版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2022-2023學(xué)年高三上數(shù)學(xué)期末模擬試卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請(qǐng)按要求用筆。3.請(qǐng)按照題號(hào)順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知命題:使成立.則為()A.均成立 B.均成立C.使成立 D.使成立2.已知函數(shù)的部分圖象如圖所示,則()A. B. C. D.3.已知不等式組表示的平面區(qū)域的面積為9,若點(diǎn),則的最大值為()A.3 B.6 C.9 D.124.設(shè)集合,,則集合A. B. C. D.5.已知是偶函數(shù),在上單調(diào)遞減,,則的解集是A. B.C. D.6.己知拋物線的焦點(diǎn)為,準(zhǔn)線為,點(diǎn)分別在拋物線上,且,直線交于點(diǎn),,垂足為,若的面積為,則到的距離為()A. B. C.8 D.67.已知集合A={0,1},B={0,1,2},則滿足A∪C=B的集合C的個(gè)數(shù)為()A.4 B.3 C.2 D.18.已知函數(shù),若關(guān)于的方程恰好有3個(gè)不相等的實(shí)數(shù)根,則實(shí)數(shù)的取值范圍為()A. B. C. D.9.已知復(fù)數(shù)是正實(shí)數(shù),則實(shí)數(shù)的值為()A. B. C. D.10.若是定義域?yàn)榈钠婧瘮?shù),且,則A.的值域?yàn)?B.為周期函數(shù),且6為其一個(gè)周期C.的圖像關(guān)于對(duì)稱 D.函數(shù)的零點(diǎn)有無窮多個(gè)11.如圖所示,網(wǎng)格紙上小正方形的邊長(zhǎng)為1,粗線畫出的是某幾何體的三視圖,其中左視圖中三角形為等腰直角三角形,則該幾何體外接球的體積是()A. B.C. D.12.觀察下列各式:,,,,,,,,根據(jù)以上規(guī)律,則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.曲線在處的切線的斜率為________.14.函數(shù)的圖象在處的切線方程為__________.15.若關(guān)于的不等式在上恒成立,則的最大值為__________.16.已知某幾何體的三視圖如圖所示,則該幾何體外接球的表面積是______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)某公園準(zhǔn)備在一圓形水池里設(shè)置兩個(gè)觀景噴泉,觀景噴泉的示意圖如圖所示,兩點(diǎn)為噴泉,圓心為的中點(diǎn),其中米,半徑米,市民可位于水池邊緣任意一點(diǎn)處觀賞.(1)若當(dāng)時(shí),,求此時(shí)的值;(2)設(shè),且.(i)試將表示為的函數(shù),并求出的取值范圍;(ii)若同時(shí)要求市民在水池邊緣任意一點(diǎn)處觀賞噴泉時(shí),觀賞角度的最大值不小于,試求兩處噴泉間距離的最小值.18.(12分)如圖,四棱錐中,底面是矩形,面底面,且是邊長(zhǎng)為的等邊三角形,在上,且面.(1)求證:是的中點(diǎn);(2)在上是否存在點(diǎn),使二面角為直角?若存在,求出的值;若不存在,說明理由.19.(12分)如圖,D是在△ABC邊AC上的一點(diǎn),△BCD面積是△ABD面積的2倍,∠CBD=2∠ABD=2θ.(Ⅰ)若θ=,求的值;(Ⅱ)若BC=4,AB=2,求邊AC的長(zhǎng).20.(12分)在直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.(1)求和的直角坐標(biāo)方程;(2)已知為曲線上的一個(gè)動(dòng)點(diǎn),求線段的中點(diǎn)到直線的最大距離.21.(12分)底面為菱形的直四棱柱,被一平面截取后得到如圖所示的幾何體.若,.(1)求證:;(2)求二面角的正弦值.22.(10分)已知x∈R,設(shè),,記函數(shù).(1)求函數(shù)取最小值時(shí)x的取值范圍;(2)設(shè)△ABC的角A,B,C所對(duì)的邊分別為a,b,c,若,,求△ABC的面積S的最大值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】試題分析:原命題為特稱命題,故其否定為全稱命題,即.考點(diǎn):全稱命題.2、A【解析】
先利用最高點(diǎn)縱坐標(biāo)求出A,再根據(jù)求出周期,再將代入求出φ的值.最后將代入解析式即可.【詳解】由圖象可知A=1,∵,所以T=π,∴.∴f(x)=sin(2x+φ),將代入得φ)=1,∴φ,結(jié)合0<φ,∴φ.∴.∴sin.故選:A.【點(diǎn)睛】本題考查三角函數(shù)的據(jù)圖求式問題以及三角函數(shù)的公式變換.據(jù)圖求式問題要注意結(jié)合五點(diǎn)法作圖求解.屬于中檔題.3、C【解析】
分析:先畫出滿足約束條件對(duì)應(yīng)的平面區(qū)域,利用平面區(qū)域的面積為9求出,然后分析平面區(qū)域多邊形的各個(gè)頂點(diǎn),即求出邊界線的交點(diǎn)坐標(biāo),代入目標(biāo)函數(shù)求得最大值.詳解:作出不等式組對(duì)應(yīng)的平面區(qū)域如圖所示:則,所以平面區(qū)域的面積,解得,此時(shí),由圖可得當(dāng)過點(diǎn)時(shí),取得最大值9,故選C.點(diǎn)睛:該題考查的是有關(guān)線性規(guī)劃的問題,在求解的過程中,首先需要正確畫出約束條件對(duì)應(yīng)的可行域,之后根據(jù)目標(biāo)函數(shù)的形式,判斷z的幾何意義,之后畫出一條直線,上下平移,判斷哪個(gè)點(diǎn)是最優(yōu)解,從而聯(lián)立方程組,求得最優(yōu)解的坐標(biāo),代入求值,要明確目標(biāo)函數(shù)的形式大體上有三種:斜率型、截距型、距離型;根據(jù)不同的形式,應(yīng)用相應(yīng)的方法求解.4、B【解析】
先求出集合和它的補(bǔ)集,然后求得集合的解集,最后取它們的交集得出結(jié)果.【詳解】對(duì)于集合A,,解得或,故.對(duì)于集合B,,解得.故.故選B.【點(diǎn)睛】本小題主要考查一元二次不等式的解法,考查對(duì)數(shù)不等式的解法,考查集合的補(bǔ)集和交集的運(yùn)算.對(duì)于有兩個(gè)根的一元二次不等式的解法是:先將二次項(xiàng)系數(shù)化為正數(shù),且不等號(hào)的另一邊化為,然后通過因式分解,求得對(duì)應(yīng)的一元二次方程的兩個(gè)根,再利用“大于在兩邊,小于在中間”來求得一元二次不等式的解集.5、D【解析】
先由是偶函數(shù),得到關(guān)于直線對(duì)稱;進(jìn)而得出單調(diào)性,再分別討論和,即可求出結(jié)果.【詳解】因?yàn)槭桥己瘮?shù),所以關(guān)于直線對(duì)稱;因此,由得;又在上單調(diào)遞減,則在上單調(diào)遞增;所以,當(dāng)即時(shí),由得,所以,解得;當(dāng)即時(shí),由得,所以,解得;因此,的解集是.【點(diǎn)睛】本題主要考查由函數(shù)的性質(zhì)解對(duì)應(yīng)不等式,熟記函數(shù)的奇偶性、對(duì)稱性、單調(diào)性等性質(zhì)即可,屬于常考題型.6、D【解析】
作,垂足為,過點(diǎn)N作,垂足為G,設(shè),則,結(jié)合圖形可得,,從而可求出,進(jìn)而可求得,,由的面積即可求出,再結(jié)合為線段的中點(diǎn),即可求出到的距離.【詳解】如圖所示,作,垂足為,設(shè),由,得,則,.過點(diǎn)N作,垂足為G,則,,所以在中,,,所以,所以,在中,,所以,所以,,所以.解得,因?yàn)?,所以為線段的中點(diǎn),所以F到l的距離為.故選:D【點(diǎn)睛】本題主要考查拋物線的幾何性質(zhì)及平面幾何的有關(guān)知識(shí),屬于中檔題.7、A【解析】
由可確定集合中元素一定有的元素,然后列出滿足題意的情況,得到答案.【詳解】由可知集合中一定有元素2,所以符合要求的集合有,共4種情況,所以選A項(xiàng).【點(diǎn)睛】考查集合并集運(yùn)算,屬于簡(jiǎn)單題.8、D【解析】
討論,,三種情況,求導(dǎo)得到單調(diào)區(qū)間,畫出函數(shù)圖像,根據(jù)圖像得到答案.【詳解】當(dāng)時(shí),,故,函數(shù)在上單調(diào)遞增,在上單調(diào)遞減,且;當(dāng)時(shí),;當(dāng)時(shí),,,函數(shù)單調(diào)遞減;如圖所示畫出函數(shù)圖像,則,故.故選:.【點(diǎn)睛】本題考查了利用導(dǎo)數(shù)求函數(shù)的零點(diǎn)問題,意在考查學(xué)生的計(jì)算能力和應(yīng)用能力.9、C【解析】
將復(fù)數(shù)化成標(biāo)準(zhǔn)形式,由題意可得實(shí)部大于零,虛部等于零,即可得到答案.【詳解】因?yàn)闉檎龑?shí)數(shù),所以且,解得.故選:C【點(diǎn)睛】本題考查復(fù)數(shù)的基本定義,屬基礎(chǔ)題.10、D【解析】
運(yùn)用函數(shù)的奇偶性定義,周期性定義,根據(jù)表達(dá)式判斷即可.【詳解】是定義域?yàn)榈钠婧瘮?shù),則,,又,,即是以4為周期的函數(shù),,所以函數(shù)的零點(diǎn)有無窮多個(gè);因?yàn)椋?,令,則,即,所以的圖象關(guān)于對(duì)稱,由題意無法求出的值域,所以本題答案為D.【點(diǎn)睛】本題綜合考查了函數(shù)的性質(zhì),主要是抽象函數(shù)的性質(zhì),運(yùn)用數(shù)學(xué)式子判斷得出結(jié)論是關(guān)鍵.11、C【解析】
作出三視圖所表示幾何體的直觀圖,可得直觀圖為直三棱柱,并且底面為等腰直角三角形,即可求得外接球的半徑,即可得外接球的體積.【詳解】如圖為幾何體的直觀圖,上下底面為腰長(zhǎng)為的等腰直角三角形,三棱柱的高為4,其外接球半徑為,所以體積為.故選:C【點(diǎn)睛】本題考查三視圖還原幾何體的直觀圖、球的體積公式,考查空間想象能力、運(yùn)算求解能力,求解時(shí)注意球心的確定.12、B【解析】
每個(gè)式子的值依次構(gòu)成一個(gè)數(shù)列,然后歸納出數(shù)列的遞推關(guān)系后再計(jì)算.【詳解】以及數(shù)列的應(yīng)用根據(jù)題設(shè)條件,設(shè)數(shù)字,,,,,,,構(gòu)成一個(gè)數(shù)列,可得數(shù)列滿足,則,,.故選:B.【點(diǎn)睛】本題主要考查歸納推理,解題關(guān)鍵是通過數(shù)列的項(xiàng)歸納出遞推關(guān)系,從而可確定數(shù)列的一些項(xiàng).二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
求出函數(shù)的導(dǎo)數(shù),利用導(dǎo)數(shù)的幾何意義令,即可求出切線斜率.【詳解】,,,即曲線在處的切線的斜率.故答案為:【點(diǎn)睛】本題考查了導(dǎo)數(shù)的幾何意義、導(dǎo)數(shù)的運(yùn)算法則以及基本初等函數(shù)的導(dǎo)數(shù),屬于基礎(chǔ)題.14、【解析】
利用導(dǎo)數(shù)的幾何意義,對(duì)求導(dǎo)后在計(jì)算在處導(dǎo)函數(shù)的值,再利用點(diǎn)斜式列出方程化簡(jiǎn)即可.【詳解】,則切線的斜率為.又,所以函數(shù)的圖象在處的切線方程為,即.故答案為:【點(diǎn)睛】本題主要考查了根據(jù)導(dǎo)數(shù)的幾何意義求解函數(shù)在某點(diǎn)處的切線方程問題,需要注意求導(dǎo)法則與計(jì)算,屬于基礎(chǔ)題.15、【解析】
分類討論,時(shí)不合題意;時(shí)求導(dǎo),求出函數(shù)的單調(diào)區(qū)間,得到在上的最小值,利用不等式恒成立轉(zhuǎn)化為函數(shù)最小值,化簡(jiǎn)得,構(gòu)造放縮函數(shù)對(duì)自變量再研究,可解,【詳解】令;當(dāng)時(shí),,不合題意;當(dāng)時(shí),,令,得或,所以在區(qū)間和上單調(diào)遞減.因?yàn)?,且在區(qū)間上單調(diào)遞增,所以在處取極小值,即最小值為.若,,則,即.當(dāng)時(shí),,當(dāng)時(shí),則.設(shè),則.當(dāng)時(shí),;當(dāng)時(shí),,所以在上單調(diào)遞增;在上單調(diào)遞減,所以,即,所以的最大值為.故答案為:【點(diǎn)睛】本題考查不等式恒成立問題.不等式恒成立問題的求解思路:已知不等式(為實(shí)參數(shù))對(duì)任意的恒成立,求參數(shù)的取值范圍.利用導(dǎo)數(shù)解決此類問題可以運(yùn)用分離參數(shù)法;如果無法分離參數(shù),可以考慮對(duì)參數(shù)或自變量進(jìn)行分類討論求解,如果是二次不等式恒成立的問題,可以考慮二次項(xiàng)系數(shù)與判別式的方法(,或,)求解.16、【解析】
先由三視圖在長(zhǎng)方體中將其還原成直觀圖,再利用球的直徑是長(zhǎng)方體體對(duì)角線即可解決.【詳解】由三視圖知該幾何體是一個(gè)三棱錐,如圖所示長(zhǎng)方體對(duì)角線長(zhǎng)為,所以三棱錐外接球半徑為,故所求外接球的表面積.故答案為:.【點(diǎn)睛】本題考查幾何體三視圖以及幾何體外接球的表面積,考查學(xué)生空間想象能力以及基本計(jì)算能力,是一道基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)(i),;(ii).【解析】
(1)在中,由正弦定理可得所求;(2)(i)由余弦定理得,兩式相加可得所求解析式.(ii)在中,由余弦定理可得,根據(jù)的最大值不小于可得關(guān)于的不等式,解不等式可得所求.【詳解】(1)在中,由正弦定理得,所以,即.(2)(i)在中,由余弦定理得,在中,由余弦定理得,又所以,即.又,解得,所以所求關(guān)系式為,.(ii)當(dāng)觀賞角度的最大時(shí),取得最小值.在中,由余弦定理可得,因?yàn)榈淖畲笾挡恍∮?,所以,解得,?jīng)驗(yàn)證知,所以.即兩處噴泉間距離的最小值為.【點(diǎn)睛】本題考查解三角形在實(shí)際中的應(yīng)用,解題時(shí)要注意把條件轉(zhuǎn)化為三角形的邊或角,然后借助正余弦定理進(jìn)行求解.解題時(shí)要注意三角形邊角關(guān)系的運(yùn)用,同時(shí)還要注意所得結(jié)果要符合實(shí)際意義.18、(1)見解析;(2).【解析】試題分析:(1)連交于可得是中點(diǎn),再根據(jù)面可得進(jìn)而根據(jù)中位線定理可得結(jié)果;(2)取中點(diǎn),由(1)知兩兩垂直.以為原點(diǎn),所在直線分別為軸,軸,軸建立空間直角坐標(biāo)系,求出面的一個(gè)法向量,用表示面的一個(gè)法向量,由可得結(jié)果.試題解析:(1)證明:連交于,連是矩形,是中點(diǎn).又面,且是面與面的交線,是的中點(diǎn).(2)取中點(diǎn),由(1)知兩兩垂直.以為原點(diǎn),所在直線分別為軸,軸,軸建立空間直角坐標(biāo)系(如圖),則各點(diǎn)坐標(biāo)為.設(shè)存在滿足要求,且,則由得:,面的一個(gè)法向量為,面的一個(gè)法向量為,由,得,解得,故存在,使二面角為直角,此時(shí).19、(Ⅰ);(Ⅱ)【解析】
(Ⅰ)利用三角形面積公式以及并結(jié)合正弦定理,可得結(jié)果.(Ⅱ)根據(jù),可得,然后使用余弦定理,可得結(jié)果.【詳解】(Ⅰ),所以所以;(Ⅱ),所以,所以,,所以,所以邊.【點(diǎn)睛】本題考查三角形面積公式,正弦定理以及余弦定理的應(yīng)用,關(guān)鍵在于識(shí)記公式,屬中檔題.20、(1)..(2)最大距離為.【解析】
(1)直接利用極坐標(biāo)方程和參數(shù)方程的公式計(jì)算得到答案.(2)曲線的參數(shù)方程為,設(shè),計(jì)算點(diǎn)到直線的距離公式得到答案.【詳解】(1)由,得,則曲線的直角坐標(biāo)方程為,即.直線的直角坐標(biāo)方程為.(2)可知曲線的參數(shù)方程為(為參數(shù)),設(shè),,則到直線的距離為,所以線段的中點(diǎn)到直線的最大距離為.【點(diǎn)睛】本題考查了極坐標(biāo)方程,參數(shù)方程,距離的最值問題,意在考查學(xué)生的計(jì)算能力.21、(1)見解析;(2)【解析】
(1)先由線面垂直的判定定理證明平
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度個(gè)人承包物流配送合同3篇
- 2025涉外合同的相關(guān)事項(xiàng)
- 二零二五年度幼兒園園長(zhǎng)任期教育信息化與智慧校園建設(shè)合同3篇
- 2025年度養(yǎng)豬場(chǎng)養(yǎng)殖保險(xiǎn)與風(fēng)險(xiǎn)防控合作協(xié)議3篇
- 2025年度店面轉(zhuǎn)讓定金及后續(xù)培訓(xùn)服務(wù)協(xié)議3篇
- 2025年度農(nóng)副產(chǎn)品電商平臺(tái)售后服務(wù)合作協(xié)議3篇
- 二零二五年度物流倉儲(chǔ)經(jīng)營(yíng)權(quán)承包管理協(xié)議書3篇
- 二零二五年度農(nóng)村房屋買賣與景觀設(shè)計(jì)合同2篇
- 2025年度專利技術(shù)許可及推廣應(yīng)用協(xié)議3篇
- 二零二五年度內(nèi)墻膩?zhàn)邮┕づc智能家居安防系統(tǒng)合同3篇
- 《調(diào)水工程設(shè)計(jì)導(dǎo)則SL-T430-20XX-條文說明》
- 第二單元自測(cè)卷(試題)2023-2024學(xué)年統(tǒng)編版語文四年級(jí)下冊(cè)
- 六年級(jí)上冊(cè)數(shù)學(xué)應(yīng)用題分類練習(xí)100道
- 土方開挖過程中的文物保存方案
- 臨時(shí)安全用電要求安全培訓(xùn)
- 水稻田稻鴨共棲技術(shù)要點(diǎn)
- 肺功能科室工作報(bào)告
- 如何訓(xùn)練寶寶獨(dú)立就寢
- 血常規(guī)報(bào)告單
- 寶寶大便觀察及護(hù)理課件
- 學(xué)校最小應(yīng)急單元應(yīng)急預(yù)案
評(píng)論
0/150
提交評(píng)論