版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
江西師大附中2024年中考數(shù)學(xué)對(duì)點(diǎn)突破模擬試卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請(qǐng)按要求用筆。3.請(qǐng)按照題號(hào)順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1.2017年“智慧天津”建設(shè)成效顯著,互聯(lián)網(wǎng)出口帶寬達(dá)到17200吉比特每秒.將17200用科學(xué)記數(shù)法表示應(yīng)為()A.172×102 B.17.2×103 C.1.72×104 D.0.172×1052.如圖,AB是⊙O的切線,半徑OA=2,OB交⊙O于C,∠B=30°,則劣弧的長是()A.π B. C.π D.π3.如圖,釣魚竿AC長6m,露在水面上的魚線BC長m,某釣者想看看魚釣上的情況,把魚竿AC轉(zhuǎn)動(dòng)到AC'的位置,此時(shí)露在水面上的魚線B′C′為m,則魚竿轉(zhuǎn)過的角度是()A.60° B.45° C.15° D.90°4.如圖是由4個(gè)相同的正方體搭成的幾何體,則其俯視圖是()A. B. C. D.5.某種超薄氣球表面的厚度約為,這個(gè)數(shù)用科學(xué)記數(shù)法表示為()A. B. C. D.6.下列對(duì)一元二次方程x2+x﹣3=0根的情況的判斷,正確的是()A.有兩個(gè)不相等實(shí)數(shù)根 B.有兩個(gè)相等實(shí)數(shù)根C.有且只有一個(gè)實(shí)數(shù)根 D.沒有實(shí)數(shù)根7.如圖所示的四邊形,與選項(xiàng)中的一個(gè)四邊形相似,這個(gè)四邊形是()A. B. C. D.8.下列圖案中,既是軸對(duì)稱圖形又是中心對(duì)稱圖形的是()A. B. C. D.9.已知二次函數(shù)y=x2+bx﹣9圖象上A、B兩點(diǎn)關(guān)于原點(diǎn)對(duì)稱,若經(jīng)過A點(diǎn)的反比例函數(shù)的解析式是y=,則該二次函數(shù)的對(duì)稱軸是直線()A.x=1 B.x= C.x=﹣1 D.x=﹣10.下列運(yùn)算正確的是()A.a(chǎn)3?a2=a6 B.(2a)3=6a3C.(a﹣b)2=a2﹣b2 D.3a2﹣a2=2a211.如圖,已知點(diǎn)A(1,0),B(0,2),以AB為邊在第一象限內(nèi)作正方形ABCD,直線CD與y軸交于點(diǎn)G,再以DG為邊在第一象限內(nèi)作正方形DEFG,若反比例函數(shù)的圖像經(jīng)過點(diǎn)E,則k的值是()(A)33(B)34(C)35(D)3612.如圖,在△ABC中,EF∥BC,,S四邊形BCFE=8,則S△ABC=()A.9 B.10 C.12 D.13二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13.如圖,數(shù)軸上點(diǎn)A、B、C所表示的數(shù)分別為a、b、c,點(diǎn)C是線段AB的中點(diǎn),若原點(diǎn)O是線段AC上的任意一點(diǎn),那么a+b-2c=______.14.矩形紙片ABCD,AB=9,BC=6,在矩形邊上有一點(diǎn)P,且DP=1.將矩形紙片折疊,使點(diǎn)B與點(diǎn)P重合,折痕所在直線交矩形兩邊于點(diǎn)E,F(xiàn),則EF長為________.15.如圖,在矩形ABCD中,AB=2,AD=6,E.F分別是線段AD,BC上的點(diǎn),連接EF,使四邊形ABFE為正方形,若點(diǎn)G是AD上的動(dòng)點(diǎn),連接FG,將矩形沿FG折疊使得點(diǎn)C落在正方形ABFE的對(duì)角線所在的直線上,對(duì)應(yīng)點(diǎn)為P,則線段AP的長為______.16.中國的陸地面積約為9600000km2,把9600000用科學(xué)記數(shù)法表示為.17.如圖,⊙O是△ABC的外接圓,∠AOB=70°,AB=AC,則∠ABC=__.
18.如圖,在梯形中,,E、F分別是邊的中點(diǎn),設(shè),那么等于__________(結(jié)果用的線性組合表示).三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)如圖,在平面直角坐標(biāo)系中,A為y軸正半軸上一點(diǎn),過點(diǎn)A作x軸的平行線,交函數(shù)的圖象于B點(diǎn),交函數(shù)的圖象于C,過C作y軸和平行線交BO的延長線于D.(1)如果點(diǎn)A的坐標(biāo)為(0,2),求線段AB與線段CA的長度之比;(2)如果點(diǎn)A的坐標(biāo)為(0,a),求線段AB與線段CA的長度之比;(3)在(1)條件下,四邊形AODC的面積為多少?20.(6分)某商店在2014年至2016年期間銷售一種禮盒.2014年,該商店用3500元購進(jìn)了這種禮盒并且全部售完;2016年,這種禮盒的進(jìn)價(jià)比2014年下降了11元/盒,該商店用2400元購進(jìn)了與2014年相同數(shù)量的禮盒也全部售完,禮盒的售價(jià)均為60元/盒.(1)2014年這種禮盒的進(jìn)價(jià)是多少元/盒?(2)若該商店每年銷售這種禮盒所獲利潤的年增長率相同,問年增長率是多少?21.(6分)如圖,矩形ABCD中,AB=4,AD=5,E為BC上一點(diǎn),BE∶CE=3∶2,連接AE,點(diǎn)P從點(diǎn)A出發(fā),沿射線AB的方向以每秒1個(gè)單位長度的速度勻速運(yùn)動(dòng),過點(diǎn)P作PF∥BC交直線AE于點(diǎn)F.(1)線段AE=______;(2)設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t(s),EF的長度為y,求y關(guān)于t的函數(shù)關(guān)系式,并寫出t的取值范圍;(3)當(dāng)t為何值時(shí),以F為圓心的⊙F恰好與直線AB、BC都相切?并求此時(shí)⊙F的半徑.22.(8分)如圖,在平面直角坐標(biāo)系中,拋物線y=﹣x2+bx+c(a≠0)與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C,點(diǎn)A的坐標(biāo)為(﹣1,0),拋物線的對(duì)稱軸直線x=交x軸于點(diǎn)D.(1)求拋物線的解析式;(2)點(diǎn)E是線段BC上的一個(gè)動(dòng)點(diǎn),過點(diǎn)E作x軸的垂線與拋物線相交于點(diǎn)F,交x軸于點(diǎn)G,當(dāng)點(diǎn)E運(yùn)動(dòng)到什么位置時(shí),四邊形CDBF的面積最大?求出四邊形CDBF的最大面積及此時(shí)E點(diǎn)的坐標(biāo);(3)在(2)的條件下,將線段FG繞點(diǎn)G順時(shí)針旋轉(zhuǎn)一個(gè)角α(0°<α<90°),在旋轉(zhuǎn)過程中,設(shè)線段FG與拋物線交于點(diǎn)N,在線段GB上是否存在點(diǎn)P,使得以P、N、G為頂點(diǎn)的三角形與△ABC相似?如果存在,請(qǐng)直接寫出點(diǎn)P的坐標(biāo);如果不存在,請(qǐng)說明理由.23.(8分)某班為了解學(xué)生一學(xué)期做義工的時(shí)間情況,對(duì)全班50名學(xué)生進(jìn)行調(diào)查,按做義工的時(shí)間(單位:小時(shí)),將學(xué)生分成五類:類(),類(),類(),類(),類(),繪制成尚不完整的條形統(tǒng)計(jì)圖如圖11.根據(jù)以上信息,解答下列問題:類學(xué)生有人,補(bǔ)全條形統(tǒng)計(jì)圖;類學(xué)生人數(shù)占被調(diào)查總?cè)藬?shù)的%;從該班做義工時(shí)間在的學(xué)生中任選2人,求這2人做義工時(shí)間都在中的概率.24.(10分)已知關(guān)于x的方程(a﹣1)x2+2x+a﹣1=1.若該方程有一根為2,求a的值及方程的另一根;當(dāng)a為何值時(shí),方程的根僅有唯一的值?求出此時(shí)a的值及方程的根.25.(10分)如圖,AB是⊙O的直徑,∠BAC=90°,四邊形EBOC是平行四邊形,EB交⊙O于點(diǎn)D,連接CD并延長交AB的延長線于點(diǎn)F.(1)求證:CF是⊙O的切線;(2)若∠F=30°,EB=6,求圖中陰影部分的面積.(結(jié)果保留根號(hào)和π)26.(12分)如圖,已知AB是⊙O上的點(diǎn),C是⊙O上的點(diǎn),點(diǎn)D在AB的延長線上,∠BCD=∠BAC.求證:CD是⊙O的切線;若∠D=30°,BD=2,求圖中陰影部分的面積.27.(12分)在△ABC中,AB=AC≠BC,點(diǎn)D和點(diǎn)A在直線BC的同側(cè),BD=BC,∠BAC=α,∠DBC=β,且α+β=110°,連接AD,求∠ADB的度數(shù).(不必解答)小聰先從特殊問題開始研究,當(dāng)α=90°,β=30°時(shí),利用軸對(duì)稱知識(shí),以AB為對(duì)稱軸構(gòu)造△ABD的軸對(duì)稱圖形△ABD′,連接CD′(如圖1),然后利用α=90°,β=30°以及等邊三角形等相關(guān)知識(shí)便可解決這個(gè)問題.請(qǐng)結(jié)合小聰研究問題的過程和思路,在這種特殊情況下填空:△D′BC的形狀是三角形;∠ADB的度數(shù)為.在原問題中,當(dāng)∠DBC<∠ABC(如圖1)時(shí),請(qǐng)計(jì)算∠ADB的度數(shù);在原問題中,過點(diǎn)A作直線AE⊥BD,交直線BD于E,其他條件不變?nèi)鬊C=7,AD=1.請(qǐng)直接寫出線段BE的長為.
參考答案一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、C【解析】
科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時(shí),要看把原數(shù)變成a時(shí),小數(shù)點(diǎn)移動(dòng)了多少位,n的絕對(duì)值與小數(shù)點(diǎn)移動(dòng)的位數(shù)相同.當(dāng)原數(shù)絕對(duì)值>1時(shí),n是正數(shù);當(dāng)原數(shù)的絕對(duì)值<1時(shí),n是負(fù)數(shù).【詳解】解:將17200用科學(xué)記數(shù)法表示為1.72×1.
故選C.【點(diǎn)睛】此題考查科學(xué)記數(shù)法的表示方法.科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時(shí)關(guān)鍵要正確確定a的值以及n的值.2、C【解析】
由切線的性質(zhì)定理得出∠OAB=90°,進(jìn)而求出∠AOB=60°,再利用弧長公式求出即可.【詳解】∵AB是⊙O的切線,∴∠OAB=90°,∵半徑OA=2,OB交⊙O于C,∠B=30°,∴∠AOB=60°,∴劣弧AC?的長是:=,故選:C.【點(diǎn)睛】本題考查了切線的性質(zhì),圓周角定理,弧長的計(jì)算,解題的關(guān)鍵是先求出角度再用弧長公式進(jìn)行計(jì)算.3、C【解析】試題解析:∵sin∠CAB=∴∠CAB=45°.∵,∴∠C′AB′=60°.∴∠CAC′=60°-45°=15°,魚竿轉(zhuǎn)過的角度是15°.故選C.考點(diǎn):解直角三角形的應(yīng)用.4、A【解析】試題分析:從上面看是一行3個(gè)正方形.故選A考點(diǎn):三視圖5、A【解析】
絕對(duì)值小于1的正數(shù)也可以利用科學(xué)記數(shù)法表示,一般形式為,與較大數(shù)的科學(xué)記數(shù)法不同的是其所使用的是負(fù)指數(shù)冪,指數(shù)由原數(shù)左邊起第一個(gè)不為零的數(shù)字前面的0的個(gè)數(shù)所決定.【詳解】,故選:A.【點(diǎn)睛】本題考查了用科學(xué)記數(shù)法表示較小的數(shù),一般形式為,其中,n為由原數(shù)左邊起第一個(gè)不為零的數(shù)字前面的0的個(gè)數(shù)所決定.6、A【解析】【分析】根據(jù)方程的系數(shù)結(jié)合根的判別式,即可得出△=13>0,進(jìn)而即可得出方程x2+x﹣3=0有兩個(gè)不相等的實(shí)數(shù)根.【詳解】∵a=1,b=1,c=﹣3,∴△=b2﹣4ac=12﹣4×(1)×(﹣3)=13>0,∴方程x2+x﹣3=0有兩個(gè)不相等的實(shí)數(shù)根,故選A.【點(diǎn)睛】本題考查了根的判別式,一元二次方程根的情況與判別式△的關(guān)系:(1)△>0?方程有兩個(gè)不相等的實(shí)數(shù)根;(2)△=0?方程有兩個(gè)相等的實(shí)數(shù)根;(3)△<0?方程沒有實(shí)數(shù)根.7、D【解析】
根據(jù)勾股定理求出四邊形第四條邊的長度,進(jìn)而求出四邊形四條邊之比,根據(jù)相似多邊形的性質(zhì)判斷即可.【詳解】解:作AE⊥BC于E,則四邊形AECD為矩形,∴EC=AD=1,AE=CD=3,∴BE=4,由勾股定理得,AB==5,∴四邊形ABCD的四條邊之比為1:3:5:5,D選項(xiàng)中,四條邊之比為1:3:5:5,且對(duì)應(yīng)角相等,故選D.【點(diǎn)睛】本題考查的是相似多邊形的判定和性質(zhì),掌握相似多邊形的對(duì)應(yīng)邊的比相等是解題的關(guān)鍵.8、B【解析】
根據(jù)軸對(duì)稱圖形與中心對(duì)稱圖形的概念求解.【詳解】A、是軸對(duì)稱圖形,不是中心對(duì)稱圖形,故此選項(xiàng)錯(cuò)誤;
B、是軸對(duì)稱圖形,也是中心對(duì)稱圖形,故此選項(xiàng)正確;
C、不是軸對(duì)稱圖形,是中心對(duì)稱圖形,故此選項(xiàng)錯(cuò)誤;
D、不是軸對(duì)稱圖形,是中心對(duì)稱圖形,故此選項(xiàng)錯(cuò)誤.
故選B.【點(diǎn)睛】考查了中心對(duì)稱圖形與軸對(duì)稱圖形的概念.軸對(duì)稱圖形的關(guān)鍵是尋找對(duì)稱軸,圖形兩部分折疊后可重合,中心對(duì)稱圖形是要尋找對(duì)稱中心,旋轉(zhuǎn)180度后兩部分重合.9、D【解析】
設(shè)A點(diǎn)坐標(biāo)為(a,),則可求得B點(diǎn)坐標(biāo),把兩點(diǎn)坐標(biāo)代入拋物線的解析式可得到關(guān)于a和b的方程組,可求得b的值,則可求得二次函數(shù)的對(duì)稱軸.【詳解】解:∵A在反比例函數(shù)圖象上,∴可設(shè)A點(diǎn)坐標(biāo)為(a,).∵A、B兩點(diǎn)關(guān)于原點(diǎn)對(duì)稱,∴B點(diǎn)坐標(biāo)為(﹣a,﹣).又∵A、B兩點(diǎn)在二次函數(shù)圖象上,∴代入二次函數(shù)解析式可得:,解得:或,∴二次函數(shù)對(duì)稱軸為直線x=﹣.故選D.【點(diǎn)睛】本題主要考查二次函數(shù)的性質(zhì),待定系數(shù)法求二次函數(shù)解析式,根據(jù)條件先求得b的值是解題的關(guān)鍵,注意掌握關(guān)于原點(diǎn)對(duì)稱的兩點(diǎn)的坐標(biāo)的關(guān)系.10、D【解析】試題分析:根據(jù)同底數(shù)冪相乘,底數(shù)不變指數(shù)相加求解求解;根據(jù)積的乘方,等于把積的每一個(gè)因式分別乘方,再把所得的冪相乘求解;根據(jù)完全平方公式求解;根據(jù)合并同類項(xiàng)法則求解.解:A、a3?a2=a3+2=a5,故A錯(cuò)誤;B、(2a)3=8a3,故B錯(cuò)誤;C、(a﹣b)2=a2﹣2ab+b2,故C錯(cuò)誤;D、3a2﹣a2=2a2,故D正確.故選D.點(diǎn)評(píng):本題考查了完全平方公式,合并同類項(xiàng)法則,同底數(shù)冪的乘法,積的乘方的性質(zhì),熟記性質(zhì)與公式并理清指數(shù)的變化是解題的關(guān)鍵.11、D【解析】試題分析:過點(diǎn)E作EM⊥OA,垂足為M,∵A(1,0),B(0,2),∴OA-1,OB=2,又∵∠AOB=90°,∴AB==,∵AB//CD,∴∠ABO=∠CBG,∵∠BCG=90°,∴△BCG∽△AOB,∴,∵BC=AB=,∴CG=2,∵CD=AD=AB=,∴DG=3,∴DE=DG=3,∴AE=4,∵∠BAD=90°,∴∠EAM+∠BAO=90°,∵∠BAO+∠ABO=90°,∴∠EAM=∠ABO,又∵∠EMA=90°,∴△EAM∽△ABO,∴,即,∴AM=8,EM=4,∴AM=9,∴E(9,4),∴k=4×9=36;故選D.考點(diǎn):反比例函數(shù)綜合題.12、A【解析】
由在△ABC中,EF∥BC,即可判定△AEF∽△ABC,然后由相似三角形面積比等于相似比的平方,即可求得答案.【詳解】∵,∴.又∵EF∥BC,∴△AEF∽△ABC.∴.∴1S△AEF=S△ABC.又∵S四邊形BCFE=8,∴1(S△ABC﹣8)=S△ABC,解得:S△ABC=1.故選A.二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13、1【解析】∵點(diǎn)A、B、C所表示的數(shù)分別為a、b、c,點(diǎn)C是線段AB的中點(diǎn),∴由中點(diǎn)公式得:c=,∴a+b=2c,∴a+b-2c=1.故答案為1.14、6或2.【解析】試題分析:根據(jù)P點(diǎn)的不同位置,此題分兩種情況計(jì)算:①點(diǎn)P在CD上;②點(diǎn)P在AD上.①點(diǎn)P在CD上時(shí),如圖:∵PD=1,CD=AB=9,∴CP=6,∵EF垂直平分PB,∴四邊形PFBE是鄰邊相等的矩形即正方形,EF過點(diǎn)C,∵BF=BC=6,∴由勾股定理求得EF=;②點(diǎn)P在AD上時(shí),如圖:先建立相似三角形,過E作EQ⊥AB于Q,∵PD=1,AD=6,∴AP=1,AB=9,由勾股定理求得PB==1,∵EF垂直平分PB,∴∠1=∠2(同角的余角相等),又∵∠A=∠EQF=90°,∴△ABP∽△EFQ(兩角對(duì)應(yīng)相等,兩三角形相似),∴對(duì)應(yīng)線段成比例:,代入相應(yīng)數(shù)值:,∴EF=2.綜上所述:EF長為6或2.考點(diǎn):翻折變換(折疊問題).15、1或1﹣2【解析】
當(dāng)點(diǎn)P在AF上時(shí),由翻折的性質(zhì)可求得PF=FC=1,然后再求得正方形的對(duì)角線AF的長,從而可得到PA的長;當(dāng)點(diǎn)P在BE上時(shí),由正方形的性質(zhì)可知BP為AF的垂直平分線,則AP=PF,由翻折的性質(zhì)可求得PF=FC=1,故此可得到AP的值.【詳解】解:如圖1所示:由翻折的性質(zhì)可知PF=CF=1,∵ABFE為正方形,邊長為2,∴AF=2.∴PA=1﹣2.如圖2所示:由翻折的性質(zhì)可知PF=FC=1.∵ABFE為正方形,∴BE為AF的垂直平分線.∴AP=PF=1.故答案為:1或1﹣2.【點(diǎn)睛】本題主要考查的是翻折的性質(zhì)、正方形的性質(zhì)的應(yīng)用,根據(jù)題意畫出符合題意的圖形是解題的關(guān)鍵.16、9.6×1.【解析】
將9600000用科學(xué)記數(shù)法表示為9.6×1.故答案為9.6×1.17、35°【解析】試題分析:∵∠AOB=70°,∴∠C=∠AOB=35°.∵AB=AC,∴∠ABC=∠C=35°.故答案為35°.考點(diǎn):圓周角定理.18、.【解析】
作AH∥EF交BC于H,首先證明四邊形EFHA是平行四邊形,再利用三角形法則計(jì)算即可.【詳解】作AH∥EF交BC于H.∵AE∥FH,∴四邊形EFHA是平行四邊形,∴AE=HF,AH=EF.∵AE=ED=HF,∴.∵BC=2AD,∴2.∵BF=FC,∴,∴.∵.故答案為:.【點(diǎn)睛】本題考查了平面向量,解題的關(guān)鍵是熟練掌握三角形法則,屬于中考??碱}型.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、(1)線段AB與線段CA的長度之比為;(2)線段AB與線段CA的長度之比為;(3)1.【解析】試題分析:(1)由題意把y=2代入兩個(gè)反比例函數(shù)的解析式即可求得點(diǎn)B、C的橫坐標(biāo),從而得到AB、AC的長,即可得到線段AB與AC的比值;(2)由題意把y=a代入兩個(gè)反比例函數(shù)的解析式即可求得用“a”表示的點(diǎn)B、C的橫坐標(biāo),從而可得到AB、AC的長,即可得到線段AB與AC的比值;(3)由(1)可知,AB:AC=1:3,由此可得AB:BC=1:4,利用OA=2和平行線分線段成比例定理即可求得CD的長,從而可由梯形的面積公式求出四邊形AODC的面積.試題解析:(1)∵A(0,2),BC∥x軸,∴B(﹣1,2),C(3,2),∴AB=1,CA=3,∴線段AB與線段CA的長度之比為;(2)∵B是函數(shù)y=﹣(x<0)的一點(diǎn),C是函數(shù)y=(x>0)的一點(diǎn),∴B(﹣,a),C(,a),∴AB=,CA=,∴線段AB與線段CA的長度之比為;(3)∵=,∴=,又∵OA=a,CD∥y軸,∴,∴CD=4a,∴四邊形AODC的面積為=(a+4a)×=1.20、(1)35元/盒;(2)20%.【解析】
試題分析:(1)設(shè)2014年這種禮盒的進(jìn)價(jià)為x元/盒,則2016年這種禮盒的進(jìn)價(jià)為(x﹣11)元/盒,根據(jù)2014年花3500元與2016年花2400元購進(jìn)的禮盒數(shù)量相同,即可得出關(guān)于x的分式方程,解之經(jīng)檢驗(yàn)后即可得出結(jié)論;(2)設(shè)年增長率為m,根據(jù)數(shù)量=總價(jià)÷單價(jià)求出2014年的購進(jìn)數(shù)量,再根據(jù)2014年的銷售利潤×(1+增長率)2=2016年的銷售利潤,即可得出關(guān)于m的一元二次方程,解之即可得出結(jié)論.試題解析:(1)設(shè)2014年這種禮盒的進(jìn)價(jià)為x元/盒,則2016年這種禮盒的進(jìn)價(jià)為(x﹣11)元/盒,根據(jù)題意得:,解得:x=35,經(jīng)檢驗(yàn),x=35是原方程的解.答:2014年這種禮盒的進(jìn)價(jià)是35元/盒.(2)設(shè)年增長率為m,2014年的銷售數(shù)量為3500÷35=100(盒).根據(jù)題意得:(60﹣35)×100(1+a)2=(60﹣35+11)×100,解得:a=0.2=20%或a=﹣2.2(不合題意,舍去).答:年增長率為20%.考點(diǎn):一元二次方程的應(yīng)用;分式方程的應(yīng)用;增長率問題.21、(1)5;(2);(3)時(shí),半徑PF=;t=16,半徑PF=12.【解析】
(1)由矩形性質(zhì)知BC=AD=5,根據(jù)BE:CE=3:2知BE=3,利用勾股定理可得AE=5;(2)由PF∥BE知,據(jù)此求得AF=t,再分0≤t≤4和t>4兩種情況分別求出EF即可得;(3)由以點(diǎn)F為圓心的⊙F恰好與直線AB、BC相切時(shí)PF=PG,再分t=0或t=4、0<t<4、t>4這三種情況分別求解可得【詳解】(1)∵四邊形ABCD為矩形,∴BC=AD=5,∵BE∶CE=3∶2,則BE=3,CE=2,∴AE===5.(2)如圖1,當(dāng)點(diǎn)P在線段AB上運(yùn)動(dòng)時(shí),即0≤t≤4,∵PF∥BE,∴=,即=,∴AF=t,則EF=AE-AF=5-t,即y=5-t(0≤t≤4);如圖2,當(dāng)點(diǎn)P在射線AB上運(yùn)動(dòng)時(shí),即t>4,此時(shí),EF=AF-AE=t-5,即y=t-5(t>4);綜上,;(3)以點(diǎn)F為圓心的⊙F恰好與直線AB、BC相切時(shí),PF=FG,分以下三種情況:①當(dāng)t=0或t=4時(shí),顯然符合條件的⊙F不存在;②當(dāng)0<t<4時(shí),如解圖1,作FG⊥BC于點(diǎn)G,則FG=BP=4-t,∵PF∥BC,∴△APF∽△ABE,∴=,即=,∴PF=t,由4-t=t可得t=,則此時(shí)⊙F的半徑PF=;③當(dāng)t>4時(shí),如解圖2,同理可得FG=t-4,PF=t,由t-4=t可得t=16,則此時(shí)⊙F的半徑PF=12.【點(diǎn)睛】本題主要考查了矩形的性質(zhì),勾股定理,動(dòng)點(diǎn)的函數(shù)為題,切線的性質(zhì),相似三角形的判定與性質(zhì)及分類討論的數(shù)學(xué)思想.解題的關(guān)鍵是熟練掌握切線的性質(zhì)、矩形的性質(zhì)及相似三角形的判定與性質(zhì).22、(1);(1),E(1,1);(3)存在,P點(diǎn)坐標(biāo)可以為(1+,5)或(3,5).【解析】
(1)設(shè)B(x1,5),由已知條件得,進(jìn)而得到B(2,5).又由對(duì)稱軸求得b.最終得到拋物線解析式.(1)先求出直線BC的解析式,再設(shè)E(m,=﹣m+1.),F(xiàn)(m,﹣m1+m+1.)求得FE的值,得到S△CBF﹣m1+2m.又由S四邊形CDBF=S△CBF+S△CDB,得S四邊形CDBF最大值,最終得到E點(diǎn)坐標(biāo).(3)設(shè)N點(diǎn)為(n,﹣n1+n+1),1<n<2.過N作NO⊥x軸于點(diǎn)P,得PG=n﹣1.又由直角三角形的判定,得△ABC為直角三角形,由△ABC∽△GNP,得n=1+或n=1﹣(舍去),求得P點(diǎn)坐標(biāo).又由△ABC∽△GNP,且時(shí),得n=3或n=﹣2(舍去).求得P點(diǎn)坐標(biāo).【詳解】解:(1)設(shè)B(x1,5).由A(﹣1,5),對(duì)稱軸直線x=.∴解得,x1=2.∴B(2,5).又∵∴b=.∴拋物線解析式為y=,(1)如圖1,∵B(2,5),C(5,1).∴直線BC的解析式為y=﹣x+1.由E在直線BC上,則設(shè)E(m,=﹣m+1.),F(xiàn)(m,﹣m1+m+1.)∴FE=﹣m1+m+1﹣(﹣n+1)=﹣m1+1m.由S△CBF=EF?OB,∴S△CBF=(﹣m1+1m)×2=﹣m1+2m.又∵S△CDB=BD?OC=×(2﹣)×1=∴S四邊形CDBF=S△CBF+S△CDB═﹣m1+2m+.化為頂點(diǎn)式得,S四邊形CDBF=﹣(m﹣1)1+.當(dāng)m=1時(shí),S四邊形CDBF最大,為.此時(shí),E點(diǎn)坐標(biāo)為(1,1).(3)存在.如圖1,由線段FG繞點(diǎn)G順時(shí)針旋轉(zhuǎn)一個(gè)角α(5°<α<95°),設(shè)N(n,﹣n1+n+1),1<n<2.過N作NO⊥x軸于點(diǎn)P(n,5).∴NP=﹣n1+n+1,PG=n﹣1.又∵在Rt△AOC中,AC1=OA1+OC1=1+2=5,在Rt△BOC中,BC1=OB1+OC1=16+2=15.AB1=51=15.∴AC1+BC1=AB1.∴△ABC為直角三角形.當(dāng)△ABC∽△GNP,且時(shí),即,整理得,n1﹣1n﹣6=5.解得,n=1+或n=1﹣(舍去).此時(shí)P點(diǎn)坐標(biāo)為(1+,5).當(dāng)△ABC∽△GNP,且時(shí),即,整理得,n1+n﹣11=5.解得,n=3或n=﹣2(舍去).此時(shí)P點(diǎn)坐標(biāo)為(3,5).綜上所述,滿足題意的P點(diǎn)坐標(biāo)可以為,(1+,5),(3,5).【點(diǎn)睛】本題考查求拋物線,三角形的性質(zhì)和面積的求法,直角三角形的判定,以及三角形相似的性質(zhì),屬于較難題.23、(1)5;(2)36%;(3).【解析】試題分析:(1)根據(jù):數(shù)據(jù)總數(shù)-已知的小組頻數(shù)=所求的小組頻數(shù),進(jìn)行求解,然后根據(jù)所求數(shù)據(jù)補(bǔ)全條形圖即可;(2)根據(jù):小組頻數(shù)=,進(jìn)行求解即可;(3)利用列舉法求概率即可.試題解析:(1)E類:50-2-3-22-18=5(人),故答案為:5;補(bǔ)圖如下:(2)D類:1850×100%=36%,故答案為:36%;(3)設(shè)這5人為有以下10種情況:其中,兩人都在的概率是:.24、(3)a=,方程的另一根為;(2)答案見解析.【解析】
(3)把x=2代入方程,求出a的值,再把a(bǔ)代入原方程,進(jìn)一步解方程即可;(2)分兩種情況探討:①當(dāng)a=3時(shí),為一元一次方程;②當(dāng)a≠3時(shí),利用b2-4ac=3求出a的值,再代入解方程即可.【詳解】(3)將x=2代入方程,得,解得:a=.將a=代入原方程得,解得:x3=,x2=2.∴a=,方程的另一根為;(2)①當(dāng)a=3時(shí),方程為2x=3,解得:x=3.②當(dāng)a≠3時(shí),由b2-4ac=3得4-4(a-3)2=3,解得:a=2或3.當(dāng)a=2時(shí),原方程為:x2+2x+3=3,解得:x3=x2=-3;當(dāng)a=3時(shí),原方程為:-x2+2x-3=3,解得:x3=x2=3.綜上所述,當(dāng)a=3,3,2時(shí),方程僅有一個(gè)根,分別為3,3,-3.考點(diǎn):3.一元二次方程根的判別式;2.解一元二次方程;3.分類思想的應(yīng)用.25、(1)證明見解析;(2)93﹣3π【解析】試題分析:(1)、連接OD,根據(jù)平行四邊形的性質(zhì)得出∠AOC=∠OBE,∠COD=∠ODB,結(jié)合OB=OD得出∠DOC=∠AOC,從而證明出△COD和△COA全等,從而的得出答案;(2)、首先根據(jù)題意得出△OBD為等邊三角形,根據(jù)等邊三角形的性質(zhì)得出EC=ED=BO=DB,根據(jù)Rt△AOC的勾股定理得出AC的長度,然后根據(jù)陰影部分的面積等于兩個(gè)△AOC的面積減去扇形OAD的面積得出答案.試題解析:(1)如圖連接OD.∵四邊形OBEC是平行四邊形,∴OC∥BE,∴∠AOC=∠OBE,∠COD=∠ODB,∵OB=OD,∴∠OBD=∠ODB,∴∠DOC=∠AOC,在△COD和△COA中,,∴△COD≌△COA,∴∠CDO=∠CAO=90°,∴CF⊥OD,∴CF是⊙O的切線.(2)∵∠F=30°,∠ODF=90°,∴∠DOF=∠AOC=∠COD=60°,∵OD=OB,∴△OBD是等邊三角形,∴∠4=60°,∵∠4=∠F+∠1,∴∠1=∠2=30°,∵EC∥OB,∴∠E=180°﹣∠4=120°,∴∠3=180°﹣∠E﹣∠2=30°,∴EC=ED=BO=DB,∵EB=6,∴OB=OD═OA=3,在Rt△AOC中,∵∠OAC=90°,OA=3,∠AOC=60°,∴AC=OA?tan60°=3,∴S陰=2?S△AOC﹣S扇形OAD=2××3×3﹣120Π×32360=9﹣3π.26、(1)證明見解析;(2)陰影部分面積為【解析】【分析】(1)連接OC,易證∠BCD=∠OCA,由于AB是直徑,所以∠ACB=90°,所以∠OCA+OCB=∠BCD+∠OCB=90°,CD是⊙O的切線;(2)設(shè)⊙O的半徑為r,AB=2r,由于∠D=30°,∠OCD=90°,所以可求出r=2,∠AOC=120°,BC=2,由勾股定理可知:AC=2,分別計(jì)算△OAC的面積以及扇形OAC的面積即可求出陰影部分面積.【詳解】(1)如圖,連接OC,∵OA=OC,∴∠BAC=∠OCA,∵∠BCD=∠BAC,∴∠BCD=∠OCA,∵AB是直徑,∴∠ACB=90°,∴∠OCA+OCB=∠BCD+∠OCB=90°∴∠OCD=90°∵OC是半徑,∴CD是⊙O的切線(2)設(shè)⊙O的半徑為r,∴AB=2r,∵∠D=30°,∠OCD=90°,∴OD=2r,∠COB=60°∴r+2=2r,∴r=2,∠AOC=120°∴BC=2,∴由勾股定理可知:AC=2,易求S△AOC=×2×1=S扇形OAC=,∴陰影部分面積為.【點(diǎn)睛】本題考查圓的綜合問題,涉及圓的切線判定,勾股定理,含30度的直角三角形的性質(zhì),等邊三角形的性質(zhì)等知識(shí),熟練掌握和靈活運(yùn)用相關(guān)知識(shí)是解題的關(guān)鍵.27、(1)①△D′BC是等邊三角形,②∠ADB=30°(1)∠ADB=30°;(3)7+或7﹣【解析】
(1)①如圖1中,作∠ABD′=∠ABD,BD′=BD,連接CD′,AD′,由△ABD≌△ABD′,推出△D′BC是等邊三角形;②借助①的結(jié)論,再判斷出△AD′B≌△AD′C,得∠AD′B=∠AD′C,由此即可解決問題.(1)當(dāng)60°<α≤110°時(shí),如圖3中,作∠AB
D′=∠ABD,B
D′=BD,連接CD′,AD′,證明方法類似(1).(3)第①種情況:當(dāng)60°<α≤110°時(shí),如圖3中,作∠AB
D′=∠ABD,B
D′=BD,連接CD′,AD′,證明方法類似(1),最后利用含30度角的直角
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024體育場館排水施工合同
- 2024年度設(shè)備維護(hù)保養(yǎng)吊裝合同
- 2024光通信網(wǎng)絡(luò)設(shè)備供應(yīng)與安裝合同
- 2024年度某航空公司與某機(jī)場管理公司關(guān)于某國際航線機(jī)場服務(wù)合作的合同
- 2024年度0kv線路工程保險(xiǎn)服務(wù)合同
- 2024工業(yè)園區(qū)環(huán)境清潔承包合同
- 家庭紡織品的生產(chǎn)工藝與技術(shù)創(chuàng)新考核試卷
- 基于云計(jì)算的村衛(wèi)生室數(shù)據(jù)管理
- 2024互聯(lián)網(wǎng)金融服務(wù)平臺(tái)搭建與運(yùn)營合同
- 高層建筑抗震關(guān)鍵技術(shù)突破
- 兒童早期的認(rèn)知發(fā)展-皮亞杰前運(yùn)算階段(三座山實(shí)驗(yàn))
- 國開一體化平臺(tái)01588《西方行政學(xué)說》章節(jié)自測(1-23)試題及答案
- 2024年極兔速遞有限公司招聘筆試參考題庫附帶答案詳解
- 2024年威士忌酒相關(guān)公司行業(yè)營銷方案
- 網(wǎng)絡(luò)游戲危害課件
- 2024供電營業(yè)規(guī)則學(xué)習(xí)課件
- 鐵路給水排水設(shè)計(jì)規(guī)范(TB 10010-2016)
- GINA2023-哮喘防治指南解讀-課件
- 2024年上海市第二十七屆初中物理競賽初賽試題及答案
- 寢室設(shè)計(jì)方案方法與措施
- 收費(fèi)站冬季安全注意事項(xiàng)
評(píng)論
0/150
提交評(píng)論