版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2022-2023學(xué)年高三上數(shù)學(xué)期末模擬試卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請(qǐng)按要求用筆。3.請(qǐng)按照題號(hào)順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.己知全集為實(shí)數(shù)集R,集合A={x|x2+2x-8>0},B={x|log2x<1},則等于()A.[4,2] B.[4,2) C.(4,2) D.(0,2)2.已知函數(shù)在區(qū)間上恰有四個(gè)不同的零點(diǎn),則實(shí)數(shù)的取值范圍是()A. B. C. D.3.已知直線與圓有公共點(diǎn),則的最大值為()A.4 B. C. D.4.已知集合,若,則實(shí)數(shù)的取值范圍為()A. B. C. D.5.若向量,則()A.30 B.31 C.32 D.336.已知三棱錐的外接球半徑為2,且球心為線段的中點(diǎn),則三棱錐的體積的最大值為()A. B. C. D.7.過直線上一點(diǎn)作圓的兩條切線,,,為切點(diǎn),當(dāng)直線,關(guān)于直線對(duì)稱時(shí),()A. B. C. D.8.若復(fù)數(shù)z滿足,則()A. B. C. D.9.已知三棱錐的體積為2,是邊長(zhǎng)為2的等邊三角形,且三棱錐的外接球的球心恰好是中點(diǎn),則球的表面積為()A. B. C. D.10.幻方最早起源于我國,由正整數(shù)1,2,3,……,這個(gè)數(shù)填入方格中,使得每行、每列、每條對(duì)角線上的數(shù)的和相等,這個(gè)正方形數(shù)陣就叫階幻方.定義為階幻方對(duì)角線上所有數(shù)的和,如,則()A.55 B.500 C.505 D.505011.平行四邊形中,已知,,點(diǎn)、分別滿足,,且,則向量在上的投影為()A.2 B. C. D.12.的展開式中,項(xiàng)的系數(shù)為()A.-23 B.17 C.20 D.63二、填空題:本題共4小題,每小題5分,共20分。13.已知向量,,若向量與向量平行,則實(shí)數(shù)___________.14.的展開式中,的系數(shù)是______.15.的展開式中,項(xiàng)的系數(shù)是__________.16.己知函數(shù),若曲線在處的切線與直線平行,則__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知是遞增的等差數(shù)列,,是方程的根.(1)求的通項(xiàng)公式;(2)求數(shù)列的前項(xiàng)和.18.(12分)如圖,是矩形,的頂點(diǎn)在邊上,點(diǎn),分別是,上的動(dòng)點(diǎn)(的長(zhǎng)度滿足需求).設(shè),,,且滿足.(1)求;(2)若,,求的最大值.19.(12分)已知等差數(shù)列的前n項(xiàng)和為,等比數(shù)列的前n項(xiàng)和為,且,,.(1)求數(shù)列與的通項(xiàng)公式;(2)求數(shù)列的前n項(xiàng)和.20.(12分)設(shè)(1)證明:當(dāng)時(shí),;(2)當(dāng)時(shí),求整數(shù)的最大值.(參考數(shù)據(jù):,)21.(12分)已知函數(shù)().(1)討論的單調(diào)性;(2)若對(duì),恒成立,求的取值范圍.22.(10分)的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,已知.(1)求B;(2)若,求的面積的最大值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】
求解一元二次不等式化簡(jiǎn)A,求解對(duì)數(shù)不等式化簡(jiǎn)B,然后利用補(bǔ)集與交集的運(yùn)算得答案.【詳解】解:由x2+2x-8>0,得x<-4或x>2,
∴A={x|x2+2x-8>0}={x|x<-4或x>2},
由log2x<1,x>0,得0<x<2,
∴B={x|log2x<1}={x|0<x<2},
則,
∴.
故選:D.【點(diǎn)睛】本題考查了交、并、補(bǔ)集的混合運(yùn)算,考查了對(duì)數(shù)不等式,二次不等式的求法,是基礎(chǔ)題.2、A【解析】
函數(shù)的零點(diǎn)就是方程的解,設(shè),方程可化為,即或,求出的導(dǎo)數(shù),利用導(dǎo)數(shù)得出函數(shù)的單調(diào)性和最值,由此可根據(jù)方程解的個(gè)數(shù)得出的范圍.【詳解】由題意得有四個(gè)大于的不等實(shí)根,記,則上述方程轉(zhuǎn)化為,即,所以或.因?yàn)椋?dāng)時(shí),,單調(diào)遞減;當(dāng)時(shí),,單調(diào)遞增;所以在處取得最小值,最小值為.因?yàn)椋杂袃蓚€(gè)符合條件的實(shí)數(shù)解,故在區(qū)間上恰有四個(gè)不相等的零點(diǎn),需且.故選:A.【點(diǎn)睛】本題考查復(fù)合函數(shù)的零點(diǎn).考查轉(zhuǎn)化與化歸思想,函數(shù)零點(diǎn)轉(zhuǎn)化為方程的解,方程的解再轉(zhuǎn)化為研究函數(shù)的性質(zhì),本題考查了學(xué)生分析問題解決問題的能力.3、C【解析】
根據(jù)表示圓和直線與圓有公共點(diǎn),得到,再利用二次函數(shù)的性質(zhì)求解.【詳解】因?yàn)楸硎緢A,所以,解得,因?yàn)橹本€與圓有公共點(diǎn),所以圓心到直線的距離,即,解得,此時(shí),因?yàn)椋谶f增,所以的最大值.故選:C【點(diǎn)睛】本題主要考查圓的方程,直線與圓的位置關(guān)系以及二次函數(shù)的性質(zhì),還考查了運(yùn)算求解的能力,屬于中檔題.4、A【解析】
解一元二次不等式化簡(jiǎn)集合的表示,求解函數(shù)的定義域化簡(jiǎn)集合的表示,根據(jù)可以得到集合、之間的關(guān)系,結(jié)合數(shù)軸進(jìn)行求解即可.【詳解】,.因?yàn)?,所以有,因此?故選:A【點(diǎn)睛】本題考查了已知集合運(yùn)算的結(jié)果求參數(shù)取值范圍問題,考查了解一元二次不等式,考查了函數(shù)的定義域,考查了數(shù)學(xué)運(yùn)算能力.5、C【解析】
先求出,再與相乘即可求出答案.【詳解】因?yàn)?所以.故選:C.【點(diǎn)睛】本題考查了平面向量的坐標(biāo)運(yùn)算,考查了學(xué)生的計(jì)算能力,屬于基礎(chǔ)題.6、C【解析】
由題可推斷出和都是直角三角形,設(shè)球心為,要使三棱錐的體積最大,則需滿足,結(jié)合幾何關(guān)系和圖形即可求解【詳解】先畫出圖形,由球心到各點(diǎn)距離相等可得,,故是直角三角形,設(shè),則有,又,所以,當(dāng)且僅當(dāng)時(shí),取最大值4,要使三棱錐體積最大,則需使高,此時(shí),故選:C【點(diǎn)睛】本題考查由三棱錐外接球半徑,半徑與球心位置求解錐體體積最值問題,屬于基礎(chǔ)題7、C【解析】
判斷圓心與直線的關(guān)系,確定直線,關(guān)于直線對(duì)稱的充要條件是與直線垂直,從而等于到直線的距離,由切線性質(zhì)求出,得,從而得.【詳解】如圖,設(shè)圓的圓心為,半徑為,點(diǎn)不在直線上,要滿足直線,關(guān)于直線對(duì)稱,則必垂直于直線,∴,設(shè),則,,∴,.故選:C.【點(diǎn)睛】本題考查直線與圓的位置關(guān)系,考查直線的對(duì)稱性,解題關(guān)鍵是由圓的兩條切線關(guān)于直線對(duì)稱,得出與直線垂直,從而得就是圓心到直線的距離,這樣在直角三角形中可求得角.8、D【解析】
先化簡(jiǎn)得再求得解.【詳解】所以.故選:D【點(diǎn)睛】本題主要考查復(fù)數(shù)的運(yùn)算和模的計(jì)算,意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平.9、A【解析】
根據(jù)是中點(diǎn)這一條件,將棱錐的高轉(zhuǎn)化為球心到平面的距離,即可用勾股定理求解.【詳解】解:設(shè)點(diǎn)到平面的距離為,因?yàn)槭侵悬c(diǎn),所以到平面的距離為,三棱錐的體積,解得,作平面,垂足為的外心,所以,且,所以在中,,此為球的半徑,.故選:A.【點(diǎn)睛】本題考查球的表面積,考查點(diǎn)到平面的距離,屬于中檔題.10、C【解析】
因?yàn)榛梅降拿啃?、每列、每條對(duì)角線上的數(shù)的和相等,可得,即得解.【詳解】因?yàn)榛梅降拿啃小⒚苛?、每條對(duì)角線上的數(shù)的和相等,所以階幻方對(duì)角線上數(shù)的和就等于每行(或每列)的數(shù)的和,又階幻方有行(或列),因此,,于是.故選:C【點(diǎn)睛】本題考查了數(shù)陣問題,考查了學(xué)生邏輯推理,數(shù)學(xué)運(yùn)算的能力,屬于中檔題.11、C【解析】
將用向量和表示,代入可求出,再利用投影公式可得答案.【詳解】解:,得,則向量在上的投影為.故選:C.【點(diǎn)睛】本題考查向量的幾何意義,考查向量的線性運(yùn)算,將用向量和表示是關(guān)鍵,是基礎(chǔ)題.12、B【解析】
根據(jù)二項(xiàng)式展開式的通項(xiàng)公式,結(jié)合乘法分配律,求得的系數(shù).【詳解】的展開式的通項(xiàng)公式為.則①出,則出,該項(xiàng)為:;②出,則出,該項(xiàng)為:;③出,則出,該項(xiàng)為:;綜上所述:合并后的項(xiàng)的系數(shù)為17.故選:B【點(diǎn)睛】本小題考查二項(xiàng)式定理及展開式系數(shù)的求解方法等基礎(chǔ)知識(shí),考查理解能力,計(jì)算能力,分類討論和應(yīng)用意識(shí).二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
由題可得,因?yàn)橄蛄颗c向量平行,所以,解得.14、【解析】
先將原式展開成,發(fā)現(xiàn)中不含,故只研究后面一項(xiàng)即可得解.【詳解】,依題意,只需求中的系數(shù),是.故答案為:-40【點(diǎn)睛】本題考查二項(xiàng)式定理性質(zhì),關(guān)鍵是先展開再利用排列組合思想解決,屬于基礎(chǔ)題.15、240【解析】
利用二項(xiàng)式展開式的通項(xiàng)公式,令x的指數(shù)等于3,計(jì)算展開式中含有項(xiàng)的系數(shù)即可.【詳解】由題意得:,只需,可得,代回原式可得,故答案:240.【點(diǎn)睛】本題主要考查二項(xiàng)式展開式的通項(xiàng)公式及簡(jiǎn)單應(yīng)用,相對(duì)不難.16、【解析】
先求導(dǎo),再根據(jù)導(dǎo)數(shù)的幾何意義,有求解.【詳解】因?yàn)楹瘮?shù),所以,所以,解得.故答案為:【點(diǎn)睛】本題考查導(dǎo)數(shù)的幾何意義,還考查運(yùn)算求解能力以及數(shù)形結(jié)合思想,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】
(1)方程的兩根為,由題意得,在利用等差數(shù)列的通項(xiàng)公式即可得出;(2)利用“錯(cuò)位相減法”、等比數(shù)列的前項(xiàng)和公式即可求出.【詳解】方程x2-5x+6=0的兩根為2,3.由題意得a2=2,a4=3.設(shè)數(shù)列{an}的公差為d,則a4-a2=2d,故d=,從而得a1=.所以{an}的通項(xiàng)公式為an=n+1.(2)設(shè)的前n項(xiàng)和為Sn,由(1)知=,則Sn=++…++,Sn=++…++,兩式相減得Sn=+-=+-,所以Sn=2-.考點(diǎn):等差數(shù)列的性質(zhì);數(shù)列的求和.【方法點(diǎn)晴】本題主要考查了等差數(shù)列的通項(xiàng)公式、“錯(cuò)位相減法”、等比數(shù)列的前項(xiàng)和公式、一元二次方程的解法等知識(shí)點(diǎn)的綜合應(yīng)用,解答中方程的兩根為,由題意得,即可求解數(shù)列的通項(xiàng)公式,進(jìn)而利用錯(cuò)位相減法求和是解答的關(guān)鍵,著重考查了學(xué)生的推理能力與運(yùn)算能力,屬于中檔試題.18、(1)(2)【解析】
(1)利用正弦定理和余弦定理化簡(jiǎn),根據(jù)勾股定理逆定理求得.(2)設(shè),由此求得的表達(dá)式,利用三角函數(shù)最值的求法,求得的最大值.【詳解】(1)設(shè),,,由,根據(jù)正弦定理和余弦定理得.化簡(jiǎn)整理得.由勾股定理逆定理得.(2)設(shè),,由(1)的結(jié)論知.在中,,由,所以.在中,,由,所以.所以,由,所以當(dāng),即時(shí),取得最大值,且最大值為.【點(diǎn)睛】本小題考查正弦定理,余弦定理,勾股定理,解三角形,三角函數(shù)性質(zhì)及其三角恒等變換等基礎(chǔ)知識(shí);考查運(yùn)算求解能力,推理論證能力,化歸與轉(zhuǎn)換思想,應(yīng)用意識(shí).19、(1);(2)【解析】
(1)設(shè)數(shù)列的公差為d,由可得,,由即可解得,故,由,即可解得,進(jìn)而求得.(2)由(1)得,,利用分組求和及錯(cuò)位相減法即可求得結(jié)果.【詳解】(1)設(shè)數(shù)列的公差為d,數(shù)列的公比為q,由可得,,整理得,即,故,由可得,則,即,故.(2)由(1)得,,,故,所以,數(shù)列的前n項(xiàng)和為,設(shè)①,則②,②①得,綜上,數(shù)列的前n項(xiàng)和為.【點(diǎn)睛】本題考查求等差等比的通項(xiàng)公式,考試分組求和及錯(cuò)位相減法求數(shù)列的和,考查學(xué)生的計(jì)算能力,難度一般.20、(1)證明見解析;(2).【解析】
(1)將代入函數(shù)解析式可得,構(gòu)造函數(shù),求得并令,由導(dǎo)函數(shù)符號(hào)判斷函數(shù)單調(diào)性并求得最大值,由即可證明恒成立,即不等式得證.(2)對(duì)函數(shù)求導(dǎo),變形后討論當(dāng)時(shí)的函數(shù)單調(diào)情況:當(dāng)時(shí),可知滿足題意;將不等式化簡(jiǎn)后構(gòu)造函數(shù),利用導(dǎo)函數(shù)求得極值點(diǎn)與函數(shù)的單調(diào)性,從而求得最小值為,分別依次代入檢驗(yàn)的符號(hào),即可確定整數(shù)的最大值;當(dāng)時(shí)不滿足題意,因?yàn)榍笳麛?shù)的最大值,所以時(shí)無需再討論.【詳解】(1)證明:當(dāng)時(shí)代入可得,令,,則,令解得,當(dāng)時(shí),所以在單調(diào)遞增,當(dāng)時(shí),所以在單調(diào)遞減,所以,則,即成立.(2)函數(shù)則,若時(shí),當(dāng)時(shí),,則在時(shí)單調(diào)遞減,所以,即當(dāng)時(shí)成立;所以此時(shí)需滿足的整數(shù)解即可,將不等式化簡(jiǎn)可得,令則令解得,當(dāng)時(shí),即在內(nèi)單調(diào)遞減,當(dāng)時(shí),即在內(nèi)單調(diào)遞增,所以當(dāng)時(shí)取得最小值,則,,,所以此時(shí)滿足的整數(shù)的最大值為;當(dāng)時(shí),在時(shí),此時(shí),與題意矛盾,所以不成立.因?yàn)榍笳麛?shù)的最大值,所以時(shí)無需再討論,綜上所述,當(dāng)時(shí),整數(shù)的最大值為.【點(diǎn)睛】本題考查了導(dǎo)數(shù)在證明不等式中的應(yīng)用,導(dǎo)數(shù)與函數(shù)單調(diào)性、極值、最值的關(guān)系和應(yīng)用,構(gòu)造函數(shù)法求最值,并判斷函數(shù)值法符號(hào),綜合性強(qiáng),屬于難題.21、(1)①當(dāng)時(shí),在上單調(diào)遞減,在上單調(diào)遞增;②當(dāng)時(shí),在上單調(diào)遞增;(2).【解析】
(1)求出函數(shù)的定義域和導(dǎo)函數(shù),,對(duì)討論,得導(dǎo)函數(shù)的正負(fù),得原函數(shù)的單調(diào)性;(2)法一:由得,分別運(yùn)用導(dǎo)函數(shù)得出函數(shù)(),的單調(diào)性,和其函數(shù)的最值,可得,可得的范圍;法二:由得,化為令(),研究函數(shù)的單調(diào)性,可得的取值范圍.【詳解】(1)的定義域?yàn)?,,①?dāng)時(shí),由得,得,在上單調(diào)遞減,在上單調(diào)遞增;②當(dāng)時(shí),恒成立,在上單調(diào)遞增;(2)法一:由得,令(),則,在上單調(diào)遞減,,,即,令,則,在上單調(diào)遞增,,在上單調(diào)遞減,所以,即,(*)當(dāng)時(shí),,(*)式恒成立,即恒成立,滿足題意法二:由得,,令(),則,在上單調(diào)遞減,,,即,當(dāng)時(shí),由(
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年上教版必修1地理上冊(cè)階段測(cè)試試卷含答案
- 2025年蘇教新版選修5歷史上冊(cè)月考試卷
- 2025年外研版三年級(jí)起點(diǎn)選修五歷史上冊(cè)月考試卷
- 2025年新世紀(jì)版選擇性必修3化學(xué)上冊(cè)階段測(cè)試試卷含答案
- 2025年統(tǒng)編版2024選修2地理下冊(cè)階段測(cè)試試卷含答案
- 2025年蘇教版必修1歷史上冊(cè)月考試卷
- 2025年華東師大版必修三語文下冊(cè)階段測(cè)試試卷
- 2025年度體育場(chǎng)館場(chǎng)地租賃及賽事運(yùn)營服務(wù)合同范本3篇
- 鄉(xiāng)村旅游合作社經(jīng)營合同2024
- 二零二五年度大型活動(dòng)策劃與派遣公司臨時(shí)員工派遣合同4篇
- 風(fēng)電場(chǎng)事故案例分析
- 護(hù)理飲食指導(dǎo)整改措施及方案
- 項(xiàng)目工地春節(jié)放假安排及安全措施
- 印染廠安全培訓(xùn)課件
- 紅色主題研學(xué)課程設(shè)計(jì)
- 胸外科手術(shù)圍手術(shù)期處理
- 裝置自動(dòng)控制的先進(jìn)性說明
- 《企業(yè)管理課件:團(tuán)隊(duì)管理知識(shí)點(diǎn)詳解PPT》
- 移動(dòng)商務(wù)內(nèi)容運(yùn)營(吳洪貴)任務(wù)二 軟文的寫作
- 英語詞匯教學(xué)中落實(shí)英語學(xué)科核心素養(yǎng)
- 《插畫設(shè)計(jì)》課程標(biāo)準(zhǔn)
評(píng)論
0/150
提交評(píng)論