江蘇省丹徒區(qū)實業(yè)實驗學(xué)校六校聯(lián)考2024年十校聯(lián)考最后數(shù)學(xué)試題含解析_第1頁
江蘇省丹徒區(qū)實業(yè)實驗學(xué)校六校聯(lián)考2024年十校聯(lián)考最后數(shù)學(xué)試題含解析_第2頁
江蘇省丹徒區(qū)實業(yè)實驗學(xué)校六校聯(lián)考2024年十校聯(lián)考最后數(shù)學(xué)試題含解析_第3頁
江蘇省丹徒區(qū)實業(yè)實驗學(xué)校六校聯(lián)考2024年十校聯(lián)考最后數(shù)學(xué)試題含解析_第4頁
江蘇省丹徒區(qū)實業(yè)實驗學(xué)校六校聯(lián)考2024年十校聯(lián)考最后數(shù)學(xué)試題含解析_第5頁
已閱讀5頁,還剩19頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

江蘇省丹徒區(qū)實業(yè)實驗學(xué)校六校聯(lián)考2024年十校聯(lián)考最后數(shù)學(xué)試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.如圖,一束平行太陽光線FA、GB照射到正五邊形ABCDE上,∠ABG=46°,則∠FAE的度數(shù)是()A.26°. B.44°. C.46°. D.72°2.如圖,矩形中,,,以為圓心,為半徑畫弧,交于點,以為圓心,為半徑畫弧,交于點,則的長為()A.3 B.4 C. D.53.根據(jù)《天津市北大港濕地自然保護(hù)總體規(guī)劃(2017﹣2025)》,2018年將建立養(yǎng)殖業(yè)退出補(bǔ)償機(jī)制,生態(tài)補(bǔ)水78000000m1.將78000000用科學(xué)記數(shù)法表示應(yīng)為()A.780×105B.78×106C.7.8×107D.0.78×1084.在a2□4a□4的空格□中,任意填上“+”或“﹣”,在所有得到的代數(shù)式中,能構(gòu)成完全平方式的概率是()A.1B.12C.135.如圖,在平行四邊形ABCD中,∠ABC的平分線BF交AD于點F,F(xiàn)E∥AB.若AB=5,AD=7,BF=6,則四邊形ABEF的面積為()A.48 B.35 C.30 D.246.如圖,矩形ABCD中,E為DC的中點,AD:AB=:2,CP:BP=1:2,連接EP并延長,交AB的延長線于點F,AP、BE相交于點O.下列結(jié)論:①EP平分∠CEB;②=PB?EF;③PF?EF=2;④EF?EP=4AO?PO.其中正確的是()A.①②③ B.①②④ C.①③④ D.③④7.已知關(guān)于x的一元二次方程3x2+4x﹣5=0,下列說法正確的是()A.方程有兩個相等的實數(shù)根B.方程有兩個不相等的實數(shù)根C.沒有實數(shù)根D.無法確定8.若點都是反比例函數(shù)的圖象上的點,并且,則下列各式中正確的是(()A. B. C. D.9.下列計算正確的是()A.2x2-3x2=x2 B.x+x=x2 C.-(x-1)=-x+1 D.3+x=3x10.已知直線與直線的交點在第一象限,則的取值范圍是()A. B. C. D.二、填空題(共7小題,每小題3分,滿分21分)11.小明擲一枚均勻的骰子,骰子的六個面上分別刻有1,2,3,4,5,6點,得到的點數(shù)為奇數(shù)的概率是.12.在△ABC中,AB=13cm,AC=10cm,BC邊上的高為11cm,則△ABC的面積為______cm1.13.如圖,等腰△ABC中,AB=AC,∠BAC=50°,AB的垂直平分線MN交AC于點D,則∠DBC的度數(shù)是____________.14.如圖,正方形ABCD內(nèi)有兩點E、F滿足AE=1,EF=FC=3,AE⊥EF,CF⊥EF,則正方形ABCD的邊長為_____.15.某十字路口的交通信號燈每分鐘紅燈亮30秒,綠燈亮25秒,黃燈亮5秒,當(dāng)你抬頭看信號燈時,是綠燈的概率為____.16.對于實數(shù)x,我們規(guī)定[x]表示不大于x的最大整數(shù),例如[1.1]=1,[3]=3,[﹣2.2]=﹣3,若[]=5,則x的取值范圍是_____.17.分式與的最簡公分母是_____.三、解答題(共7小題,滿分69分)18.(10分)如圖,已知拋物線y=x2﹣4與x軸交于點A,B(點A位于點B的左側(cè)),C為頂點,直線y=x+m經(jīng)過點A,與y軸交于點D.求線段AD的長;平移該拋物線得到一條新拋物線,設(shè)新拋物線的頂點為C′.若新拋物線經(jīng)過點D,并且新拋物線的頂點和原拋物線的頂點的連線CC′平行于直線AD,求新拋物線對應(yīng)的函數(shù)表達(dá)式.19.(5分)如圖,△ABC內(nèi)接與⊙O,AB是直徑,⊙O的切線PC交BA的延長線于點P,OF∥BC交AC于AC點E,交PC于點F,連接AF.判斷AF與⊙O的位置關(guān)系并說明理由;若⊙O的半徑為4,AF=3,求AC的長.20.(8分)如圖1,△ABC中,AB=AC=6,BC=4,點D、E分別在邊AB、AC上,且AD=AE=1,連接DE、CD,點M、N、P分別是線段DE、BC、CD的中點,連接MP、PN、MN.(1)求證:△PMN是等腰三角形;(2)將△ADE繞點A逆時針旋轉(zhuǎn),①如圖2,當(dāng)點D、E分別在邊AC兩側(cè)時,求證:△PMN是等腰三角形;②當(dāng)△ADE繞點A逆時針旋轉(zhuǎn)到第一次點D、E、C在一條直線上時,請直接寫出此時BD的長.21.(10分)解分式方程:=22.(10分)隨著信息技術(shù)的快速發(fā)展,“互聯(lián)網(wǎng)+”滲透到我們?nèi)粘I畹母鱾€領(lǐng)域,網(wǎng)上在線學(xué)習(xí)交流已不再是夢,現(xiàn)有某教學(xué)網(wǎng)站策劃了A,B兩種上網(wǎng)學(xué)習(xí)的月收費(fèi)方式:收費(fèi)方式月使用費(fèi)/元包時上網(wǎng)時間/h超時費(fèi)/(元/min)A7250.01Bmn0.01設(shè)每月上網(wǎng)學(xué)習(xí)時間為x小時,方案A,B的收費(fèi)金額分別為yA,yB.(1)如圖是yB與x之間函數(shù)關(guān)系的圖象,請根據(jù)圖象填空:m=;n=;(2)寫出yA與x之間的函數(shù)關(guān)系式;(3)選擇哪種方式上網(wǎng)學(xué)習(xí)合算,為什么.23.(12分)二次函數(shù)y=ax2+bx+c(a,b,c為常數(shù),且a≠1)中的x與y的部分對應(yīng)值如表x

﹣1

1

1

3

y

﹣1

3

5

3

下列結(jié)論:①ac<1;②當(dāng)x>1時,y的值隨x值的增大而減?。?是方程ax2+(b﹣1)x+c=1的一個根;④當(dāng)﹣1<x<3時,ax2+(b﹣1)x+c>1.其中正確的結(jié)論是.24.(14分)已知邊長為2a的正方形ABCD,對角線AC、BD交于點Q,對于平面內(nèi)的點P與正方形ABCD,給出如下定義:如果,則稱點P為正方形ABCD的“關(guān)聯(lián)點”.在平面直角坐標(biāo)系xOy中,若A(﹣1,1),B(﹣1,﹣1),C(1,﹣1),D(1,1).(1)在,,中,正方形ABCD的“關(guān)聯(lián)點”有_____;(2)已知點E的橫坐標(biāo)是m,若點E在直線上,并且E是正方形ABCD的“關(guān)聯(lián)點”,求m的取值范圍;(3)若將正方形ABCD沿x軸平移,設(shè)該正方形對角線交點Q的橫坐標(biāo)是n,直線與x軸、y軸分別相交于M、N兩點.如果線段MN上的每一個點都是正方形ABCD的“關(guān)聯(lián)點”,求n的取值范圍.

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、A【解析】

先根據(jù)正五邊形的性質(zhì)求出∠EAB的度數(shù),再由平行線的性質(zhì)即可得出結(jié)論.【詳解】解:∵圖中是正五邊形.∴∠EAB=108°.∵太陽光線互相平行,∠ABG=46°,∴∠FAE=180°﹣∠ABG﹣∠EAB=180°﹣46°﹣108°=26°.故選A.【點睛】此題考查平行線的性質(zhì),多邊形內(nèi)角與外角,解題關(guān)鍵在于求出∠EAB.2、B【解析】

連接DF,在中,利用勾股定理求出CF的長度,則EF的長度可求.【詳解】連接DF,∵四邊形ABCD是矩形∴在中,故選:B.【點睛】本題主要考查勾股定理,掌握勾股定理的內(nèi)容是解題的關(guān)鍵.3、C【解析】

科學(xué)記數(shù)法記數(shù)時,主要是準(zhǔn)確把握標(biāo)準(zhǔn)形式a×10n即可.【詳解】解:78000000=7.8×107.故選C.【點睛】科學(xué)記數(shù)法的形式是a×10n,其中1≤|a|<10,n是整數(shù),若這個數(shù)是大于10的數(shù),則n比這個數(shù)的整數(shù)位數(shù)少1.4、B【解析】試題解析:能夠湊成完全平方公式,則4a前可是“-”,也可以是“+”,但4前面的符號一定是:“+”,此題總共有(-,-)、(+,+)、(+,-)、(-,+)四種情況,能構(gòu)成完全平方公式的有2種,所以概率是12故選B.考點:1.概率公式;2.完全平方式.5、D【解析】分析:首先證明四邊形ABEF為菱形,根據(jù)勾股定理求出對角線AE的長度,從而得出四邊形的面積.詳解:∵AB∥EF,AF∥BE,∴四邊形ABEF為平行四邊形,∵BF平分∠ABC,∴四邊形ABEF為菱形,連接AE交BF于點O,∵BF=6,BE=5,∴BO=3,EO=4,∴AE=8,則四邊形ABEF的面積=6×8÷2=24,故選D.點睛:本題主要考查的是菱形的性質(zhì)以及判定定理,屬于中等難度的題型.解決本題的關(guān)鍵就是根據(jù)題意得出四邊形為菱形.6、B【解析】

由條件設(shè)AD=x,AB=2x,就可以表示出CP=x,BP=x,用三角函數(shù)值可以求出∠EBC的度數(shù)和∠CEP的度數(shù),則∠CEP=∠BEP,運(yùn)用勾股定理及三角函數(shù)值就可以求出就可以求出BF、EF的值,從而可以求出結(jié)論.【詳解】解:設(shè)AD=x,AB=2x∵四邊形ABCD是矩形∴AD=BC,CD=AB,∠D=∠C=∠ABC=90°.DC∥AB∴BC=x,CD=2x∵CP:BP=1:2∴CP=x,BP=x∵E為DC的中點,∴CE=CD=x,∴tan∠CEP==,tan∠EBC==∴∠CEP=30°,∠EBC=30°∴∠CEB=60°∴∠PEB=30°∴∠CEP=∠PEB∴EP平分∠CEB,故①正確;∵DC∥AB,∴∠CEP=∠F=30°,∴∠F=∠EBP=30°,∠F=∠BEF=30°,∴△EBP∽△EFB,∴∴BE·BF=EF·BP∵∠F=∠BEF,∴BE=BF∴=PB·EF,故②正確∵∠F=30°,∴PF=2PB=x,過點E作EG⊥AF于G,∴∠EGF=90°,∴EF=2EG=2x∴PF·EF=x·2x=8x22AD2=2×(x)2=6x2,∴PF·EF≠2AD2,故③錯誤.在Rt△ECP中,∵∠CEP=30°,∴EP=2PC=x∵tan∠PAB==∴∠PAB=30°∴∠APB=60°∴∠AOB=90°在Rt△AOB和Rt△POB中,由勾股定理得,AO=x,PO=x∴4AO·PO=4×x·x=4x2又EF·EP=2x·x=4x2∴EF·EP=4AO·PO.故④正確.故選,B【點睛】本題考查了矩形的性質(zhì)的運(yùn)用,相似三角形的判定及性質(zhì)的運(yùn)用,特殊角的正切值的運(yùn)用,勾股定理的運(yùn)用及直角三角形的性質(zhì)的運(yùn)用,解答時根據(jù)比例關(guān)系設(shè)出未知數(shù)表示出線段的長度是關(guān)鍵.7、B【解析】試題分析:先求出△=42﹣4×3×(﹣5)=76>0,即可判定方程有兩個不相等的實數(shù)根.故答案選B.考點:一元二次方程根的判別式.8、B【解析】

解:根據(jù)題意可得:∴反比例函數(shù)處于二、四象限,則在每個象限內(nèi)為增函數(shù),且當(dāng)x<0時y>0,當(dāng)x>0時,y<0,∴<<.9、C【解析】

根據(jù)合并同類項法則和去括號法則逐一判斷即可得.【詳解】解:A.2x2-3x2=-x2,故此選項錯誤;

B.x+x=2x,故此選項錯誤;

C.-(x-1)=-x+1,故此選項正確;

D.3與x不能合并,此選項錯誤;

故選C.【點睛】本題考查了整式的加減,熟練掌握運(yùn)算法則是解題的關(guān)鍵.10、C【解析】

根據(jù)題意畫出圖形,利用數(shù)形結(jié)合,即可得出答案.【詳解】根據(jù)題意,畫出圖形,如圖:當(dāng)時,兩條直線無交點;當(dāng)時,兩條直線的交點在第一象限.故選:C.【點睛】本題主要考查兩個一次函數(shù)的交點問題,能夠數(shù)形結(jié)合是解題的關(guān)鍵.二、填空題(共7小題,每小題3分,滿分21分)11、.【解析】

根據(jù)題意可知,擲一次骰子有6個可能結(jié)果,而點數(shù)為奇數(shù)的結(jié)果有3個,所以點數(shù)為奇數(shù)的概率為.考點:概率公式.12、2或2.【解析】試題分析:分兩種情況討論:銳角三角形和鈍角三角形,根據(jù)勾股定理求得BD=16,CD=5,再由圖形求出BC,在銳角三角形中,BC=BD+CD=2,在鈍角三角形中,BC=CD-BD=2.故答案為2或2.考點:勾股定理13、15°【解析】分析:根據(jù)等腰三角形的性質(zhì)得出∠ABC的度數(shù),根據(jù)中垂線的性質(zhì)得出∠ABD的度數(shù),最后求出∠DBC的度數(shù).詳解:∵AB=AC,∠BAC=50°,∴∠ABC=∠ACB=(180°-50°)=65°,∵M(jìn)N為AB的中垂線,∴∠ABD=∠BAC=50°,∴∠DBC=65°-50°=15°.點睛:本題主要考查的是等腰三角形的性質(zhì)以及中垂線的性質(zhì)定理,屬于中等難度的題型.理解中垂線的性質(zhì)是解決這個問題的關(guān)鍵.414、【解析】分析:連接AC,交EF于點M,可證明△AEM∽△CMF,根據(jù)條件可求得AE、EM、FM、CF,再結(jié)合勾股定理可求得AB.詳解:連接AC,交EF于點M,∵AE丄EF,EF丄FC,∴∠E=∠F=90°,∵∠AME=∠CMF,∴△AEM∽△CFM,∴,∵AE=1,EF=FC=3,∴,∴EM=,F(xiàn)M=,在Rt△AEM中,AM2=AE2+EM2=1+=,解得AM=,在Rt△FCM中,CM2=CF2+FM2=9+=,解得CM=,∴AC=AM+CM=5,在Rt△ABC中,AB=BC,AB2+BC2=AC2=25,∴AB=,即正方形的邊長為.故答案為:.點睛:本題主要考查相似三角形的判定和性質(zhì)及正方形的性質(zhì),構(gòu)造三角形相似利用相似三角形的對應(yīng)邊成比例求得AC的長是解題的關(guān)鍵,注意勾股定理的應(yīng)用.15、【解析】

隨機(jī)事件A的概率P(A)=事件A可能出現(xiàn)的結(jié)果數(shù)÷所有可能出現(xiàn)的結(jié)果數(shù),據(jù)此用綠燈亮的時間除以三種燈亮的總時間,求出抬頭看信號燈時,是綠燈的概率為多少即可.【詳解】抬頭看信號燈時,是綠燈的概率為.故答案為:.【點睛】此題主要考查了概率公式的應(yīng)用,要熟練掌握,解答此題的關(guān)鍵是要明確:(1)隨機(jī)事件A的概率P(A)=事件A可能出現(xiàn)的結(jié)果數(shù)÷所有可能出現(xiàn)的結(jié)果數(shù).(2)P(必然事件)=1.(3)P(不可能事件)=2.16、11≤x<1【解析】

根據(jù)對于實數(shù)x我們規(guī)定[x]不大于x最大整數(shù),可得答案.【詳解】由[]=5,得:,解得11≤x<1,故答案是:11≤x<1.【點睛】考查了解一元一次不等式組,利用[x]不大于x最大整數(shù)得出不等式組是解題關(guān)鍵.17、3a2b【解析】

利用取各分母系數(shù)的最小公倍數(shù)與字母因式的最高次冪的積作公分母求解即可.【詳解】分式與的最簡公分母是3a2b.故答案為3a2b.【點睛】本題考查最簡公分母,解題的關(guān)鍵是掌握求最簡公分母的方法.三、解答題(共7小題,滿分69分)18、(1)1;(1)y=x1﹣4x+1或y=x1+6x+1.【解析】

(1)解方程求出點A的坐標(biāo),根據(jù)勾股定理計算即可;(1)設(shè)新拋物線對應(yīng)的函數(shù)表達(dá)式為:y=x1+bx+1,根據(jù)二次函數(shù)的性質(zhì)求出點C′的坐標(biāo),根據(jù)題意求出直線CC′的解析式,代入計算即可.【詳解】解:(1)由x1﹣4=0得,x1=﹣1,x1=1,∵點A位于點B的左側(cè),∴A(﹣1,0),∵直線y=x+m經(jīng)過點A,∴﹣1+m=0,解得,m=1,∴點D的坐標(biāo)為(0,1),∴AD==1;(1)設(shè)新拋物線對應(yīng)的函數(shù)表達(dá)式為:y=x1+bx+1,y=x1+bx+1=(x+)1+1﹣,則點C′的坐標(biāo)為(﹣,1﹣),∵CC′平行于直線AD,且經(jīng)過C(0,﹣4),∴直線CC′的解析式為:y=x﹣4,∴1﹣=﹣﹣4,解得,b1=﹣4,b1=6,∴新拋物線對應(yīng)的函數(shù)表達(dá)式為:y=x1﹣4x+1或y=x1+6x+1.【點睛】本題考查的是拋物線與x軸的交點、待定系數(shù)法求函數(shù)解析式,掌握二次函數(shù)的性質(zhì)、拋物線與x軸的交點的求法是解題的關(guān)鍵.19、解:(1)AF與圓O的相切.理由為:如圖,連接OC,∵PC為圓O切線,∴CP⊥OC.∴∠OCP=90°.∵OF∥BC,∴∠AOF=∠B,∠COF=∠OCB.∵OC=OB,∴∠OCB=∠B.∴∠AOF=∠COF.∵在△AOF和△COF中,OA=OC,∠AOF=∠COF,OF=OF,∴△AOF≌△COF(SAS).∴∠OAF=∠OCF=90°.∴AF為圓O的切線,即AF與⊙O的位置關(guān)系是相切.(2)∵△AOF≌△COF,∴∠AOF=∠COF.∵OA=OC,∴E為AC中點,即AE=CE=AC,OE⊥AC.∵OA⊥AF,∴在Rt△AOF中,OA=4,AF=3,根據(jù)勾股定理得:OF=1.∵S△AOF=?OA?AF=?OF?AE,∴AE=.∴AC=2AE=.【解析】試題分析:(1)連接OC,先證出∠3=∠2,由SAS證明△OAF≌△OCF,得對應(yīng)角相等∠OAF=∠OCF,再根據(jù)切線的性質(zhì)得出∠OCF=90°,證出∠OAF=90°,即可得出結(jié)論;(2)先由勾股定理求出OF,再由三角形的面積求出AE,根據(jù)垂徑定理得出AC=2AE.試題解析:(1)連接OC,如圖所示:∵AB是⊙O直徑,∴∠BCA=90°,∵OF∥BC,∴∠AEO=90°,∠1=∠2,∠B=∠3,∴OF⊥AC,∵OC=OA,∴∠B=∠1,∴∠3=∠2,在△OAF和△OCF中,,∴△OAF≌△OCF(SAS),∴∠OAF=∠OCF,∵PC是⊙O的切線,∴∠OCF=90°,∴∠OAF=90°,∴FA⊥OA,∴AF是⊙O的切線;(2)∵⊙O的半徑為4,AF=3,∠OAF=90°,∴OF==1∵FA⊥OA,OF⊥AC,∴AC=2AE,△OAF的面積=AF?OA=OF?AE,∴3×4=1×AE,解得:AE=,∴AC=2AE=.考點:1.切線的判定與性質(zhì);2.勾股定理;3.相似三角形的判定與性質(zhì).20、(1)見解析;(2)①見解析;②279【解析】

(1)利用三角形的中位線得出PM=CE,PN=BD,進(jìn)而判斷出BD=CE,即可得出結(jié)論P(yáng)M=PN;(2)①先證明△ABD≌△ACE,得BD=CE,同理根據(jù)三角形中位線定理可得結(jié)論;②如圖4,連接AM,計算AN和DE、EM的長,如圖3,證明△ABD≌△CAE,得BD=CE,根據(jù)勾股定理計算CM的長,可得結(jié)論【詳解】(1)如圖1,∵點N,P是BC,CD的中點,∴PN∥BD,PN=BD,∵點P,M是CD,DE的中點,∴PM∥CE,PM=CE,∵AB=AC,AD=AE,∴BD=CE,∴PM=PN,∴△PMN是等腰三角形;(2)①如圖2,∵∠DAE=∠BAC,∴∠BAD=∠CAE,∵AB=AC,AD=AE,∴△ABD≌△ACE,∵點M、N、P分別是線段DE、BC、CD的中點,∴PN=BD,PM=CE,∴PM=PN,∴△PMN是等腰三角形;②當(dāng)△ADE繞點A逆時針旋轉(zhuǎn)到第一次點D、E、C在一條直線上時,如圖3,∵∠BAC=∠DAE,∴∠BAD=∠CAE,∵AB=AC,AD=AE,∴△ABD≌△CAE,∴BD=CE,如圖4,連接AM,∵M(jìn)是DE的中點,N是BC的中點,AB=AC,∴A、M、N共線,且AN⊥BC,由勾股定理得:AN==4,∵AD=AE=1,AB=AC=6,∴=,∠DAE=∠BAC,∴△ADE∽△AEC,∴,∴,∴AM=,DE=,∴EM=,如圖3,Rt△ACM中,CM===,∴BD=CE=CM+EM=.【點睛】此題是三角形的綜合題,主要考查了三角形的中位線定理,等腰三角形的判定和性質(zhì),全等和相似三角形的判定和性質(zhì),直角三角形的性質(zhì),解(1)的關(guān)鍵是判斷出PM=12CE,PN=121、x=1【解析】

分式方程去分母轉(zhuǎn)化為整式方程,求出整式方程的解得到x的值,經(jīng)檢驗即可得到分式方程的解.【詳解】方程兩邊都乘以x(x﹣2),得:x=1(x﹣2),解得:x=1,檢驗:x=1時,x(x﹣2)=1×1=1≠0,則分式方程的解為x=1.【點睛】本題考查了解分式方程,利用了轉(zhuǎn)化的思想,解分式方程注意要檢驗.22、(1)10,50;(2)見解析;(3)當(dāng)0<x<30時,選擇A方式上網(wǎng)學(xué)習(xí)合算,當(dāng)x=30時,選擇哪種方式上網(wǎng)學(xué)習(xí)都行,當(dāng)x>30時,選擇B方式上網(wǎng)學(xué)習(xí)合算.【解析】

(1)由圖象知:m=10,n=50;(2)根據(jù)已知條件即可求得yA與x之間的函數(shù)關(guān)系式為:當(dāng)x≤25時,yA=7;當(dāng)x>25時,yA=7+(x﹣25)×0.01;(3)先求出yB與x之間函數(shù)關(guān)系為:當(dāng)x≤50時,yB=10;當(dāng)x>50時,yB=10+(x﹣50)×60×0.01=0.6x﹣20;然后分段求出哪種方式上網(wǎng)學(xué)習(xí)合算即可.【詳解】解:(1)由圖象知:m=10,n=50;故答案為:10;50;(2)yA與x之間的函數(shù)關(guān)系式為:當(dāng)x≤25時,yA=7,當(dāng)x>25時,yA=7+(x﹣25)×60×0.01,∴yA=0.6x﹣8,∴yA=;(3)∵yB與x之間函數(shù)關(guān)系為:當(dāng)x≤50時,yB=10,當(dāng)x>50時,yB=10+(x﹣50)×60×0.01=0.6x﹣20,當(dāng)0<x≤25時,yA=7,yB=50,∴yA<yB,∴選擇A方式上網(wǎng)學(xué)習(xí)合算,當(dāng)25<x≤50時.yA=yB,即0.6x﹣8=10,解得;x=30,∴當(dāng)25<x<30時,yA<yB,選擇A方式上網(wǎng)學(xué)習(xí)合算,當(dāng)x=30時,yA=yB,選擇哪種方式上網(wǎng)學(xué)習(xí)都行,當(dāng)30<x≤50,yA>yB,選擇B方式上網(wǎng)學(xué)習(xí)合算,當(dāng)x>50時,∵yA=0.6x﹣8,yB=0.6x﹣20,yA>yB,∴選擇B方式上網(wǎng)學(xué)習(xí)合算,綜上所述:當(dāng)0<x<30時,yA<yB,選擇A方式上網(wǎng)學(xué)習(xí)合算,當(dāng)x=30時,yA=yB,選擇哪種方式上網(wǎng)學(xué)習(xí)都行,當(dāng)x>30時,yA>y

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論