遼寧省盤錦市2022年數(shù)學高三上期末預測試題含解析_第1頁
遼寧省盤錦市2022年數(shù)學高三上期末預測試題含解析_第2頁
遼寧省盤錦市2022年數(shù)學高三上期末預測試題含解析_第3頁
遼寧省盤錦市2022年數(shù)學高三上期末預測試題含解析_第4頁
遼寧省盤錦市2022年數(shù)學高三上期末預測試題含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2022-2023學年高三上數(shù)學期末模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.如圖是國家統(tǒng)計局于2020年1月9日發(fā)布的2018年12月到2019年12月全國居民消費價格的漲跌幅情況折線圖.(注:同比是指本期與同期作對比;環(huán)比是指本期與上期作對比.如:2019年2月與2018年2月相比較稱同比,2019年2月與2019年1月相比較稱環(huán)比)根據(jù)該折線圖,下列結論錯誤的是()A.2019年12月份,全國居民消費價格環(huán)比持平B.2018年12月至2019年12月全國居民消費價格環(huán)比均上漲C.2018年12月至2019年12月全國居民消費價格同比均上漲D.2018年11月的全國居民消費價格高于2017年12月的全國居民消費價格2.已知等差數(shù)列的公差不為零,且,,構成新的等差數(shù)列,為的前項和,若存在使得,則()A.10 B.11 C.12 D.133.已知且,函數(shù),若,則()A.2 B. C. D.4.已知m,n是兩條不同的直線,,是兩個不同的平面,給出四個命題:①若,,,則;②若,,則;③若,,,則;④若,,,則其中正確的是()A.①② B.③④ C.①④ D.②④5.設P={y|y=-x2+1,x∈R},Q={y|y=2x,x∈R},則A.PQ B.QPC.Q D.Q6.函數(shù)的大致圖象是A. B. C. D.7.已知集合,集合,那么等于()A. B. C. D.8.如圖,在中,,是上的一點,若,則實數(shù)的值為()A. B. C. D.9.如圖是一個算法流程圖,則輸出的結果是()A. B. C. D.10.已知直線與圓有公共點,則的最大值為()A.4 B. C. D.11.有一改形塔幾何體由若千個正方體構成,構成方式如圖所示,上層正方體下底面的四個頂點是下層正方體上底面各邊的中點.已知最底層正方體的棱長為8,如果改形塔的最上層正方體的邊長小于1,那么該塔形中正方體的個數(shù)至少是()A.8 B.7 C.6 D.412.已知等差數(shù)列的公差為-2,前項和為,若,,為某三角形的三邊長,且該三角形有一個內(nèi)角為,則的最大值為()A.5 B.11 C.20 D.25二、填空題:本題共4小題,每小題5分,共20分。13.記為等比數(shù)列的前n項和,已知,,則_______.14.已知,為虛數(shù)單位,且,則=_____.15.有編號分別為1,2,3,4,5的5個紅球和5個黑球,從中隨機取出4個,則取出球的編號互不相同的概率為_______________.16.如圖,在復平面內(nèi),復數(shù),對應的向量分別是,,則_______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)某學生為了測試煤氣灶燒水如何節(jié)省煤氣的問題設計了一個實驗,并獲得了煤氣開關旋鈕旋轉的弧度數(shù)x與燒開一壺水所用時間y的一組數(shù)據(jù),且作了一定的數(shù)據(jù)處理(如表),得到了散點圖(如圖).表中,.(1)根據(jù)散點圖判斷,與哪一個更適宜作燒水時間y關于開關旋鈕旋轉的弧度數(shù)x的回歸方程類型?(不必說明理由)(2)根據(jù)判斷結果和表中數(shù)據(jù),建立y關于x的回歸方程;(3)若旋轉的弧度數(shù)x與單位時間內(nèi)煤氣輸出量t成正比,那么x為多少時,燒開一壺水最省煤氣?附:對于一組數(shù)據(jù),,,…,,其回歸直線的斜率和截距的最小二乘估計分別為,.18.(12分)已知數(shù)列的各項均為正數(shù),且滿足.(1)求,及的通項公式;(2)求數(shù)列的前項和.19.(12分)在開展學習強國的活動中,某校高三數(shù)學教師成立了黨員和非黨員兩個學習組,其中黨員學習組有4名男教師、1名女教師,非黨員學習組有2名男教師、2名女教師,高三數(shù)學組計劃從兩個學習組中隨機各選2名教師參加學校的挑戰(zhàn)答題比賽.(1)求選出的4名選手中恰好有一名女教師的選派方法數(shù);(2)記X為選出的4名選手中女教師的人數(shù),求X的概率分布和數(shù)學期望.20.(12分)如圖,橢圓的左、右頂點分別為,,上、下頂點分別為,,且,為等邊三角形,過點的直線與橢圓在軸右側的部分交于、兩點.(1)求橢圓的標準方程;(2)求四邊形面積的取值范圍.21.(12分)運輸一批海鮮,可在汽車、火車、飛機三種運輸工具中選擇,它們的速度分別為60千米/小時、120千米/小時、600千米/小時,每千米的運費分別為20元、10元、50元.這批海鮮在運輸過程中每小時的損耗為m元(),運輸?shù)穆烦虨镾(千米).設用汽車、火車、飛機三種運輸工具運輸時各自的總費用(包括運費和損耗費)分別為(元)、(元)、(元).(1)請分別寫出、、的表達式;(2)試確定使用哪種運輸工具總費用最省.22.(10分)已知函數(shù)存在一個極大值點和一個極小值點.(1)求實數(shù)a的取值范圍;(2)若函數(shù)的極大值點和極小值點分別為和,且,求實數(shù)a的取值范圍.(e是自然對數(shù)的底數(shù))

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】

先對圖表數(shù)據(jù)的分析處理,再結簡單的合情推理一一檢驗即可【詳解】由折線圖易知A、C正確;2019年3月份及6月份的全國居民消費價格環(huán)比是負的,所以B錯誤;設2018年12月份,2018年11月份,2017年12月份的全國居民消費價格分別為,由題意可知,,,則有,所以D正確.故選:D【點睛】此題考查了對圖表數(shù)據(jù)的分析處理能力及進行簡單的合情推理,屬于中檔題.2、D【解析】

利用等差數(shù)列的通項公式可得,再利用等差數(shù)列的前項和公式即可求解.【詳解】由,,構成等差數(shù)列可得即又解得:又所以時,.故選:D【點睛】本題考查了等差數(shù)列的通項公式、等差數(shù)列的前項和公式,需熟記公式,屬于基礎題.3、C【解析】

根據(jù)分段函數(shù)的解析式,知當時,且,由于,則,即可求出.【詳解】由題意知:當時,且由于,則可知:,則,∴,則,則.即.故選:C.【點睛】本題考查分段函數(shù)的應用,由分段函數(shù)解析式求自變量.4、D【解析】

根據(jù)面面垂直的判定定理可判斷①;根據(jù)空間面面平行的判定定理可判斷②;根據(jù)線面平行的判定定理可判斷③;根據(jù)面面垂直的判定定理可判斷④.【詳解】對于①,若,,,,兩平面相交,但不一定垂直,故①錯誤;對于②,若,,則,故②正確;對于③,若,,,當,則與不平行,故③錯誤;對于④,若,,,則,故④正確;故選:D【點睛】本題考查了線面平行的判定定理、面面平行的判定定理以及面面垂直的判定定理,屬于基礎題.5、C【解析】

解:因為P={y|y=-x2+1,x∈R}={y|y1},Q={y|y=2x,x∈R}={y|y>0},因此選C6、A【解析】

利用函數(shù)的對稱性及函數(shù)值的符號即可作出判斷.【詳解】由題意可知函數(shù)為奇函數(shù),可排除B選項;當時,,可排除D選項;當時,,當時,,即,可排除C選項,故選:A【點睛】本題考查了函數(shù)圖象的判斷,函數(shù)對稱性的應用,屬于中檔題.7、A【解析】

求出集合,然后進行并集的運算即可.【詳解】∵,,∴.故選:A.【點睛】本小題主要考查一元二次不等式的解法,考查集合并集的概念和運算,屬于基礎題.8、B【解析】

變形為,由得,轉化在中,利用三點共線可得.【詳解】解:依題:,又三點共線,,解得.故選:.【點睛】本題考查平面向量基本定理及用向量共線定理求參數(shù).思路是(1)先選擇一組基底,并運用該基底將條件和結論表示成向量的形式,再通過向量的運算來解決.利用向量共線定理及向量相等的條件列方程(組)求參數(shù)的值.(2)直線的向量式參數(shù)方程:三點共線?(為平面內(nèi)任一點,)9、A【解析】

執(zhí)行程序框圖,逐次計算,根據(jù)判斷條件終止循環(huán),即可求解,得到答案.【詳解】由題意,執(zhí)行上述的程序框圖:第1次循環(huán):滿足判斷條件,;第2次循環(huán):滿足判斷條件,;第3次循環(huán):滿足判斷條件,;不滿足判斷條件,輸出計算結果,故選A.【點睛】本題主要考查了循環(huán)結構的程序框圖的結果的計算與輸出,其中解答中執(zhí)行程序框圖,逐次計算,根據(jù)判斷條件終止循環(huán)是解答的關鍵,著重考查了運算與求解能力,屬于基礎題.10、C【解析】

根據(jù)表示圓和直線與圓有公共點,得到,再利用二次函數(shù)的性質求解.【詳解】因為表示圓,所以,解得,因為直線與圓有公共點,所以圓心到直線的距離,即,解得,此時,因為,在遞增,所以的最大值.故選:C【點睛】本題主要考查圓的方程,直線與圓的位置關系以及二次函數(shù)的性質,還考查了運算求解的能力,屬于中檔題.11、A【解析】

則從下往上第二層正方體的棱長為:,從下往上第三層正方體的棱長為:,從下往上第四層正方體的棱長為:,以此類推,能求出改形塔的最上層正方體的邊長小于1時該塔形中正方體的個數(shù)的最小值的求法.【詳解】最底層正方體的棱長為8,則從下往上第二層正方體的棱長為:,從下往上第三層正方體的棱長為:,從下往上第四層正方體的棱長為:,從下往上第五層正方體的棱長為:,從下往上第六層正方體的棱長為:,從下往上第七層正方體的棱長為:,從下往上第八層正方體的棱長為:,∴改形塔的最上層正方體的邊長小于1,那么該塔形中正方體的個數(shù)至少是8.故選:A.【點睛】本小題主要考查正方體有關計算,屬于基礎題.12、D【解析】

由公差d=-2可知數(shù)列單調(diào)遞減,再由余弦定理結合通項可求得首項,即可求出前n項和,從而得到最值.【詳解】等差數(shù)列的公差為-2,可知數(shù)列單調(diào)遞減,則,,中最大,最小,又,,為三角形的三邊長,且最大內(nèi)角為,由余弦定理得,設首項為,即得,所以或,又即,舍去,,d=-2前項和.故的最大值為.故選:D【點睛】本題考查等差數(shù)列的通項公式和前n項和公式的應用,考查求前n項和的最值問題,同時還考查了余弦定理的應用.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

設等比數(shù)列的公比為,將已知條件等式轉化為關系式,求解即可.【詳解】設等比數(shù)列的公比為,,.故答案為:.【點睛】本題考查等比數(shù)列通項的基本量運算,屬于基礎題.14、4【解析】

解:利用復數(shù)相等,可知由有.15、【解析】試題分析:從編號分別為1,1,3,4,5的5個紅球和5個黑球,從中隨機取出4個,有種不同的結果,由于是隨機取出的,所以每個結果出現(xiàn)的可能性是相等的;設事件為“取出球的編號互不相同”,則事件包含了個基本事件,所以.考點:1.計數(shù)原理;1.古典概型.16、【解析】試題分析:由坐標系可知考點:復數(shù)運算三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)更適宜(2)(3)x為2時,燒開一壺水最省煤氣【解析】

(1)根據(jù)散點圖是否按直線型分布作答;(2)根據(jù)回歸系數(shù)公式得出y關于的線性回歸方程,再得出y關于x的回歸方程;(3)利用基本不等式得出煤氣用量的最小值及其成立的條件.【詳解】(1)更適宜作燒水時間y關于開關旋鈕旋轉的弧度數(shù)x的回歸方程類型.(2)由公式可得:,,所以所求回歸方程為.(3)設,則煤氣用量,當且僅當時取“”,即時,煤氣用量最小.故x為2時,燒開一壺水最省煤氣.【點睛】本題考查擬合模型的選擇,回歸方程的求解,涉及均值不等式的使用,屬綜合中檔題.18、(1);.;(2)【解析】

(1)根據(jù)題意,知,且,令和即可求出,,以及運用遞推關系求出的通項公式;(2)通過定義法證明出是首項為8,公比為4的等比數(shù)列,利用等比數(shù)列的前項和公式,即可求得的前項和.【詳解】解:(1)由題可知,,且,當時,,則,當時,,,由已知可得,且,∴的通項公式:.(2)設,則,所以,,得是首項為8,公比為4的等比數(shù)列,所以數(shù)列的前項和為:,即,所以數(shù)列的前項和:.【點睛】本題考查通過遞推關系求數(shù)列的通項公式,以及等比數(shù)列的前項和公式,考查計算能力.19、(1)28種;(2)分布見解析,.【解析】

(1)分這名女教師分別來自黨員學習組與非黨員學習組,可得恰好有一名女教師的選派方法數(shù);(2)X的可能取值為,再求出X的每個取值的概率,可得X的概率分布和數(shù)學期望.【詳解】解:(1)選出的4名選手中恰好有一名女生的選派方法數(shù)為種.(2)X的可能取值為0,1,2,3.,,,.故X的概率分布為:X0123P所以.【點睛】本題主要考查組合數(shù)與組合公式及離散型隨機變量的期望和方差,相對不難,注意運算的準確性.20、(1);(2).【解析】

(1)根據(jù)坐標和為等邊三角形可得,進而得到橢圓方程;(2)①當直線斜率不存在時,易求坐標,從而得到所求面積;②當直線的斜率存在時,設方程為,與橢圓方程聯(lián)立得到韋達定理的形式,并確定的取值范圍;利用,代入韋達定理的結論可求得關于的表達式,采用換元法將問題轉化為,的值域的求解問題,結合函數(shù)單調(diào)性可求得值域;結合兩種情況的結論可得最終結果.【詳解】(1),,為等邊三角形,,橢圓的標準方程為.(2)設四邊形的面積為.①當直線的斜率不存在時,可得,,.②當直線的斜率存在時,設直線的方程為,設,,聯(lián)立得:,,,.,,,,面積.令,則,,令,則,,在定義域內(nèi)單調(diào)遞減,.綜上所述:四邊形面積

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論