5)=ax2+4ax-5a;設(shè)y=y3-y2=ax2+4ax-5a-(2x-2)=ax2+(4a-2)x+(2-5a);對于x的同一個值,這三個函數(shù)對應(yīng)的函數(shù)值y1≥y3≥y2成立,∴y3-y2≥0,∴y=ax2+(4a-2)x+(2-5a)≥0;根據(jù)y1、y2的圖象知:a>0,∴y最小=≥0∴(4a-2)2-4a(2-5a)≤0,∴(3a-1)2≤0,而(3a-1)2≥0,只有3a-1=0,解得a=,∴拋物線的解析式為:【點睛】本題考查二次函數(shù)與一元二次方程的關(guān)系、根的判別式、完全平方公式、非負(fù)數(shù)的性質(zhì)以及用待定系數(shù)法確定函數(shù)解析式的方法,難度較大,24、(1);(2)【

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論