安徽省太和縣聯(lián)考2022-2023學(xué)年九年級數(shù)學(xué)第一學(xué)期期末經(jīng)典模擬試題含解析_第1頁
安徽省太和縣聯(lián)考2022-2023學(xué)年九年級數(shù)學(xué)第一學(xué)期期末經(jīng)典模擬試題含解析_第2頁
安徽省太和縣聯(lián)考2022-2023學(xué)年九年級數(shù)學(xué)第一學(xué)期期末經(jīng)典模擬試題含解析_第3頁
安徽省太和縣聯(lián)考2022-2023學(xué)年九年級數(shù)學(xué)第一學(xué)期期末經(jīng)典模擬試題含解析_第4頁
安徽省太和縣聯(lián)考2022-2023學(xué)年九年級數(shù)學(xué)第一學(xué)期期末經(jīng)典模擬試題含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2022-2023學(xué)年九上數(shù)學(xué)期末模擬試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(每題4分,共48分)1.在Rt△ABC中,AB=6,BC=8,則這個三角形的內(nèi)切圓的半徑是()A.5 B.2 C.5或2 D.2或-12.在反比例函數(shù)的圖象的每一條曲線上,都隨的增大而減小,則的取值范圍是()A. B. C. D.3.從,,,這四個數(shù)字中任取兩個,其乘積為偶數(shù)的概率是()A. B. C. D.4.一個不透明的口袋里有紅、黃、藍(lán)三種顏色的小球,這些小球除顏色外都相同,其中有紅球3個,黃球2個,藍(lán)球若干,已知隨機(jī)摸出一個球是紅球的概率是,則隨機(jī)摸出一個球是藍(lán)球的概率是()A. B. C. D.5.如圖,在△ABC中,AB=10,AC=8,BC=6,以邊AB的中點O為圓心,作半圓與AC相切,點P,Q分別是邊BC和半圓上的動點,連接PQ,則PQ長的最大值與最小值的和是()A.6B.C.9D.6.已知點在線段上(點與點、不重合),過點、的圓記作為圓,過點、的圓記作為圓,過點、的圓記作為圓,則下列說法中正確的是()A.圓可以經(jīng)過點 B.點可以在圓的內(nèi)部C.點可以在圓的內(nèi)部 D.點可以在圓的內(nèi)部7.如圖,△ABC是一塊銳角三角形材料,高線AH長8cm,底邊BC長10cm,要把它加工成一個矩形零件,使矩形DEFG的一邊EF在BC上,其余兩個頂點D,G分別在AB,AC上,則四邊形DEFG的最大面積為()A.40cm2 B.20cm2C.25cm2 D.10cm28.△ABC中,∠C=Rt∠,AC=3,BC=4,以點C為圓心,CA為半徑的圓與AB、BC分別交于點E、D,則AE的長為()A. B. C. D.9.一元二次方程的解是()A.或 B. C. D.10.一元二次方程2x2+3x+5=0的根的情況為()A.有兩個相等的實數(shù)根 B.有兩個不相等的實數(shù)根C.只有一個實數(shù)根 D.沒有實數(shù)根11.如圖,是半圓的直徑,點在的延長線上,切半圓于點,連接.若,則的度數(shù)為()A. B. C. D.12.如圖,在ABCD中,對角線AC與BD相交于點O,過點O作EF⊥AC交BC于點E,交AD于點F,連接AE、CF.則四邊形AECF是()A.梯形 B.矩形 C.菱形 D.正方形二、填空題(每題4分,共24分)13.因式分解:______.14.二次函數(shù)y=a(x+m)2+n的圖象如圖,則一次函數(shù)y=mx+n的圖象不經(jīng)過第_____象限.15.若,則銳角α的度數(shù)是_____.16.如圖,PA與⊙O相切于點A,AB是⊙O的直徑,在⊙O上存在一點C滿足PA=PC,連結(jié)PB、AC相交于點F,且∠APB=3∠BPC,則=_____.17.函數(shù)中自變量x的取值范圍是________.18.已知⊙O的半徑為,圓心O到直線L的距離為,則直線L與⊙O的位置關(guān)系是___________.三、解答題(共78分)19.(8分)尺規(guī)作圖:已知△ABC,如圖.(1)求作:△ABC的外接圓⊙O;(2)若AC=4,∠B=30°,則△ABC的外接圓⊙O的半徑為.20.(8分)求值:+2sin30°-tan60°-tan45°21.(8分)(1)3tan30°-tan45°+2sin60°(2)22.(10分)如圖,AB是⊙O的直徑,弦DE垂直半徑OA,C為垂足,DE=6,連接DB,,過點E作EM∥BD,交BA的延長線于點M.(1)求的半徑;(2)求證:EM是⊙O的切線;(3)若弦DF與直徑AB相交于點P,當(dāng)∠APD=45°時,求圖中陰影部分的面積.23.(10分)如圖,正方形ABCD的頂點A在等腰直角三角形DEF的斜邊EF上,EF與BC相交于點G,連接CF.(1)求證:△DAE≌△DCF;(2)求證:△ABG∽△CFG;(3)若正方形ABCD的的邊長為2,G為BC的中點,求EF的長.24.(10分)在綜合實踐課中,小慧將一張長方形卡紙如圖1所示裁剪開,無縫隙不重疊的拼成如圖2所示的“”形狀,且成軸對稱圖形.裁剪過程中卡紙的消耗忽略不計,若已知,,.求(1)線段與的差值是___(2)的長度.25.(12分)如圖所示,在△ABC中,∠B=90°,AB=11mm,BC=14mm,動點P從點A開始,以1mm/S的速度沿邊AB向B移動(不與點B重合),動點Q從點B開始,以4m/s的速度沿邊BC向C移動(不與C重合),如果P、Q分別從A、B同時出發(fā),設(shè)運(yùn)動的時間為xs,四邊形APQC的面積為ymm1.(1)寫出y與x之間的函數(shù)表達(dá)式;(1)當(dāng)x=1時,求四邊形APQC的面積.26.已知拋物線y=ax2+2x﹣(a≠0)與y軸交于點A,與x軸的一個交點為B.(1)①請直接寫出點A的坐標(biāo);②當(dāng)拋物線的對稱軸為直線x=﹣4時,請直接寫出a=;(2)若點B為(3,0),當(dāng)m2+2m+3≤x≤m2+2m+5,且am<0時,拋物線最低點的縱坐標(biāo)為﹣,求m的值;(3)已知點C(﹣5,﹣3)和點D(5,1),若拋物線與線段CD有兩個不同的交點,求a的取值范圍.

參考答案一、選擇題(每題4分,共48分)1、D【解析】分AC為斜邊和BC為斜邊兩種情況討論.根據(jù)切線定理得過切點的半徑垂直于三角形各邊,利用面積法列式求半徑長.【詳解】第一情況:當(dāng)AC為斜邊時,如圖,設(shè)⊙O是Rt△ABC的內(nèi)切圓,切點分別為D,E,F,連接OC,OA,OB,∴OD⊥AC,OE⊥BC,OF⊥AB,且OD=OE=OF=r,在Rt△ABC中,AB=6,BC=8,由勾股定理得,,∵,∴,∴,∴r=2.第二情況:當(dāng)BC為斜邊時,如圖,設(shè)⊙O是Rt△ABC的內(nèi)切圓,切點分別為D,E,F,連接OC,OA,OB,∴OD⊥BC,OE⊥AC,OF⊥AB,且OD=OE=OF=r,在Rt△ABC中,AB=6,BC=8,由勾股定理得,,∵,∴,∴,∴r=.故選:D.【點睛】本題考查了三角形內(nèi)切圓半徑的求法及勾股定理,依據(jù)圓的切線性質(zhì)是解答此題的關(guān)鍵.等面積法是求高度等線段長的常用手段.2、C【分析】根據(jù)反比例函數(shù)的性質(zhì),可得出1-m>0,從而得出m的取值范圍.【詳解】∵反比例函數(shù)的圖象的每一條曲線上,y都隨x的增大而減小,∴1-m>0,解得m<1,故答案為m<1.【點睛】本題考查了反比例函數(shù)的性質(zhì),當(dāng)k>0時,在每個象限內(nèi),y都隨x的增大而減小;當(dāng)k<0時,在每個象限內(nèi),y都隨x的增大而增大.3、C【分析】畫樹狀圖得出所有等可能結(jié)果,從中找到符合條件的結(jié)果數(shù),再根據(jù)概率公式計算可得.【詳解】解:畫樹狀圖得:∵共有12種等可能的結(jié)果,任取兩個不同的數(shù),其中積為偶數(shù)的有6種結(jié)果,∴積為偶數(shù)的概率是,故選:C.【點睛】本題考查的是用列表法或畫樹狀圖法求概率.列表法或畫樹狀圖法可以不重復(fù)不遺漏的列出所有可能的結(jié)果,列表法適合于兩步完成的事件,樹狀圖法適合兩步或兩步以上完成的事件.用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.4、D【分析】先求出口袋中藍(lán)球的個數(shù),再根據(jù)概率公式求出摸出一個球是藍(lán)球的概率即可.【詳解】設(shè)口袋中藍(lán)球的個數(shù)有x個,根據(jù)題意得:=,解得:x=4,則隨機(jī)摸出一個球是藍(lán)球的概率是=;故選:D.【點睛】本題考查了概率的知識.用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.5、C【解析】試題分析:如圖,設(shè)⊙O與AC相切于點E,連接OE,作OP1⊥BC垂足為P1交⊙O于Q1,此時垂線段OP1最短,P1Q1最小值為OP1﹣OQ1,∵AB=10,AC=8,BC=6,∴AB2=AC2+BC2,∴∠C=10°,∵∠OP1B=10°,∴OP1∥AC∵AO=OB,∴P1C=P1B,∴OP1=12AC=4,∴P1Q1最小值為OP1﹣OQ1=1,如圖,當(dāng)Q2在AB邊上時,P2與B重合時,P2Q2考點:切線的性質(zhì);最值問題.6、B【分析】根據(jù)已知條件確定各點與各圓的位置關(guān)系,對各個選項進(jìn)行判斷即可.【詳解】∵點C在線段AB上(點C與點A、B不重合),過點A、B的圓記作為∴點C可以在圓的內(nèi)部,故A錯誤,B正確;∵過點B、C的圓記作為圓∴點A可以在圓的外部,故C錯誤;∴點B可以在圓的外部,故D錯誤.故答案為B.【點睛】本題考查了點與圓的位置關(guān)系,根據(jù)題意畫出各點與各圓的位置關(guān)系進(jìn)行判斷即可.7、B【解析】設(shè)矩形DEFG的寬DE=x,根據(jù)相似三角形對應(yīng)高的比等于相似比列式求出DG,再根據(jù)矩形的面積列式整理,然后根據(jù)二次函數(shù)的最值問題解答即可.【詳解】如圖所示:設(shè)矩形DEFG的寬DE=x,則AM=AH-HM=8-x,

∵矩形的對邊DG∥EF,

∴△ADG∽△ABC,∴,即,解得DG=(8-x),

四邊形DEFG的面積=(8-x)x=-(x1-8x+16)+10=-(x-4)1+10,

所以,當(dāng)x=4,即DE=4時,四邊形DEFG最大面積為10cm1.

故選B.【點睛】考查了相似三角形的應(yīng)用,二次函數(shù)的最值問題,根據(jù)相似三角形的對應(yīng)高的比等于相似比用矩形DEFG的寬表示出長是解題的關(guān)鍵.8、C【分析】在Rt△ABC中,由勾股定理可直接求得AB的長;過C作CM⊥AB,交AB于點M,由垂徑定理可得M為AE的中點,在Rt△ACM中,根據(jù)勾股定理得AM的長,從而得到AE的長.【詳解】解:在Rt△ABC中,

∵AC=3,BC=4,

∴AB==1.

過C作CM⊥AB,交AB于點M,如圖所示,

由垂徑定理可得M為AE的中點,

∵S△ABC=AC?BC=AB?CM,且AC=3,BC=4,AB=1,

∴CM=,

在Rt△ACM中,根據(jù)勾股定理得:AC2=AM2+CM2,即9=AM2+()2,

解得:AM=,

∴AE=2AM=.

故選:C.【點睛】本題考查的是垂徑定理,根據(jù)題意作出輔助線,構(gòu)造出直角三角形是解答此題的關(guān)鍵.9、A【解析】方程利用兩數(shù)相乘積為0,兩因式中至少有一個為0轉(zhuǎn)化為兩個一元一次方程來求解.【詳解】解:方程x(x-1)=0,

可得x=0或x-1=0,

解得:x=0或x=1.

故選:A.【點睛】此題考查了解一元二次方程-因式分解法,熟練掌握因式分解的方法是解本題的關(guān)鍵.10、D【分析】根據(jù)根的判別式即可求出答案.【詳解】由題意可知:△=9﹣4×2×5=﹣31<0,故選:D.【點睛】本題考查的是一元二次方程系數(shù)與根的關(guān)系,當(dāng)時,有兩個不相等的實數(shù)根;當(dāng)時,有兩個相等的實數(shù)根;當(dāng)時,沒有實數(shù)根.11、D【分析】根據(jù)題意,連接OC,由切線的性質(zhì)可知,再由圓周角定理即可得解.【詳解】依題意,如下圖,連接OC,∵切半圓于點,∴OC⊥CP,即∠OCP=90°,∵,∴,∴,故選:D.【點睛】本題主要考查了切線的性質(zhì)及圓周角定理,熟練掌握相關(guān)知識是解決本題的關(guān)鍵.12、C【詳解】∵在ABCD中,對角線AC與BD相交于點O,∴AO=CO,∠AFO=∠CEO,∵在△AFO和△CEO中,∠AFO=∠CEO,∠FOA=∠EOC,AO=CO,∴△AFO≌△CEO(AAS),∴FO=EO,∴四邊形AECF平行四邊形,∵EF⊥AC,∴平行四邊形AECF是菱形,故選C.二、填空題(每題4分,共24分)13、x(x-5)【分析】直接提公因式,即可得到答案.【詳解】解:,故答案為:.【點睛】本題考查了提公因式法因式分解,解題的關(guān)鍵是熟練掌握因式分解的方法.14、一【分析】由二次函數(shù)解析式表示出頂點坐標(biāo),根據(jù)圖形得到頂點在第四象限,求出m與n的正負(fù),即可作出判斷.【詳解】根據(jù)題意得:拋物線的頂點坐標(biāo)為(﹣m,n),且在第四象限,∴﹣m>0,n<0,即m<0,n<0,則一次函數(shù)y=mx+n不經(jīng)過第一象限.故答案為:一.【點睛】此題考查了二次函數(shù)與一次函數(shù)圖象與系數(shù)的關(guān)系,熟練掌握二次函數(shù)及一次函數(shù)的圖象與性質(zhì)是解本題的關(guān)鍵.15、45°.【分析】直接利用特殊角的三角函數(shù)值得出答案.【詳解】解:∵,∴α=45°.故答案為:45°.【點睛】本題考查的知識點特殊角的三角函數(shù)值,理解并熟記特殊角的三角函數(shù)值是解題的關(guān)鍵.16、.【分析】連接OP,OC,證明△OAP≌△OCP,可得PC與⊙O相切于點C,證明BC=CP,設(shè)OM=x,則BC=CP=AP=2x,PM=y(tǒng),證得△AMP∽△OAP,可得:,證明△PMF∽△BCF,由可得出答案.【詳解】解:連接OP,OC.∵PA與⊙O相切于點A,PA=PC,∴∠OAP=90°,∵OA=OC,OP=OP,∴△OAP≌△OCP(SSS),∴∠OAP=∠OCP=90°,∴PC與⊙O相切于點C,∵∠APB=3∠BPC,∠APO=∠CPO,∴∠CPB=∠OPB,∵AB是⊙O的直徑,∴∠BCA=90°,∵OP⊥AC,∴OP∥BC,∴∠CBP=∠CPB,∴BC=CP=AP.∵OA=OB,∴OM=.設(shè)OM=x,則BC=CP=AP=2x,PM=y(tǒng),∵∠OAP=∠AMP=90°,∠MPA=∠APO,∴△AMP∽△OAP,∴.∴AP2=PM?OP,∴(2x)2=y(tǒng)(y+x),解得:,(舍去).∵PM∥BC,∴△PMF∽△BCF,∴=.故答案為:.【點睛】本題考查了切線的判定與性質(zhì),等腰三角形的判定與性質(zhì),相似三角形的判定與性質(zhì),圓周角定理.正確作出輔助線,熟練掌握相似三角形的判定與性質(zhì)是解題的關(guān)鍵.17、x≥-1且x≠1.【分析】根據(jù)二次根式的被開方數(shù)非負(fù)和分式的分母不為0可得關(guān)于x的不等式組,解不等式組即可求得答案.【詳解】解:根據(jù)題意,得,解得x≥-1且x≠1.故答案為x≥-1且x≠1.【點睛】本題考查了二次根式有意義的條件和分式有意義的條件,難度不大,屬于基礎(chǔ)題型.18、相交【分析】先根據(jù)題意判斷出直線與圓的位置關(guān)系即可得出結(jié)論.【詳解】∵⊙O的半徑為6cm,圓心O到直線l的距離為5cm,6cm>5cm,∴直線l與⊙O相交,故答案為:相交.【點睛】本題考查的是直線與圓的位置關(guān)系,熟知設(shè)⊙O的半徑為r,圓心O到直線l的距離為d,當(dāng)d<r時,直線與圓相交是解答此題的關(guān)鍵.三、解答題(共78分)19、(1)答案見解析;(2)1.【分析】(1)確定三角形的外接圓的圓心,根據(jù)其是三角形邊的垂直平分線的交點進(jìn)行確定即可;(2)連接OA,OC,先證明△AOC是等邊三角形,從而得到圓的半徑.【詳解】解:(1)作法如下:①作線段AB的垂直平分線,②作線段BC的垂直平分線,③以兩條垂直平分線的交點O為圓心,OA長為半圓畫圓,則圓O即為所求作的圓;(2)連接OA,OC,∵∠B=30°,∴∠AOC=60°,∵OA=OC,∴△AOC是等邊三角形,∵AC=1,∴OA=OC=1,即圓的半徑是1,故答案為1.【點睛】本題考查了尺規(guī)作三角形外接圓、圓中的計算問題,解題的關(guān)鍵是熟知“三角形邊的垂直平分線的交點是三角形的外接圓的圓心”.20、【解析】先得出式子中的特殊角的三角函數(shù)值,再按實數(shù)溶合運(yùn)算順序進(jìn)行計算即可.解:原式=21、(1);(2)【分析】(2)根據(jù)特殊角的三角函數(shù)值,代入求出即可.(2)根據(jù)特殊角的三角函數(shù)值,零指數(shù)冪求出每一部分的值,代入求出即可.【詳解】(1)(2)【點睛】本題考查了實數(shù)的運(yùn)算法則,同時也利用了特殊角的三角函數(shù)值、0指數(shù)冪的定義及負(fù)指數(shù)冪定義解決問題.22、⑴OE=2;⑵見詳解⑶【分析】(1)連結(jié)OE,根據(jù)垂徑定理可以得到,得到∠AOE=60o,OC=OE,根據(jù)勾股定理即可求出.(2)只要證明出∠OEM=90°即可,由(1)得到∠AOE=60o,根據(jù)EM∥BD,∠B=∠M=30°,即可求出.(3)連接OF,根據(jù)∠APD=45°,可以求出∠EDF=45o,根據(jù)圓心角為2倍的圓周角,得到∠BOE,用扇形OEF面積減去三角形OEF面積即可.【詳解】(1)連結(jié)OE∵DE垂直O(jiān)A,∠B=30°∴CE=DE=3,∴∠AOE=2∠B=60o,∴∠CEO=30°,OC=OE由勾股定理得OE=(2)∵EM∥BD,∴∠M=∠B=30o,∠M+∠AOE=90o∴∠OEM=90o,即OE⊥ME,∴EM是⊙O的切線(3)再連結(jié)OF,當(dāng)∠APD=45o時,∠EDF=45o,∴∠EOF=90oS陰影==【點睛】本題主要考查了圓的切線判定、垂徑定理、平行線的性質(zhì)定理以及扇形面積的簡單計算,熟記概念是解題的關(guān)鍵.23、(1)證明見解析;(2)證明見解析;(3)EF=.【分析】(1)根據(jù)正方形的性質(zhì)有AD=CD,根據(jù)等腰直角三角形的性質(zhì)有DE=DF,已知兩邊嘗試找其夾角對應(yīng)相等,根據(jù)等角的余角相等可得,∠ADE=∠CDF,據(jù)此可證;(2)此題有多種方法可解,可以延長BA交DE與M,結(jié)合第(1)問全等三角形的結(jié)論用等角做差求得∠BAG=∠FCG,再加上一對對頂角相等即可證明;(3)根據(jù)第(2)問相似三角形的結(jié)論,易得,在Rt△CFG中得到了兩直角邊CF與FG的倍數(shù)關(guān)系,再運(yùn)用勾股定理即可解出CF與FG的長度,又AE=CF,即可解答.【詳解】證明:(1)∵正方形ABCD,等腰直角三角形EDF,∴∠ADC=∠EDF=90°,AD=CD,DE=DF,∴∠ADE+∠ADF=∠ADF+∠CDF,∴∠ADE=∠CDF,在△ADE和△CDF中,,∠=∠,;∴△ADE≌△CDF(SAS);(2)延長BA到M,交ED于點M,∵△ADE≌△CDF,∴∠EAD=∠FCD,即∠EAM+∠MAD=∠BCD+∠BCF,∵∠MAD=∠BCD=90°,∴∠EAM=∠BCF,∵∠EAM=∠BAG,∴∠BAG=∠BCF,∵∠AGB=∠CGF,∴△ABG∽△CFG.(3)∵正方形ABCD的的邊長為2,G為BC的中點,∴BG=CG=1,AG=,∵△ABG∽△CFG,∴,CF=2FG,∵CF2+FG2=CG2,(2FG)2+FG2=12,∴GF=,CF=,∵△DAE≌△DCF,∴AE=CF,∴EF=EA+AG+GF=CF+AG+GF=++=.【點睛】本題綜合考查了正方形與等腰直角三角形的性質(zhì),全等三角形與相似三角形的判定,勾股定理的應(yīng)用等知識,熟練掌握各個知識點,并以正確的思維靈活運(yùn)用是解答關(guān)鍵.24、96【分析】如圖1,延長FG交BC于H,設(shè)CE=x,則E'H'=CE=x,根據(jù)軸對稱的性質(zhì)得:D'E'=DC=E'F'=9,表示GH,EH,BE的長,證明△EGH∽△EAB,則,可得x的值,即可求出線段、及FG的長,故可求解.【詳解】(1)如圖1,延長FG交BC于H,設(shè)CE=x,則E'H'=CE=x,由軸對稱的性質(zhì)得:D'E'=DC=E'F'=9,∴H'F'=AF=9+x,∵AD=BC=16,∴DF=16?(9+x)=7?x,即C'D'=DF=7?x=F'G',∴FG=7?x,∴GH=9?(7?x)=2+x,EH=16?x?(9+x)=7?2x,∴EH∥AB,∴△EGH∽△EAB,∴,∴,解得x=1或31(舍),、及FG∴AF=9+x=10,EC=1,故AF-EC=9故答案為:9;(2)由(1)得FG=7?x=7-1=6.【點睛】本題考查了圖形的拼剪,軸對稱的性質(zhì),矩形、直角三角形、相似三角形等相關(guān)知識,積累了將實際問題轉(zhuǎn)化為數(shù)學(xué)問題經(jīng)驗,滲透了數(shù)形結(jié)合的思想,體現(xiàn)了數(shù)學(xué)思想方法在現(xiàn)實問題中的應(yīng)用價值.25、(1)y=4x1﹣14x+144;(1)111mm1.【分析】(1)用x表示PB和BQ.利用兩個直角三角形的面積差求得答案即可;(1)求出x=1時,y的值即可得.【詳解】解:(1)∵運(yùn)動時間為x,點P的速度為1mm/s,點Q的速度為4mm/s,∴PB=11﹣1x,BQ=4x,∴y=.(1)當(dāng)x=1時,y=4×11﹣14×1+144=111,即當(dāng)x=1時,四邊形APQC的面積為111mm1.【點睛】本題考查了幾何動點與二次函數(shù)的問題,解題的關(guān)鍵是根據(jù)動點的運(yùn)動表

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論