2022年山東省威海市乳山市九年級數(shù)學第一學期期末學業(yè)質(zhì)量監(jiān)測試題含解析_第1頁
2022年山東省威海市乳山市九年級數(shù)學第一學期期末學業(yè)質(zhì)量監(jiān)測試題含解析_第2頁
2022年山東省威海市乳山市九年級數(shù)學第一學期期末學業(yè)質(zhì)量監(jiān)測試題含解析_第3頁
2022年山東省威海市乳山市九年級數(shù)學第一學期期末學業(yè)質(zhì)量監(jiān)測試題含解析_第4頁
2022年山東省威海市乳山市九年級數(shù)學第一學期期末學業(yè)質(zhì)量監(jiān)測試題含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

2022-2023學年九上數(shù)學期末模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每小題3分,共30分)1.下列圖形是中心對稱圖形的是()A. B. C. D.2.已知反比例函數(shù)y=的圖象經(jīng)過點(3,2),那么下列四個點中,也在這個函數(shù)圖象上的是()A.(3,-2) B.(-2,-3) C.(1,-6) D.(-6,1)3.如圖,AB與⊙O相切于點A,BO與⊙O相交于點C,點D是優(yōu)弧AC上一點,∠CDA=27°,則∠B的大小是()A.27° B.34° C.36° D.54°4.關于2,6,1,10,6這組數(shù)據(jù),下列說法正確的是()A.這組數(shù)據(jù)的平均數(shù)是6 B.這組數(shù)據(jù)的中位數(shù)是1C.這組數(shù)據(jù)的眾數(shù)是6 D.這組數(shù)據(jù)的方差是10.25.已知一元二次方程1–(x–3)(x+2)=0,有兩個實數(shù)根x1和x2(x1<x2),則下列判斷正確的是()A.–2<x1<x2<3 B.x1<–2<3<x2 C.–2<x1<3<x2 D.x1<–2<x2<36.在平面直角坐標系中,點P(﹣2,7)關于原點的對稱點P'在()A.第一象限 B.第二象限 C.第三象限 D.第四象限7.如圖是二次函數(shù)的部分圖象,則的解的情況為()A.有唯一解 B.有兩個解 C.無解 D.無法確定8.要將拋物線平移后得到拋物線,下列平移方法正確的是()A.向左平移1個單位,再向上平移2個單位. B.向左平移1個單位,再向下平移2個單位.C.向右平移1個單位,再向上平移2個單位. D.向右平移1個單位,再向下平移2個單位.9.已知三點、、均在雙曲線上,且,則下列各式正確的是(

)A. B. C. D.10.如圖,保持△ABC的三個頂點的橫坐標不變,縱坐標都乘﹣1,畫出坐標變化后的三角形,則所得三角形與原三角形的關系是()A.關于x軸對稱B.關于y軸對稱C.將原圖形沿x軸的負方向平移了1個單位D.將原圖形沿y軸的負方向平移了1個單位二、填空題(每小題3分,共24分)11.如圖,將一張矩形紙片ABCD沿對角線BD折疊,點C的對應點為,再將所折得的圖形沿EF折疊,使得點D和點A重合若,,則折痕EF的長為______.12.如圖,在平面直角坐標系中,將△ABO繞點A順指針旋轉(zhuǎn)到△AB1C1的位置,點B、O分別落在點B1、C1處,點B1在x軸上,再將△AB1C1繞點B1順時針旋轉(zhuǎn)到△A1B1C2的位置,點C2在x軸上,將△A1B1C2繞點C2順時針旋轉(zhuǎn)到△A2B2C2的位置,點A2在x軸上,依次進行下去…,若點A(,0)、B(0,4),則點B2020的橫坐標為_____.13.拋物線在對稱軸_____(填“左側(cè)”或“右側(cè)”)的部分是下降的.14.只請寫出一個開口向下,并且與軸有一個公共點的拋物線的解析式__________.15.在一個不透明的袋子中裝有個除顏色外完全相同的小球,其中綠球個,紅球個,摸出一個球放回,混合均勻后再摸出一個球,兩次都摸到紅球的概率是___________.16.已知為銳角,且,那么等于_____________.17.若a,b是一元二次方程的兩根,則________.18.已知反比例函數(shù)的圖象如圖所示,則_____

,在圖象的每一支上,隨的增大而_____.三、解答題(共66分)19.(10分)如圖,一次函數(shù)y=kx+b與反比例函數(shù)y=的圖象相較于A(2,3),B(﹣3,n)兩點.(1)求一次函數(shù)與反比例函數(shù)的解析式;(2)根據(jù)所給條件,請直接寫出不等式kx+b>的解集;(3)過點B作BC⊥x軸,垂足為C,求S△ABC.20.(6分)如圖,在矩形ABCD中,AB=6,AD=12,點E在AD邊上,且AE=8,EF⊥BE交CD于F(1)求證:△ABE∽△DEF;(2)求EF的長.21.(6分)我們知道,有理數(shù)包括整數(shù)、有限小數(shù)和無限循環(huán)小數(shù),事實上,所有的有理數(shù)都可以化為分數(shù)形式(整數(shù)可看作分母為1的分數(shù)),那么無限循環(huán)小數(shù)如何表示為分數(shù)形式呢?請看以下示例:例:將化為分數(shù)形式由于,設x=0.777…①則10x=7.777…②②?①得9x=7,解得,于是得.同理可得,根據(jù)以上閱讀,回答下列問題:(以下計算結(jié)果均用最簡分數(shù)表示)(基礎訓練)(1),;(2)將化為分數(shù)形式,寫出推導過程;(能力提升)(3),;(注:,2.01818…)(探索發(fā)現(xiàn))(4)①試比較與1的大?。?;(填“>”、“<”或“=”)②若已知,則.(注:0.285714285714…)22.(8分)已知拋物線的頂點為,且過點.直線與軸相交于點.(1)求該拋物線的解析式;(2)以線段為直徑的圓與射線相交于點,求點的坐標.23.(8分)某商場試銷一種成本為每件元的服裝,規(guī)定試銷期間銷售單價不低于成本單價,且獲利不得高于,經(jīng)試銷發(fā)現(xiàn),銷售量(件)與銷售單價(元)符合一次函數(shù),且時,;時,.求一次函數(shù)的表達式;若該商場獲得利潤為元,試寫出利潤與銷售單價之間的關系式;銷售單價定為多少元時,商場可獲得最大利潤,最大利潤是多少元?24.(8分)如果一個直角三角形的兩條直角邊的長相差2cm,面積是24,那么這個三角形的兩條直角邊分別是多少?25.(10分)如圖,在平面直角坐標系xOy中,雙曲線與直線y=﹣2x+2交于點A(﹣1,a).⑴求k的值;⑵求該雙曲線與直線y=﹣2x+2另一個交點B的坐標.26.(10分)如圖,河流兩岸PQ,MN互相平行,C、D是河岸PQ上間隔50m的兩個電線桿,某人在河岸MN上的A處測得∠DAB=30°,然后沿河岸走了100m到達B處,測得∠CBF=70°,求河流的寬度(結(jié)果精確到個位,=1.73,sin70°=0.94,cos70°=0.34,tan70°=2.75)

參考答案一、選擇題(每小題3分,共30分)1、B【解析】根據(jù)中心對稱圖形的定義,在平面內(nèi),把圖形繞著某個點旋轉(zhuǎn),如果旋轉(zhuǎn)后的圖像能與原圖形重合,就為中心對稱圖形.【詳解】選項A,不是中心對稱圖形.選項B,是中心對稱圖形.選項C,不是中心對稱圖形.選項D,不是中心對稱圖形.故選B【點睛】本題考查了中心對稱圖形的定義.2、B【解析】反比例函數(shù)圖象上的點橫坐標和縱坐標的積為k,把已知點坐標代入反比例解析式求出k的值,即可做出判斷.【詳解】解:解:把(2,3)代入反比例解析式得:k=6,∴反比例解析式為y=,則(-2,-3)在這個函數(shù)圖象上,故選:B.【點睛】此題考查了反比例函數(shù)圖象上點的坐標特征,熟練掌握待定系數(shù)法是解本題的關鍵.3、C【分析】由切線的性質(zhì)可知∠OAB=90°,由圓周角定理可知∠BOA=54°,根據(jù)直角三角形兩銳角互余可知∠B=36°.【詳解】解:∵AB與⊙O相切于點A,

∴OA⊥BA.

∴∠OAB=90°.

∵∠CDA=27°,

∴∠BOA=54°.

∴∠B=90°-54°=36°.故選C.考點:切線的性質(zhì).4、C【分析】先把數(shù)據(jù)從小到大排列,然后根據(jù)算術平均數(shù),中位數(shù),眾數(shù)的定義得出這組數(shù)據(jù)的平均數(shù)、中位數(shù)、眾數(shù),再利用求方差的計算公式求出這組數(shù)據(jù)的方差,再逐項判定即可.【詳解】解:數(shù)據(jù)從小到大排列為:1,2,6,6,10,中位數(shù)為:6;眾數(shù)為:6;平均數(shù)為:;方差為:.故選:C.【點睛】本題考查的知識點是平均數(shù),中位數(shù),眾數(shù),方差的概念定義,熟記定義以及方差公式是解此題的關鍵.5、B【解析】設y=-(x﹣3)(x+2),y1=1﹣(x﹣3)(x+2)根據(jù)二次函數(shù)的圖像性質(zhì)可知y1=1﹣(x﹣3)(x+2)的圖像可看做y=-(x﹣3)(x+2)的圖像向上平移1個單位長度,根據(jù)圖像的開口方向即可得出答案.【詳解】設y=-(x﹣3)(x+2),y1=1﹣(x﹣3)(x+2)∵y=0時,x=-2或x=3,∴y=-(x﹣3)(x+2)的圖像與x軸的交點為(-2,0)(3,0),∵1﹣(x﹣3)(x+2)=0,∴y1=1﹣(x﹣3)(x+2)的圖像可看做y=-(x﹣3)(x+2)的圖像向上平移1,與x軸的交點的橫坐標為x1、x2,∵-1<0,∴兩個拋物線的開口向下,∴x1<﹣2<3<x2,故選B.【點睛】本題考查二次函數(shù)圖像性質(zhì)及平移的特點,根據(jù)開口方向確定函數(shù)的增減性是解題關鍵.6、D【分析】平面直角坐標系中任意一點,關于原點對稱的點的坐標是,即關于原點對稱的點的橫縱坐標都互為相反數(shù),這樣就可以確定其對稱點所在的象限.【詳解】∵點關于原點的對稱點的坐標是,∴點關于原點的對稱點在第四象限.故選:D.【點睛】本題比較容易,考查平面直角坐標系中關于原點對稱的兩點的坐標之間的關系,是需要識記的內(nèi)容.7、C【分析】根據(jù)圖象可知拋物線頂點的縱坐標為-3,把方程轉(zhuǎn)化為,利用數(shù)形結(jié)合求解即可.【詳解】根據(jù)圖象可知拋物線頂點的縱坐標為-3,把轉(zhuǎn)化為拋物線開口向下有最小值為-3∴(-3)>(-4)即方程與拋物線沒有交點.即方程無解.故選C.【點睛】本題考查了數(shù)形結(jié)合的思想,由題意知道拋物線的最小值為-3是解題的關鍵.8、D【分析】把拋物線解析式配方后可以得到平移公式,從而可得平移方法.【詳解】解:由題意得平移公式為:,∴平移方法為向右平移1個單位,再向下平移2個單位.故選D.【點睛】本題考查二次函數(shù)圖象的平移,經(jīng)過對前后解析式的比較得到平移坐標公式是解題關鍵.9、B【分析】根據(jù)反比例函數(shù)的增減性解答即可.【詳解】解:∵k=4>0,∴函數(shù)圖象在一、三象限,∵∴橫坐標為x1,x2的在第三象限,橫坐標為x3的在第一象限;∵第三象限內(nèi)點的縱坐標小于0,第一象限內(nèi)點的縱坐標大于0,∴y3最大,∵在第三象限內(nèi),y隨x的增大而減小,∴故答案為B.【點睛】本題考查了反比例函數(shù)的增減性,對點所在不同象限分類討論是解答本題的關鍵.10、A【分析】根據(jù)“關于x軸對稱的點,橫坐標相同,縱坐標互為相反數(shù)”,可知所得的三角形與原三角形關于x軸對稱.【詳解】解:∵縱坐標乘以﹣1,∴變化前后縱坐標互為相反數(shù),又∵橫坐標不變,∴所得三角形與原三角形關于x軸對稱.故選:A.【點睛】本題考查平面直角坐標系中對稱點的規(guī)律.解題關鍵是掌握好對稱點的坐標規(guī)律:(1)關于x軸對稱的點,橫坐標相同,縱坐標互為相反數(shù);(2)關于y軸對稱的點,縱坐標相同,橫坐標互為相反數(shù);(3)關于原點對稱的點,橫坐標與縱坐標都互為相反數(shù).二、填空題(每小題3分,共24分)11、【分析】首先由折疊的性質(zhì)與矩形的性質(zhì),證得是等腰三角形,則在中,利用勾股定理,借助于方程即可求得AN的長,又由≌,易得:,由三角函數(shù)的性質(zhì)即可求得MF的長,又由中位線的性質(zhì)求得EM的長,則問題得解【詳解】如圖,設與AD交于N,EF與AD交于M,根據(jù)折疊的性質(zhì)可得:,,,四邊形ABCD是矩形,,,,,,,設,則,在中,,,,即,,,,≌,,,,,,由折疊的性質(zhì)可得:,,,,,故答案為.【點睛】本題考查了折疊的性質(zhì),全等三角形的判定與性質(zhì),三角函數(shù)的性質(zhì)以及勾股定理等知識,綜合性較強,有一定的難度,解題時要注意數(shù)形結(jié)合思想與方程思想的應用.12、1【分析】首先根據(jù)已知求出三角形三邊長度,然后通過旋轉(zhuǎn)發(fā)現(xiàn),B、B2、B4…每偶數(shù)之間的B相差10個單位長度,根據(jù)這個規(guī)律可以求解.【詳解】由圖象可知點B2020在第一象限,∵OA=,OB=4,∠AOB=90°,∴AB,∴OA+AB1+B1C2=++4=10,∴B2的橫坐標為:10,同理:B4的橫坐標為:2×10=20,B6的橫坐標為:3×10=30,∴點B2020橫坐標為:1.故答案為:1.【點睛】本題考查了點的坐標規(guī)律變換,通過圖形旋轉(zhuǎn),找到所有B點之間的關系是本題的關鍵.題目難易程度適中,可以考察學生觀察、發(fā)現(xiàn)問題的能力.13、右側(cè)【解析】根據(jù)二次函數(shù)的性質(zhì)解題.【詳解】解:∵a=-1<0,

∴拋物線開口向下,頂點是拋物線的最高點,拋物線在對稱軸右側(cè)的部分是下降的,

故答案為:右側(cè).點睛:本題考查了二次函數(shù)的性質(zhì),熟練掌握性質(zhì)上解題的關鍵.14、【分析】要根據(jù)開口向下且與x軸有惟一的公共點,寫出一個拋物線解析式即可.【詳解】解:∵與x軸只有一個公共點,并且開口方向向下,

∴a<0,△=0,即b2-4ac=0,滿足這些特點即可.如.

故答案為:(答案不唯一).【點睛】此題主要考查了二次函數(shù)的性質(zhì),要了解性質(zhì)與函數(shù)中a,b,c的關系.15、【分析】首先根據(jù)題意畫出樹狀圖,由樹狀圖求得所有等可能的結(jié)果與兩次都摸到紅球的情況,然后利用概率公式求解即可求得答案.注意此題屬于放回實驗.【詳解】解:畫樹狀圖得:∵共有9種等可能的結(jié)果,兩次都摸到紅球的只有4種情況,

∴兩次都摸到紅球的概率是:.

故答案為.【點睛】此題考查的是用列表法或樹狀圖法求概率的知識.正確的列出樹狀圖是解決問題的關鍵.16、【分析】根據(jù)特殊角的三角函數(shù)值即可求出答案.【詳解】故答案為:.【點睛】本題主要考查特殊角的三角函數(shù)值,掌握特殊角的三角函數(shù)值是解題的關鍵.17、【分析】將通分變形為,然后利用根與系數(shù)的關系即可求解.【詳解】∵a、b是一元二次方程的兩根∴,∴故答案為:.【點睛】本題考查了一元二次方程的根與系數(shù)的關系,熟練掌握,是解題的關鍵.18、,增大.【解析】根據(jù)反比例函數(shù)的圖象所在的象限可以確定k的符號;根據(jù)圖象可以直接回答在圖象的每一支上,y隨x的增大而增大.【詳解】根據(jù)圖象知,該函數(shù)圖象經(jīng)過第二、四象限,故k<0;

由圖象可知,反比例函數(shù)y=在圖象的每一支上,y隨x的增大而增大.

故答案是:<;增大.【點睛】本題考查了反比例函數(shù)的圖象.解題時,采用了“數(shù)形結(jié)合”的數(shù)學思想.三、解答題(共66分)19、(1)反比例函數(shù)的解析式為:y=,一次函數(shù)的解析式為:y=x+1;(2)﹣3<x<0或x>2;(3)1.【解析】(1)根據(jù)點A位于反比例函數(shù)的圖象上,利用待定系數(shù)法求出反比例函數(shù)解析式,將點B坐標代入反比例函數(shù)解析式,求出n的值,進而求出一次函數(shù)解析式(2)根據(jù)點A和點B的坐標及圖象特點,即可求出反比例函數(shù)值大于一次函數(shù)值時x的取值范圍(3)由點A和點B的坐標求得三角形以BC為底的高是10,從而求得三角形ABC的面積【詳解】解:(1)∵點A(2,3)在y=的圖象上,∴m=6,∴反比例函數(shù)的解析式為:y=,∴n==﹣2,∵A(2,3),B(﹣3,﹣2)兩點在y=kx+b上,∴,解得:,∴一次函數(shù)的解析式為:y=x+1;(2)由圖象可知﹣3<x<0或x>2;(3)以BC為底,則BC邊上的高為3+2=1,∴S△ABC=×2×1=1.20、(1)證明見解析(2)【分析】(1)由四邊形ABCD是矩形,易得∠A=∠D=90°,又由EF⊥BE,利用同角的余角相等,即可得∠DEF=∠ABE,則可證得△ABE∽△DEF.(2)由(1)△ABE∽△DEF,根據(jù)相似三角形的對應邊成比例,即可得,又由AB=6,AD=12,AE=8,利用勾股定理求得BE的長,由DE=AB-AE,求得DE的長,從而求得EF的長.【詳解】(1)證明:∵四邊形ABCD是矩形,∴∠A=∠D=90°,∴∠AEB+∠ABE=90°.∵EF⊥BE,∴∠AEB+∠DEF=90°,∴∠DEF=∠ABE.∴△ABE∽△DEF.(2)解:∵△ABE∽△DEF,∴.∵AB=6,AD=12,AE=8,∴,DE=AD-AE=12-8=1.∴,解得:.21、(1),;(2),推導過程見解析;(3),;(4)①;②.【分析】(1)根據(jù)閱讀材料的方法即可得;(2)參照閱讀材料的方法,設,從而可得,由此即可得;(3)參照閱讀材料方法,設,從而可得,由此即可得;先將拆分為2與的之和,再參照閱讀材料的方法即可得;(4)①先參照閱讀材料的方法將寫成分數(shù)的形式,再比較大小即可得;②先求出,再根據(jù)①的結(jié)論可得,然后根據(jù)即可得.【詳解】(1)設①,則②,②①得:,解得,即,設①,則②,②①得:,解得,即,故答案為:,;(2)設①,則②,②①得:,解得,即;(3)設①,則②,②①得:,解得,即;,設①,則②,②①得:,解得,則,故答案為:,;(4)①設②,則③,③②得:,解得,即,故答案為:;②因為,,所以,所以,故答案為:.【點睛】本題考查了有理數(shù)的大小比較、等式的性質(zhì)、解一元一次方程,讀懂閱讀材料的方法并靈活運用是解題關鍵.22、(1);(2)或【分析】(1)先設出拋物線的頂點式,再將點A的坐標代入可得出結(jié)果;(2)先求出射線的解析式為,可設點P的坐標為(x,x).圓與射線OA相交于兩點,分兩種情況:①如圖1當時,構(gòu)造和,再在直角三角形中利用勾股定理,列方程求解;②如圖2,當時,構(gòu)造和,再在直角三角形中利用勾股定理,列方程求解.【詳解】解:(1)根據(jù)頂點設拋物線的解析式為:,代入點,得:,拋物線的解析式為:.設直線的解析式為:,分別代入和,得:,直線的解析式為:;(2)由(1)得:直線的解析式為,令,得,由題意可得射線的解析式為,點在射線上,則可設點,由圖可知滿足條件的點有兩個:①當時,構(gòu)造和,可得:如圖1:由圖可得,,,.在Rt△PMD中,,在Rt△PBG中,,在Rt△BMH中,,點在以線段為直徑的圓上,,可得:,即:.整理,得:,解得:;,.;②當時,如圖2,構(gòu)造和,可得:同理,根據(jù)BM2=BP2+PM2,可得方程:42+42=(6-x)2+x2+(x-2)2+(x-4)2,化簡得,,解得:,∵..綜上所述,符合題目條件的點有兩個,其坐標分別為:或.【點睛】本題主要考查二次函數(shù)解析式的求法,以及圓的相關性質(zhì),關鍵是構(gòu)造直角三角形利用勾股定理列方程解決問題.23、(1);(2)銷售單價定為元時,商場可獲得最大利潤,最大利潤是元.【分析】(1)根據(jù)題意將(65,55),(75,45)代入解二元一次方程組即可;(2)表示出利潤解析式,化成頂點式討論即可解題.【詳解】解:根據(jù)題意得,解得.所求一次函數(shù)的表達式為.(2),∵拋物線的開口向下,∴當時,隨的增大而增大,又因為獲利不得高于45%,60所以,∴當時,.∴當銷售單價定為元時,商場可獲得最大利潤,最大利潤是元.【點睛】本

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論