版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2025屆江蘇省無錫市輔仁中學九上數學期末綜合測試模擬試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(每小題3分,共30分)1.如圖,已知的內接正方形邊長為2,則的半徑是()A.1 B.2 C. D.2.下列計算正確的是()A.; B.; C.; D..3.如圖,直徑為10的⊙A山經過點C(0,5)和點0(0,0),B是y軸右側⊙A優(yōu)弧上一點,則∠OBC的余弦值為()A. B. C. D.4.下列品牌的運動鞋標志中,既是軸對稱圖形,又是中心對稱圖形的是()A. B. C. D.5.如圖,矩形中,,,點為矩形內一動點,且滿足,則線段的最小值為()A.5 B.1 C.2 D.36.一元二次方程的解是()A. B. C. D.7.反比例函數y=在每個象限內的函數值y隨x的增大而增大,則m的取值范圍是()A.m<0 B.m>0 C.m>﹣1 D.m<﹣18.下列四個幾何體中,左視圖為圓的是()A. B. C. D.9.如圖,的半徑為2,圓心的坐標為,點是上的任意一點,,且、與軸分別交于、兩點,若點、點關于原點對稱,則的最大值為()A.7 B.14 C.6 D.1510.如圖,直角坐標平面內有一點,那么與軸正半軸的夾角的余切值為()A.2 B. C. D.二、填空題(每小題3分,共24分)11.如圖,點是反比例函數的圖象上的一點,過點作平行四邊形,使點、在軸上,點在軸上,則平行四邊形的面積為______.12.半徑為5的圓內接正六邊形的邊心距為__________.13.如圖,在菱形ABCD中,∠B=60°,AB=2,M為邊AB的中點,N為邊BC上一動點(不與點B重合),將△BMN沿直線MN折疊,使點B落在點E處,連接DE、CE,當△CDE為等腰三角形時,BN的長為_____.14.如圖,已知直線y=﹣x+2分別與x軸,y軸交于A,B兩點,與雙曲線y=交于E,F兩點,若AB=2EF,則k的值是_____.15.若a、b、c、d滿足ab=cd=16.菱形ABCD中,若周長是20cm,對角線AC=6cm,則對角線BD=_____cm.17.已知正方形ABCD的邊長為,分別以B、D為圓心,以正方形的邊長為半徑在正方形內畫弧,得到如圖所示的陰影部分,若隨機向正方形ABCD內投擲一顆石子,則石子落在陰影部分的概率為_____.(結果保留π)18.如圖,四邊形中,,連接,,點為中點,連接,,,則__________.三、解答題(共66分)19.(10分)采用東陽南棗通過古法熬制而成的蜜棗是我們東陽的土特產之一,已知蜜棗每袋成本10元.試銷后發(fā)現每袋的銷售價(元)與日銷售量(袋)之間的關系如下表:(元)152030…(袋)252010…若日銷售量是銷售價的一次函數,試求:(1)日銷售量(袋)與銷售價(元)的函數關系式.(2)要使這種蜜棗每日銷售的利潤最大,每袋的銷售價應定為多少元?每日銷售的最大利潤是多少元?20.(6分)如圖,點A的坐標是(-2,0),點B的坐標是(0,6),C為OB的中點,將△ABC繞點B逆時針旋轉90°后得到△A′BC′,若反比例函數的圖像恰好經過A′B的中點D,求這個反比例函數的解析式.21.(6分)如圖,已知是一次函數的圖象與反比例函數的圖象的兩個交點(1)求此反比例函數和一次函數的解析式.(2)根據圖象寫出使反比例函數的值大于一次函數的值的x取值范圍.22.(8分)如圖,有三張不透明的卡片,除正面標記有不同數字外,其它均相同.將這三張卡片反面朝上洗勻后,從中隨機抽取一張;放回洗勻后,再隨機抽取一張.我們把第一次抽取的卡片上標記的數字記作,第二次抽取的卡片上標記的數字記作.(1)寫出為負數的概率;(2)求使得一次函數的圖象經過第二、三、四象限的概率.(用樹狀圖或列表法求解)23.(8分)如圖,在平面直角坐標系中,矩形的頂點在軸上,在軸上,把矩形沿對角線所在的直線對折,點恰好落在反比例函數的圖象上點處,與軸交于點,延長交軸于點,點剛好是的中點.已知的坐標為.(1)求反比例函數的函數表達式;(2)若是反比例函數圖象上的一點,點在軸上,若以為頂點的四邊形是平行四邊形,請直接寫出點的坐標_________.24.(8分)已知關于x的一元二次方程kx2﹣6x+1=0有兩個不相等的實數根.(1)求實數k的取值范圍;(2)寫出滿足條件的k的最大整數值,并求此時方程的根.25.(10分)(1)解方程:(2)如圖,正六邊形的邊長為2,以點為圓心,長為半徑畫弧,求弧的長.26.(10分)如圖所示,一輛單車放在水平的地面上,車把頭下方處與坐墊下方處在平行于地面的同一水平線上,,之間的距離約為,現測得,與的夾角分別為與,若點到地面的距離為,坐墊中軸處與點的距離為,求點到地面的距離(結果保留一位小數).(參考數據:,,)
參考答案一、選擇題(每小題3分,共30分)1、C【分析】如圖,連接BD,根據圓周角定理可得BD為⊙O的直徑,利用勾股定理求出BD的長,進而可得⊙O的半徑的長.【詳解】如圖,連接BD,∵四邊形ABCD是正方形,邊長為2,∴BC=CD=2,∠BCD=90°,∴BD==2,∵正方形ABCD是⊙O的內接四邊形,∴BD是⊙O的直徑,∴⊙O的半徑是=,故選:C.【點睛】本題考查正方形的性質、圓周角定理及勾股定理,根據圓周角定理得出BD是直徑是解題關鍵.2、B【解析】分析:分別根據次根式的加減運算法則以及合并同類項的法則、冪的乘方與積的乘方法則及同底數冪的除法法則對各選項進行逐一判斷即可.詳解:A.與不是同類項,不能合并,故本選項錯誤;B.,故本選項正確;C.,故本選項錯誤;D.,故本選項錯誤.故選:B.點睛:此題考查了二次根式的加減運算以及合并同類項、積的乘方運算和同底數冪的除法法則運算等知識,正確掌握運算法則是解題的關鍵.3、C【分析】連接CD,由直徑所對的圓周角是直角,可得CD是直徑;由同弧所對的圓周角相等可得∠OBC=∠ODC,在Rt△OCD中,由OC和CD的長可求出sin∠ODC.【詳解】設⊙A交x軸于另一點D,連接CD,∵∠COD=90°,∴CD為直徑,∵直徑為10,∴CD=10,∵點C(0,5)和點O(0,0),∴OC=5,∴sin∠ODC==,∴∠ODC=30°,∴∠OBC=∠ODC=30°,∴cos∠OBC=cos30°=.故選C.【點睛】此題考查了圓周角定理、銳角三角函數的知識.注意掌握輔助線的作法,注意掌握數形結合思想的應用.4、D【分析】根據軸對稱圖形和中心對稱圖形的定義即可得出答案.【詳解】A是軸對稱圖形,但不是中心對稱圖形,故此選項不符合題意;B不是軸對稱圖形,也不是中心對稱圖形,故此選項不符合題意;C不是軸對稱圖形,也不是中心對稱圖形,故此選項不符合題意;D既是軸對稱圖形又是中心對稱圖形,故此選項符合題意.故選D.【點睛】本題考查軸對稱及中心對稱的定義,掌握中心對稱圖形與軸對稱圖形的概念,要注意:軸對稱圖形的關鍵是尋找對稱軸,圖形兩部分折疊后可重合;中心對稱圖形是要尋找對稱中心,旋轉180度后與原圖重合.5、B【分析】通過矩形的性質和等角的條件可得∠BPC=90°,所以P點應該在以BC為直徑的圓上,即OP=4,根據兩邊之差小于第三邊及三點共線問題解決.【詳解】如圖,∵四邊形ABCD為矩形,∴AB=CD=3,∠BCD=90°,∴∠PCD+∠PCB=90°,∵,∴∠PBC+∠PCB=90°,∴∠BPC=90°,∴點P在以BC為直徑的圓⊙O上,在Rt△OCD中,OC=,CD=3,由勾股定理得,OD=5,∵PD≥,∴當P,D,O三點共線時,PD最小,∴PD的最小值為OD-OP=5-4=1.故選:B.【點睛】本題考查矩形的性質,勾股定理,線段最小值問題及圓的性質,分析出P點的運動軌跡是解答此題的關鍵.6、D【分析】這個式子先移項,變成x2=4,從而把問題轉化為求4的平方根.【詳解】移項得,x2=4開方得,x=±2,故選D.【點睛】(1)用直接開方法求一元二次方程的解的類型有:x2=a(a≥0);ax2=b(a,b同號且a≠0);(x+a)2=b(b≥0);a(x+b)2=c(a,c同號且a≠0).法則:要把方程化為“左平方,右常數,先把系數化為1,再開平方取正負,分開求得方程解”.(2)用直接開方法求一元二次方程的解,要仔細觀察方程的特點.7、D【解析】∵在每個象限內的函數值y隨x的增大而增大,∴m+1<0,∴m<-1.8、A【分析】根據三視圖的法則可得出答案.【詳解】解:左視圖為從左往右看得到的視圖,A.球的左視圖是圓,B.圓柱的左視圖是長方形,C.圓錐的左視圖是等腰三角形,D.圓臺的左視圖是等腰梯形,故符合題意的選項是A.【點睛】錯因分析較容易題.失分原因是不會判斷常見幾何體的三視圖.9、B【分析】根據“PA⊥PB,點A與點B關于原點O對稱”可知AB=2OP,從而確定要使AB取得最大值,則OP需取得最大值,然后過點M作MQ⊥x軸于點Q,確定OP的最大值即可.【詳解】∵PA⊥PB∴∠APB=90°∵點A與點B關于原點O對稱,∴AO=BO∴AB=2OP若要使AB取得最大值,則OP需取得最大值,連接OM,交○M于點,當點P位于位置時,OP取得最小值,過點M作MQ⊥x軸于點Q,則OQ=3,MQ=4,∴OM=5∵∴當點P在的延長線于○M的交點上時,OP取最大值,∴OP的最大值為3+2×2=7∴AB的最大值為7×2=14故答案選B.【點睛】本題考查的是圓上動點與最值問題,能夠找出最值所在的點是解題的關鍵.10、B【分析】作PA⊥x軸于點A,構造直角三角形,根據三角函數的定義求解.【詳解】過P作x軸的垂線,交x軸于點A,
∵P(2,4),
∴OA=2,AP=4,.
∴∴.故選B.【點睛】本題考查的知識點是銳角三角函數的定義,解題關鍵是熟記三角函數的定義.二、填空題(每小題3分,共24分)11、6【分析】作AH⊥OB于H,根據平行四邊形的性質得AD∥OB,則,再根據反比例函數(k)系數的幾何意義得到=6,即可求得答案.【詳解】作AH⊥軸于H,如圖,∵AD∥OB,∴AD⊥軸,∴四邊形AHOD為矩形,
∵AD∥OB,
∴,
∵點A是反比例函數的圖象上的一點,
∴,
∴.
故答案為:.【點睛】本題考查了反比例函數(k)系數的幾何意義:從反比例函數(k)圖象上任意一點向軸和軸作垂線,垂線與坐標軸所圍成的矩形面積為.12、【分析】連接OA、OB,作OH⊥AB,根據圓內接正六邊形的性質得到△ABO是等邊三角形,利用垂徑定理及勾股定理即可求出邊心距OH.【詳解】如圖,連接OA、OB,作OH⊥AB,∵六邊形ABCDEF是圓內接正六邊形,∴∠FAB=∠ABC=180-,∴∠OAB=∠OBA=60,∴△ABO是等邊三角形,∴AB=OA=5,∵OH⊥AB,∴AH=2.5,∴OH=,故答案為:.【點睛】此題考查圓內接正六邊形的性質,垂徑定理,勾股定理.解題中熟記正六邊形的性質得到∠FAB=∠ABC=120是解題的關鍵,由此即可證得△ABO是等邊三角形,利用勾股定理解決問題.13、或1【分析】分兩種情況:①當DE=DC時,連接DM,作DG⊥BC于G,由菱形的性質得出AB=CD=BC=1,AD∥BC,AB∥CD,得出∠DCG=∠B=60°,∠A=110°,DE=AD=1,求出DG=CG=,BG=BC+CG=3,由折疊的性質得EN=BN,EM=BM=AM,∠MEN=∠B=60°,證明△ADM≌△EDM,得出∠A=∠DEM=110°,證出D、E、N三點共線,設BN=EN=xcm,則GN=3-x,DN=x+1,在Rt△DGN中,由勾股定理得出方程,解方程即可;②當CE=CD上,CE=CD=AD,此時點E與A重合,N與點C重合,CE=CD=DE=DA,△CDE是等邊三角形,BN=BC=1(含CE=DE這種情況);【詳解】解:分兩種情況:①當DE=DC時,連接DM,作DG⊥BC于G,如圖1所示:∵四邊形ABCD是菱形,∴AB=CD=BC=1,AD∥BC,AB∥CD,∴∠DCG=∠B=60°,∠A=110°,∴DE=AD=1,∵DG⊥BC,∴∠CDG=90°﹣60°=30°,∴CG=CD=1,∴DG=CG=,BG=BC+CG=3,∵M為AB的中點,∴AM=BM=1,由折疊的性質得:EN=BN,EM=BM=AM,∠MEN=∠B=60°,在△ADM和△EDM中,,∴△ADM≌△EDM(SSS),∴∠A=∠DEM=110°,∴∠MEN+∠DEM=180°,∴D、E、N三點共線,設BN=EN=x,則GN=3﹣x,DN=x+1,在Rt△DGN中,由勾股定理得:(3﹣x)1+()1=(x+1)1,解得:x=,即BN=,②當CE=CD時,CE=CD=AD,此時點E與A重合,N與點C重合,如圖1所示:CE=CD=DE=DA,△CDE是等邊三角形,BN=BC=1(含CE=DE這種情況);綜上所述,當△CDE為等腰三角形時,線段BN的長為或1;故答案為:或1.【點睛】本題主要考查了折疊變換的性質、菱形的性質、全等三角形的判定與性質、勾股定理,掌握折疊變換的性質、菱形的性質、全等三角形的判定與性質、勾股定理是解題的關鍵.14、.【分析】作FH⊥x軸,EC⊥y軸,FH與EC交于D,先利用一次函數圖像上的點的坐標特征得到A點(2,0),B點(0,2),易得△AOB為等腰直角三角形,則AB=2,所以,EF=AB=,且△DEF為等腰直角三角形,則FD=DE=EF=1,設F點坐標是:(t,﹣t+2),E點坐標為(t+1,﹣t+1),根據反比例函數圖象上的點的坐標特征得到t(﹣t+2)=(t+1)?(﹣t+1),解得t=,則E點坐標為(,),繼而可求得k的值.【詳解】如圖,作FH⊥x軸,EC⊥y軸,FH與EC交于D,由直線y=﹣x+2可知A點坐標為(2,0),B點坐標為(0,2),OA=OB=2,∴△AOB為等腰直角三角形,∴AB=2,∴EF=AB=,∴△DEF為等腰直角三角形,∴FD=DE=EF=1,設F點橫坐標為t,代入y=﹣x+2,則縱坐標是﹣t+2,則F的坐標是:(t,﹣t+2),E點坐標為(t+1,﹣t+1),∴t(﹣t+2)=(t+1)?(﹣t+1),解得t=,∴E點坐標為(,),∴k=×=.故答案為.【點睛】本題考查反比例函數圖象上的點的坐標特征,解題的關鍵是掌握反比例函數(k為常數,k≠0)的圖象是雙曲線,圖象上的點(x,y)的橫縱坐標的積是定值k,即xy=k.15、3【解析】根據等比性質求解即可.【詳解】∵ab∴a+cb+d=a故答案為:34【點睛】本題考查了比例的性質,主要利用了等比性質.等比性質:在一個比例等式中,兩前項之和與兩后項之和的比例與原比例相等.對于實數a,b,c,d,且有b≠0,d≠0,如果ab=c16、1【分析】先根據周長求出菱形的邊長,再根據菱形的對角線互相垂直平分,利用勾股定理求出BD的一半,然后即可得解.【詳解】解:如圖,∵菱形ABCD的周長是20cm,對角線AC=6cm,∴AB=20÷4=5cm,AO=AC=3cm,又∵AC⊥BD,∴BO==4cm,∴BD=2BO=1cm.故答案為:1.【點睛】本題考查了菱形的性質,屬于簡單題,熟悉菱形對角線互相垂直且平分是解題關鍵.17、【分析】先求出空白部分面積,進而得出陰影部分面積,再利用石子落在陰影部分的概率=陰影部分面積÷正方形面積,進而得出答案.【詳解】∵扇形ABC中空白面積=,∴正方形中空白面積=2×(2﹣)=4﹣π,∴陰影部分面積=2﹣(4﹣π)=π﹣2,∴隨機向正方形ABCD內投擲一顆石子,石子落在陰影部分的概率=.故答案為:.【點睛】本題主要考查扇形的面積公式和概率公式,通過割補法,求出陰影部分面積,是解題的關鍵.18、【分析】分別過點E,C作EF⊥AD于F,CG⊥AD于G,先得出EF為△ACG的中位線,從而有EF=CG.在Rt△DEF中,根據勾股定理求出DF的長,進而可得出AF的長,再在Rt△AEF中,根據勾股定理求出AE的長,從而可得出結果.【詳解】解:分別過點E,C作EF⊥AD于F,CG⊥AD于G,∴EF∥CG,∴△AEF∽△ACG,又E為AC的中點,∴F為AG的中點,∴EF=CG.又∠ADC=120°,∴∠CDG=60°,又CD=6,∴DG=3,∴CG=3,∴EF=CG=,在Rt△DEF中,由勾股定理可得,DF=,∴AF=FG=FD+DG=+3=,∴在Rt△AEF中,AE=,∴AB=AC=2AE=2.故答案為:2.【點睛】本題考查了相似三角形的判定與性質,中位線的性質,含30°角的直角三角形的性質以及勾股定理,正確作出輔助線是解題的關鍵.三、解答題(共66分)19、(1);(2)要使這種蜜棗每日銷售的利潤最大,每袋的銷售價應定為25元,每日銷售的最大利潤是225元.【分析】(1)根據表格中的數據,利用待定系數法,求出日銷售量y(袋)與銷售價x(元)的函數關系式即可(2)利用每件利潤×總銷量=總利潤,進而求出二次函數最值即可.【詳解】(1)依題意,根據表格的數據,設日銷售量y(袋)與銷售價x(元)的函數關系式為y=kx+b得,解得故日銷售量y(袋)與銷售價x(元)的函數關系式為:y=?x+40(2)設利潤為元,得∵∴當時,取得最大值,最大值為225故要使這種蜜棗每日銷售的利潤最大,每袋的銷售價應定為25元,每日銷售的最大利潤是225元.【點睛】本題考查了二次函數的性質在實際生活中的應用,根據每天的利潤=一件的利潤×銷售件數,建立函數關系式,此題為數學建模題,借助二次函數解決實際問題.20、.【分析】作A′H⊥y軸于H.證明△AOB≌△BHA′(AAS),推出OA=BH,OB=A′H,求出點A′坐標,再利用中點坐標公式求出點D坐標即可解決問題.【詳解】作A′H⊥y軸于H.∵∠AOB=∠A′HB=∠ABA′=90°,∴∠ABO+∠A′BH=90°,∠ABO+∠BAO=90°,∴∠BAO=∠A′BH,∵BA=BA′,∴△AOB≌△BHA′(AAS),∴OA=BH,OB=A′H,∵點A的坐標是(?2,0),點B的坐標是(0,6),∴OA=2,OB=6,∴BH=OA=2,A′H=OB=6,∴OH=4,∴A′(6,4),∵BD=A′D,∴D(3,5),∵反比例函數的圖象經過點D,∴這個反比例函數的解析式【點睛】本題考查反比例函數圖形上的點的坐標特征,坐標與圖形的變化-旋轉等知識,解題的關鍵是學會添加常用輔助線,構造全等三角形解決問題.21、(1),y=-x-1;(1)x>1或-4<x<0【分析】(1)先把A(-4,1)代入求出m=-8,從而確定反比例函數的解析式為;再把B(n,-4)代入求出n=1,確定B點坐標為(1,-4),然后利用待定系數法確定一次函數的解析式;(1)觀察圖象得到當-4<x<0或x>1
時,一次函數的圖象都在反比例函數圖象的下方,即一次函數的值小于反比例函數的值.【詳解】(1)把A(-4,1)代入得m=-4×1=-8,∴反比例函數的解析式為;把B(n,-4)代入得-4n=-8,解得n=1,∴B點坐標為(1,-4),把A(-4,1)、B(1,-4)分別代入y=kx+b得,解方程組得,∴一次函數的解析式為y=-x-1;(1)觀察函數圖象可得反比例函數的值大于一次函數的值的x取值范圍是:-4<x<0或x>1.【點睛】本題考查了反比例函數與一次函數的交點問題:反比例函數圖象與一次函數圖象的交點坐標同時滿足兩個函數的解析式;求反比例函數圖象與一次函數圖象的交點坐標就是把兩個圖象的解析式組成方程組,方程組的解就是交點的坐標.也考查了待定系數法以及觀察函數圖象的能力.22、(1);(2)【分析】(1)用負數的個數除以數的總數即為所求的概率;
(2)畫樹狀圖列舉出所有情況,看k<0,b<0的情況占總情況的多少即可.【詳解】解:(1)共有3個數,其中負數有2個,那么為負數的概率為(2)畫樹狀圖可知,兩次抽取卡片試驗共有9種不同結果,每種可能性相同“一次函數圖象經過第二、三、四象限”等價于“且”抽取卡片滿足,有4種情況所以,一次函數圖象經過第二、三、四象限的概率是.【點睛】考查概率的求法;用到的知識點為:概率=所求情況數與總情況數之比.注意過二、三、四象限的一次函數的k為負數,b為負數.23、(1);(2),,(,0).【分析】(1)證得BD是CF的垂直平分線,求得,作DG⊥BF于G,求得點D的坐標為,從而求得反比例函數的解析式;(2)分3種情形,分別畫出圖形即可解決問題.【詳解】(1)∵四邊形ABOC是矩形,∴AB=OC,AC=OB,,根據對折的性質知,,∴,,AB=DB,又∵D是CF的中點,∴BD是CF的垂直平分線,∴BC=BF,,∴,∵,∴,∵點B的坐標為,∴,在中,,,,∴,過D作DG⊥BF于G,如圖,在中,,,,∴,,∴,∴點D的坐標為,代入反比例函數的解析式得:,∴反比例函數的解析式;(2)如圖①、②中,作EQ∥x軸交反比例函數的圖象于點Q,在中,,,∴,∴點E的坐標為,點Q縱坐標與點E縱坐標都是,代入反比例函數的解析式得:,解得:,∴
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 腎內分泌科護理工作總結
- 2025年全球及中國醫(yī)用全自動凝血分析儀行業(yè)頭部企業(yè)市場占有率及排名調研報告
- 2025年全球及中國企業(yè)級機械硬盤和固態(tài)硬盤行業(yè)頭部企業(yè)市場占有率及排名調研報告
- 2025-2030全球3D晶體管行業(yè)調研及趨勢分析報告
- 2025-2030全球立式不銹鋼離心泵行業(yè)調研及趨勢分析報告
- 2025-2030全球汽車電池試驗箱行業(yè)調研及趨勢分析報告
- 2025年全球及中國游戲人工智能NPC行業(yè)頭部企業(yè)市場占有率及排名調研報告
- 2025-2030全球自動藥敏分析儀行業(yè)調研及趨勢分析報告
- 2025年全球及中國無線藍牙肉類溫度計行業(yè)頭部企業(yè)市場占有率及排名調研報告
- 2025年全球及中國固定橋式坐標測量機行業(yè)頭部企業(yè)市場占有率及排名調研報告
- 2025-2030年中國清真食品行業(yè)運行狀況及投資發(fā)展前景預測報告
- 廣東省茂名市電白區(qū)2024-2025學年七年級上學期期末質量監(jiān)測生物學試卷(含答案)
- 《教育強國建設規(guī)劃綱要(2024-2035年)》全文
- 山東省濱州市2024-2025學年高二上學期期末地理試題( 含答案)
- 2025年河南洛陽市孟津區(qū)引進研究生學歷人才50人歷年高頻重點提升(共500題)附帶答案詳解
- 2025年度軍人軍事秘密保護保密協(xié)議與信息安全風險評估合同3篇
- 數字化轉型中的職業(yè)能力重構
- 運用PDCA降低住院患者跌倒-墜床發(fā)生率
- 2025屆高中數學一輪復習專練:橢圓(含解析)
- 立春氣象與生活影響模板
- 中國服裝零售行業(yè)發(fā)展環(huán)境、市場運行格局及前景研究報告-智研咨詢(2025版)
評論
0/150
提交評論