江蘇省徐州市沛縣2024屆中考一模數(shù)學試題含解析_第1頁
江蘇省徐州市沛縣2024屆中考一模數(shù)學試題含解析_第2頁
江蘇省徐州市沛縣2024屆中考一模數(shù)學試題含解析_第3頁
江蘇省徐州市沛縣2024屆中考一模數(shù)學試題含解析_第4頁
江蘇省徐州市沛縣2024屆中考一模數(shù)學試題含解析_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

江蘇省徐州市沛縣2024屆中考一模數(shù)學試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.若x﹣2y+1=0,則2x÷4y×8等于()A.1 B.4 C.8 D.﹣162.下列手機手勢解鎖圖案中,是軸對稱圖形的是()A. B. C. D.3.將分別標有“孔”“孟”“之”“鄉(xiāng)”漢字的四個小球裝在一個不透明的口袋中,這些球除漢字外無其他差別,每次摸球前先攪拌均勻.隨機摸出一球,不放回;再隨機摸出一球.兩次摸出的球上的漢字能組成“孔孟”的概率是()A. B. C. D.4.若代數(shù)式的值為零,則實數(shù)x的值為()A.x=0 B.x≠0 C.x=3 D.x≠35.如果關于x的方程x2﹣x+1=0有實數(shù)根,那么k的取值范圍是()A.k>0 B.k≥0 C.k>4 D.k≥46.將一把直尺與一塊直角三角板如圖放置,如果,那么的度數(shù)為().A. B. C. D.7.如圖,Rt△ABC中,∠C=90°,∠A=35°,點D在邊BC上,BD=2CD.把△ABC繞著點D逆時針旋轉m(0<m<180)度后,如果點B恰好落在初始Rt△ABC的邊上,那么m=()A.35° B.60° C.70° D.70°或120°8.一、單選題二次函數(shù)的圖象如圖所示,對稱軸為x=1,給出下列結論:①abc<0;②b2>4ac;③4a+2b+c<0;④2a+b=0..其中正確的結論有:A.4個 B.3個 C.2個 D.1個9.如圖,A,C,E,G四點在同一直線上,分別以線段AC,CE,EG為邊在AG同側作等邊三角形△ABC,△CDE,△EFG,連接AF,分別交BC,DC,DE于點H,I,J,若AC=1,CE=2,EG=3,則△DIJ的面積是()A. B. C. D.10.已知2是關于x的方程x2-2mx+3m=0的一個根,并且這個方程的兩個根恰好是等腰三角形ABC的兩條邊長,則三角形ABC的周長為()A.10 B.14 C.10或14 D.8或10二、填空題(共7小題,每小題3分,滿分21分)11.如圖,在△ABC中,P,Q分別為AB,AC的中點.若S△APQ=1,則S四邊形PBCQ=__.12.如圖,正方形ABCD和正方形OEFG中,點A和點F的坐標分別為(3,2),(-1,-1),則兩個正方形的位似中心的坐標是_________.13.一個幾何體的三視圖如左圖所示,則這個幾何體是()A. B. C. D.14.計算(2+1)(2-1)的結果為_____.15.如圖,在矩形ABCD中,AB=4,AD=2,以點A為圓心,AB長為半徑畫圓弧交邊DC于點E,則的長度為______.16.如圖,半徑為3的⊙O與Rt△AOB的斜邊AB切于點D,交OB于點C,連接CD交直線OA于點E,若∠B=30°,則線段AE的長為.17.若關于x的方程(k﹣1)x2﹣4x﹣5=0有實數(shù)根,則k的取值范圍是_____.三、解答題(共7小題,滿分69分)18.(10分)如圖,在△ABC中,D、E分別是AB、AC的中點,BE=2DE,延長DE到點F,使得EF=BE,連接CF.(1)求證:四邊形BCFE是菱形;(2)若CE=4,∠BCF=120°,求菱形BCFE的面積.19.(5分)如圖,AB是⊙O的直徑,CD與⊙O相切于點C,與AB的延長線交于D.(1)求證:△ADC∽△CDB;(2)若AC=2,AB=CD,求⊙O半徑.20.(8分)圖1是某市2009年4月5日至14日每天最低氣溫的折線統(tǒng)計圖.圖2是該市2007年4月5日至14日每天最低氣溫的頻數(shù)分布直方圖,根據(jù)圖1提供的信息,補全圖2中頻數(shù)分布直方圖;在這10天中,最低氣溫的眾數(shù)是____,中位數(shù)是____,方差是_____.請用扇形圖表示出這十天里溫度的分布情況.21.(10分)為給鄧小平誕辰周年獻禮,廣安市政府對城市建設進行了整改,如圖所示,已知斜坡長60米,坡角(即)為,,現(xiàn)計劃在斜坡中點處挖去部分斜坡,修建一個平行于水平線的休閑平臺和一條新的斜坡(下面兩個小題結果都保留根號).若修建的斜坡BE的坡比為:1,求休閑平臺的長是多少米?一座建筑物距離點米遠(即米),小亮在點測得建筑物頂部的仰角(即)為.點、、、,在同一個平面內,點、、在同一條直線上,且,問建筑物高為多少米?22.(10分)如圖,在Rt△ABC中,∠C=90°,AC=AB.求證:∠B=30°.請?zhí)羁胀瓿上铝凶C明.證明:如圖,作Rt△ABC的斜邊上的中線CD,則CD=AB=AD().∵AC=AB,∴AC=CD=AD即△ACD是等邊三角形.∴∠A=°.∴∠B=90°﹣∠A=30°.23.(12分)已知A(﹣4,2)、B(n,﹣4)兩點是一次函數(shù)y=kx+b和反比例函數(shù)y=圖象的兩個交點.求一次函數(shù)和反比例函數(shù)的解析式;求△AOB的面積;觀察圖象,直接寫出不等式kx+b﹣>0的解集.24.(14分)為了促進學生多樣化發(fā)展,某校組織開展了社團活動,分別設置了體育類、藝術類、文學類及其它類社團(要求人人參與社團,每人只能選擇一項).為了解學生喜愛哪種社團活動,學校做了一次抽樣調查.根據(jù)收集到的數(shù)據(jù),繪制成如下兩幅不完整的統(tǒng)計圖,請根據(jù)圖中提供的信息,完成下列問題:(1)此次共調查了多少人?(2)求文學社團在扇形統(tǒng)計圖中所占圓心角的度數(shù);(3)請將條形統(tǒng)計圖補充完整;(4)若該校有1500名學生,請估計喜歡體育類社團的學生有多少人?

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、B【解析】

先把原式化為2x÷22y×23的形式,再根據(jù)同底數(shù)冪的乘法及除法法則進行計算即可.【詳解】原式=2x÷22y×23,=2x﹣2y+3,=22,=1.故選:B.【點睛】本題考查的是同底數(shù)冪的乘法及除法運算,根據(jù)題意把原式化為2x÷22y×23的形式是解答此題的關鍵.2、D【解析】

根據(jù)軸對稱圖形與中心對稱圖形的定義進行判斷.【詳解】A.既不是軸對稱圖形,也不是中心對稱圖形,所以A錯誤;B.既不是軸對稱圖形,也不是中心對稱圖形,所以B錯誤;C.是中心對稱圖形,不是軸對稱圖形,所以C錯誤;D.是軸對稱圖形,不是中心對稱圖形,所以D正確.【點睛】本題考查了軸對稱圖形和中心對稱圖形的定義,熟練掌握定義是本題解題的關鍵.3、B【解析】

根據(jù)簡單概率的計算公式即可得解.【詳解】一共四個小球,隨機摸出一球,不放回;再隨機摸出一球一共有12中可能,其中能組成孔孟的有2種,所以兩次摸出的球上的漢字能組成“孔孟”的概率是.故選B.考點:簡單概率計算.4、A【解析】

根據(jù)分子為零,且分母不為零解答即可.【詳解】解:∵代數(shù)式的值為零,∴x=0,此時分母x-3≠0,符合題意.故選A.【點睛】本題考查了分式的值為零的條件.若分式的值為零,需同時具備兩個條件:①分子的值為0,②分母的值不為0,這兩個條件缺一不可.5、D【解析】

由被開方數(shù)非負結合根的判別式△≥0,即可得出關于k的一元一次不等式組,解之即可得出k的取值范圍.【詳解】∵關于x的方程x2-x+1=0有實數(shù)根,∴,解得:k≥1.故選D.【點睛】本題考查了根的判別式,牢記“當△≥0時,方程有實數(shù)根”是解題的關鍵.6、D【解析】

根據(jù)三角形的一個外角等于與它不相鄰的兩個內角的和求出∠1,再根據(jù)兩直線平行,同位角相等可得∠2=∠1.【詳解】如圖,由三角形的外角性質得:∠1=90°+∠1=90°+58°=148°.∵直尺的兩邊互相平行,∴∠2=∠1=148°.故選D.【點睛】本題考查了平行線的性質,三角形的一個外角等于與它不相鄰的兩個內角的和的性質,熟記性質是解題的關鍵.7、D【解析】

①當點B落在AB邊上時,根據(jù)DB=DB1,即可解決問題,②當點B落在AC上時,在RT△DCB2中,根據(jù)∠C=90°,DB2=DB=2CD可以判定∠CB2D=30°,由此即可解決問題.【詳解】①當點B落在AB邊上時,∵DB=DB∴∠B=∠DB∴m=∠BDB②當點B落在AC上時,在RT△DCB∵∠C=90°,DB∴∠CB∴m=∠C+∠CB故選D.【點睛】本題考查的知識點是旋轉的性質,解題關鍵是考慮多種情況,進行分類討論.8、B【解析】試題解析:①∵二次函數(shù)的圖象的開口向下,∴a<0,∵二次函數(shù)的圖象y軸的交點在y軸的正半軸上,∴c>0,∵二次函數(shù)圖象的對稱軸是直線x=1,∴2a+b=0,b>0∴abc<0,故正確;②∵拋物線與x軸有兩個交點,故正確;③∵二次函數(shù)圖象的對稱軸是直線x=1,∴拋物線上x=0時的點與當x=2時的點對稱,即當x=2時,y>0∴4a+2b+c>0,故錯誤;④∵二次函數(shù)圖象的對稱軸是直線x=1,∴2a+b=0,故正確.綜上所述,正確的結論有3個.故選B.9、A【解析】

根據(jù)等邊三角形的性質得到FG=EG=3,∠AGF=∠FEG=60°,根據(jù)三角形的內角和得到∠AFG=90°,根據(jù)相似三角形的性質得到==,==,根據(jù)三角形的面積公式即可得到結論.【詳解】∵AC=1,CE=2,EG=3,∴AG=6,∵△EFG是等邊三角形,∴FG=EG=3,∠AGF=∠FEG=60°,∵AE=EF=3,∴∠FAG=∠AFE=30°,∴∠AFG=90°,∵△CDE是等邊三角形,∴∠DEC=60°,∴∠AJE=90°,JE∥FG,∴△AJE∽△AFG,∴==,∴EJ=,∵∠BCA=∠DCE=∠FEG=60°,∴∠BCD=∠DEF=60°,∴∠ACI=∠AEF=120°,∵∠IAC=∠FAE,∴△ACI∽△AEF,∴==,∴CI=1,DI=1,DJ=,∴IJ=,∴=?DI?IJ=××.故選:A.【點睛】本題考查了等邊三角形的性質,相似三角形的判定和性質,三角形的面積的計算,熟練掌握相似三角形的性質和判定是解題的關鍵.10、B【解析】試題分析:∵2是關于x的方程x2﹣2mx+3m=0的一個根,∴22﹣4m+3m=0,m=4,∴x2﹣8x+12=0,解得x1=2,x2=1.①當1是腰時,2是底邊,此時周長=1+1+2=2;②當1是底邊時,2是腰,2+2<1,不能構成三角形.所以它的周長是2.考點:解一元二次方程-因式分解法;一元二次方程的解;三角形三邊關系;等腰三角形的性質.二、填空題(共7小題,每小題3分,滿分21分)11、1【解析】

根據(jù)三角形的中位線定理得到PQ=BC,得到相似比為,再根據(jù)相似三角形面積之比等于相似比的平方,可得到結果.【詳解】解:∵P,Q分別為AB,AC的中點,∴PQ∥BC,PQ=BC,∴△APQ∽△ABC,∴=()2=,∵S△APQ=1,∴S△ABC=4,∴S四邊形PBCQ=S△ABC﹣S△APQ=1,故答案為1.【點睛】本題考查相似三角形的判定和性質,三角形中位線定理等知識,解題的關鍵是熟練掌握基本知識,屬于中考??碱}型.12、(1,0);(﹣5,﹣2).【解析】

本題主要考查位似變換中對應點的坐標的變化規(guī)律.因而本題應分兩種情況討論,一種是當E和C是對應頂點,G和A是對應頂點;另一種是A和E是對應頂點,C和G是對應頂點.【詳解】∵正方形ABCD和正方形OEFG中A和點F的坐標分別為(3,2),(-1,-1),

∴E(-1,0)、G(0,-1)、D(5,2)、B(3,0)、C(5,0),

(1)當E和C是對應頂點,G和A是對應頂點時,位似中心就是EC與AG的交點,

設AG所在直線的解析式為y=kx+b(k≠0),

∴,解得.

∴此函數(shù)的解析式為y=x-1,與EC的交點坐標是(1,0);

(2)當A和E是對應頂點,C和G是對應頂點時,位似中心就是AE與CG的交點,

設AE所在直線的解析式為y=kx+b(k≠0),

,解得,故此一次函數(shù)的解析式為…①,

同理,設CG所在直線的解析式為y=kx+b(k≠0),

,解得,

故此直線的解析式為…②

聯(lián)立①②得

解得,故AE與CG的交點坐標是(-5,-2).

故答案為:(1,0)、(-5,-2).13、A【解析】

根據(jù)主視圖和左視圖可知該幾何體是柱體,根據(jù)俯視圖可知該幾何體是豎立的三棱柱.【詳解】根據(jù)主視圖和左視圖可知該幾何體是柱體,根據(jù)俯視圖可知該幾何體是豎立的三棱柱.主視圖中間的線是實線.故選A.【點睛】考查簡單幾何體的三視圖,掌握常見幾何體的三視圖是解題的關鍵.14、1【解析】

利用平方差公式進行計算即可.【詳解】原式=(2)2﹣1=2﹣1=1,故答案為:1.【點睛】本題考查了二次根式的混合運算:先把各二次根式化為最簡二次根式,在進行二次根式的乘除運算,然后合并同類二次根式.15、【解析】試題解析:連接AE,在Rt三角形ADE中,AE=4,AD=2,∴∠DEA=30°,∵AB∥CD,∴∠EAB=∠DEA=30°,∴的長度為:=.考點:弧長的計算.16、【解析】

要求AE的長,只要求出OA和OE的長即可,要求OA的長可以根據(jù)∠B=30°和OB的長求得,OE可以根據(jù)∠OCE和OC的長求得.【詳解】解:連接OD,如圖所示,由已知可得,∠BOA=90°,OD=OC=3,∠B=30°,∠ODB=90°,∴BO=2OD=6,∠BOD=60°,∴∠ODC=∠OCD=60°,AO=BOtan30°=6×=2,∵∠COE=90°,OC=3,∴OE=OCtan60°=3×=3,∴AE=OE﹣OA=3-2=,【點晴】切線的性質17、【解析】當k?1=0,即k=1時,原方程為?4x?5=0,解得:x=?,∴k=1符合題意;當k?1≠0,即k≠1時,有,解得:k?且k≠1.綜上可得:k的取值范圍為k?.故答案為k?.三、解答題(共7小題,滿分69分)18、(1)見解析;(2)見解析【解析】

(1)從所給的條件可知,DE是△ABC中位線,所以DE∥BC且2DE=BC,所以BC和EF平行且相等,所以四邊形BCFE是平行四邊形,又因為BE=FE,所以四邊形BCFE是菱形.(2)因為∠BCF=120°,所以∠EBC=60°,所以菱形的邊長也為4,求出菱形的高面積就可.【詳解】解:(1)證明:∵D、E分別是AB、AC的中點,∴DE∥BC且2DE=BC.又∵BE=2DE,EF=BE,∴EF=BC,EF∥BC.∴四邊形BCFE是平行四邊形.又∵BE=FE,∴四邊形BCFE是菱形.(2)∵∠BCF=120°,∴∠EBC=60°.∴△EBC是等邊三角形.∴菱形的邊長為4,高為.∴菱形的面積為4×=.19、(1)見解析;(2)【解析】分析:(1)首先連接CO,根據(jù)CD與⊙O相切于點C,可得:∠OCD=90°;然后根據(jù)AB是圓O的直徑,可得:∠ACB=90°,據(jù)此判斷出∠CAD=∠BCD,即可推得△ADC∽△CDB.(2)首先設CD為x,則AB=32x,OC=OB=34x,用x表示出OD、BD;然后根據(jù)△ADC∽△CDB,可得:ACCB=CDBD,據(jù)此求出CB的值是多少,即可求出⊙O半徑是多少.詳解:(1)證明:如圖,連接CO,,∵CD與⊙O相切于點C,∴∠OCD=90°,∵AB是圓O的直徑,∴∠ACB=90°,∴∠ACO=∠BCD,∵∠ACO=∠CAD,∴∠CAD=∠BCD,在△ADC和△CDB中,∴△ADC∽△CDB.(2)解:設CD為x,則AB=x,OC=OB=x,∵∠OCD=90°,∴OD===x,∴BD=OD﹣OB=x﹣x=x,由(1)知,△ADC∽△CDB,∴=,即,解得CB=1,∴AB==,∴⊙O半徑是.點睛:此題主要考查了切線的性質和應用,以及勾股定理的應用,要熟練掌握.20、(1)作圖見解析;(2)7,7.5,2.8;(3)見解析.【解析】

(1)根據(jù)圖1找出8、9、10℃的天數(shù),然后補全統(tǒng)計圖即可;(2)根據(jù)眾數(shù)的定義,找出出現(xiàn)頻率最高的溫度;按照從低到高排列,求出第5、6兩個溫度的平均數(shù)即為中位數(shù);先求出平均數(shù),再根據(jù)方差的定義列式進行計算即可得解;(3)求出7、8、9、10、11℃的天數(shù)在扇形統(tǒng)計圖中所占的度數(shù),然后作出扇形統(tǒng)計圖即可.【詳解】(1)由圖1可知,8℃有2天,9℃有0天,10℃有2天,補全統(tǒng)計圖如圖;(2)根據(jù)條形統(tǒng)計圖,7℃出現(xiàn)的頻率最高,為3天,所以,眾數(shù)是7;按照溫度從小到大的順序排列,第5個溫度為7℃,第6個溫度為8℃,所以,中位數(shù)為(7+8)=7.5;平均數(shù)為(6×2+7×3+8×2+10×2+11)=×80=8,所以,方差=[2×(6﹣8)2+3×(7﹣8)2+2×(8﹣8)2+2×(10﹣8)2+(11﹣8)2],=(8+3+0+8+9),=×28,=2.8;(3)6℃的度數(shù),×360°=72°,7℃的度數(shù),×360°=108°,8℃的度數(shù),×360°=72°,10℃的度數(shù),×360°=72°,11℃的度數(shù),×360°=36°,作出扇形統(tǒng)計圖如圖所示.【點睛】本題考查讀頻數(shù)分布直方圖的能力和利用統(tǒng)計圖獲取信息的能力.同時考查中位數(shù)、眾數(shù)的求法:給定n個數(shù)據(jù),按從小到大排序,如果n為奇數(shù),位于中間的那個數(shù)就是中位數(shù);如果n為偶數(shù),位于中間兩個數(shù)的平均數(shù)就是中位數(shù).任何一組數(shù)據(jù),都一定存在中位數(shù)的,但中位數(shù)不一定是這組數(shù)據(jù)量的數(shù).給定一組數(shù)據(jù),出現(xiàn)次數(shù)最多的那個數(shù),稱為這組數(shù)據(jù)的眾數(shù).21、(1)m(2)米【解析】分析:(1)由三角函數(shù)的定義,即可求得AM與AF的長,又由坡度的定義,即可求得NF的長,繼而求得平臺MN的長;(2)在RT△BMK中,求得BK=MK=50米,從而求得EM=84米;在RT△HEM中,求得,繼而求得米.詳解:(1)∵MF∥BC,∴∠AMF=∠ABC=45°,∵斜坡AB長米,M是AB的中點,∴AM=(米),∴AF=MF=AM?cos∠AMF=(米),在中,∵斜坡AN的坡比為∶1,∴,∴,∴MN=MF-NF=50-=.(2)在RT△BMK中,BM=,∴BK=MK=50(米),

EM=BG+BK=34+50=84(米)在RT△HEM中,∠HME=30°,∴,∴,∴(米)答:休閑平臺DE的長是米;建筑物GH高為米.點睛:本題考查了坡度坡角的問題以及俯角仰角的問題.解題的關鍵是根據(jù)題意構造直角三角形,將實際問題轉化為解直角三角形的問題;掌握數(shù)形結合思想與方程思想在題中的運用.22、直角三角形斜邊上的中線等于斜邊的一半;1.【解析】

根據(jù)直角三角形斜邊上的中線等于斜邊的一半和等邊三角形的判定與性質填空即可.【詳解】證明:如圖,作Rt△ABC的斜邊上的中線CD,則CD=AB=AD(直角三角形斜邊上的中線等于斜邊的一半),∵AC=AB,∴AC=CD=AD即△ACD是等邊三角形,∴∠A=1°,∴∠B=90°﹣∠A=30°.【點睛】本題考查了直角三角形斜邊上的中線等于斜邊的一半的性質,等邊三角形的判定與性質,重點在于邏輯思維

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論