版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
大學(xué)數(shù)學(xué)函數(shù)類型總結(jié)第1篇大學(xué)數(shù)學(xué)函數(shù)類型總結(jié)第1篇一、編制依據(jù)
《20某某年普通高等學(xué)校招生全國統(tǒng)一考試(課程標(biāo)準(zhǔn)實(shí)驗(yàn)版)山東卷考試說明》(以下簡稱《說明》)是以《普通高中數(shù)學(xué)課程標(biāo)準(zhǔn)(實(shí)驗(yàn))》(以下簡稱《標(biāo)準(zhǔn)》)和《20某某年普通高等學(xué)校招生全國統(tǒng)一考試大綱(課程標(biāo)準(zhǔn)實(shí)驗(yàn)版)》(以下簡稱《大綱》)為依據(jù)編制的。20某某年3月教育部印發(fā)的《標(biāo)準(zhǔn)》,既是新一輪普通高中課程改革的指導(dǎo)和規(guī)范,也是20某某年新課程高考數(shù)學(xué)命題的重要依據(jù)?!稑?biāo)準(zhǔn)》強(qiáng)調(diào),“數(shù)學(xué)教育在學(xué)校教育中占有特殊的地位,它使學(xué)生掌握數(shù)學(xué)的基礎(chǔ)知識(shí)、基本技能、基本思想,使學(xué)生表達(dá)清晰、思考有條理,使學(xué)生具有實(shí)事求是的態(tài)度、鍥而不舍的精神,使學(xué)生學(xué)會(huì)用數(shù)學(xué)的思考方式解決問題、認(rèn)識(shí)世界?!睋?jù)此,我們在制定《說明》的過程中,充分認(rèn)識(shí)數(shù)學(xué)及數(shù)學(xué)教育的重要意義,充分考慮到普通高中數(shù)學(xué)課程的性質(zhì)和作用,盡量反映高中數(shù)學(xué)課程的主要功能和特點(diǎn)。例如,繼續(xù)保持較高比重的選擇題和填空題,注重考查數(shù)學(xué)的基本知識(shí)和基本技能,體現(xiàn)高中數(shù)學(xué)課程的基礎(chǔ)性;同時(shí)加強(qiáng)學(xué)生對(duì)數(shù)學(xué)應(yīng)用價(jià)值的認(rèn)識(shí),考查考生的數(shù)學(xué)應(yīng)用意識(shí)、解決實(shí)際問題的能力;探索設(shè)計(jì)能夠充分考查考生數(shù)學(xué)思想方法的題目,讓學(xué)生體驗(yàn)數(shù)學(xué)的科學(xué)價(jià)值和文化價(jià)值。
教育部為山東、廣東、寧夏、海南和江蘇五個(gè)省區(qū)單獨(dú)制定了《大綱》,我們以《大綱》為具體指導(dǎo)和規(guī)范,同時(shí),結(jié)合我省教學(xué)實(shí)際情況和考生情況制定了《說明》。因此《說明》既基本貫徹了《大綱》的理念和具體要求,又體現(xiàn)出了山東特色,《說明》是《大綱》在山東具體化的產(chǎn)物。
二、指導(dǎo)思想
20某某年高考數(shù)學(xué)命題的指導(dǎo)思想是本著利于中學(xué)推進(jìn)素質(zhì)教育,深化新課程改革的原則,保持相對(duì)穩(wěn)定,體現(xiàn)新課程改革理念。20某某年我省的高考是實(shí)施普通高中新課程改革后的首次高考,成功實(shí)現(xiàn)了由舊高考向新高考的平穩(wěn)過渡。命題保持相對(duì)穩(wěn)定符合高考命題工作的規(guī)律,也是科學(xué)命題的要求。20某某年的高考是新課程背景下的第二年高考,在保持山東省去年高考數(shù)學(xué)基本題型不變的基礎(chǔ)上,體現(xiàn)新課程的理念與要求,繼續(xù)重視對(duì)基礎(chǔ)知識(shí)和基本技能的考查,以能力立意為主導(dǎo),將知識(shí)、能力和素質(zhì)融為一體,全面考查考生的綜合素養(yǎng)。這與課程改革的理念在本質(zhì)上也是一致的。因此首先在考試范圍和考試內(nèi)容選定上要以中學(xué)數(shù)學(xué)教學(xué)為現(xiàn)實(shí)基礎(chǔ),基于數(shù)學(xué)課程標(biāo)準(zhǔn),在具體試題設(shè)計(jì)上要盡量體現(xiàn)新課程所提出的基本理念。例如,更加注重對(duì)考生能力的考查,注重對(duì)數(shù)學(xué)應(yīng)用性的考查等,鼓勵(lì)考生多角度、創(chuàng)造性地思考和解決問題。另外,由于我省各地市采用由人民教育出版社出版的A、B兩個(gè)不同版本的教材,命題將不拘泥于某一版本的教材,體現(xiàn)高考命題的公平性。同時(shí),試卷應(yīng)保證有較高的信度、效度、必要的區(qū)分度和適當(dāng)?shù)碾y度。
三、基本特征
1.強(qiáng)調(diào)基礎(chǔ)
《說明》繼續(xù)強(qiáng)調(diào)對(duì)考生數(shù)學(xué)基礎(chǔ)的考查,即對(duì)基礎(chǔ)知識(shí)、基本技能、基本數(shù)學(xué)思想方法的考查,同時(shí)又注重對(duì)知識(shí)內(nèi)在聯(lián)系的考查,不刻意追求知識(shí)的覆蓋面??忌_理解基本概念、定理、原理、法則、公式等基礎(chǔ)知識(shí)。高考試題大部分都是基本題,但基本題不一定是簡單的題,而是利用基本方法、基本知識(shí)和能力解決的基本的問題。
2.注重能力
數(shù)學(xué)中的能力是指空間想象能力、抽象概括能力、推理論證能力、運(yùn)算求解能力、數(shù)據(jù)處理能力以及應(yīng)用意識(shí)和創(chuàng)新意識(shí)?!稑?biāo)準(zhǔn)》中的基本理念決定了高考數(shù)學(xué)命題必須突出能力立意,在注重考查數(shù)學(xué)基礎(chǔ)的同時(shí),著重考查考生的數(shù)學(xué)思維能力,以及考生發(fā)現(xiàn)問題、分析問題,并且靈活及綜合運(yùn)用數(shù)學(xué)知識(shí)解決問題的能力。注重?cái)?shù)學(xué)思維能力的考查,既有利于提高試題的區(qū)分度,又對(duì)考生升入大學(xué)繼續(xù)學(xué)習(xí)打下堅(jiān)實(shí)的基礎(chǔ)。
3.強(qiáng)化應(yīng)用
《說明》對(duì)于數(shù)學(xué)應(yīng)用意識(shí)和應(yīng)用能力的考查要求逐步提高。近幾年的高考數(shù)學(xué)命題都加強(qiáng)了對(duì)應(yīng)用性問??解提煉出相關(guān)數(shù)量關(guān)系,將現(xiàn)實(shí)問題轉(zhuǎn)化為數(shù)學(xué)問題,通過構(gòu)造數(shù)學(xué)模型加以解決。應(yīng)用題能夠考查考生的閱讀理解能力、抽象概括能力、數(shù)據(jù)處理能力、分析問題和解決問題的能力等,它能夠較全面地考查考生的數(shù)學(xué)素養(yǎng)。應(yīng)用題的命制將本著“貼近生活,背景公平,控制難度”的原則,把握好提出的問題所涉及的數(shù)學(xué)知識(shí)及方法的深度和廣度,注重問題的多樣化,體現(xiàn)思維的發(fā)散性,同時(shí)結(jié)合我省中學(xué)數(shù)學(xué)教學(xué)的實(shí)際,引導(dǎo)學(xué)生自覺地置身于現(xiàn)實(shí)社會(huì)的大環(huán)境中,關(guān)心自己身邊的數(shù)學(xué)問題,促使學(xué)生在學(xué)習(xí)和實(shí)踐中形成和發(fā)展數(shù)學(xué)應(yīng)用的意識(shí),提高實(shí)踐能力。
四、考試內(nèi)容及要求
“考試內(nèi)容及要求”在去年的基礎(chǔ)上做了一些變動(dòng)。首先是在考試內(nèi)容上“一減一增”。
由于我省高中所使用的教材沒有涉及到“聚類分析”的內(nèi)容,結(jié)合我省高中數(shù)學(xué)教學(xué)實(shí)際和高等數(shù)學(xué)教學(xué)情況,刪除了對(duì)“了解聚類分析的基本思想、方法及其簡單應(yīng)用”的考查要求。
在命題保持相對(duì)穩(wěn)定的同時(shí),考慮到不等式有著豐富的實(shí)際背景,是刻畫區(qū)域的重要工具,其內(nèi)容應(yīng)用非常廣泛。在原有的不等式知識(shí)的基礎(chǔ)上,進(jìn)一步增加不等式的考查內(nèi)容和要求,有利于考生在中學(xué)階段對(duì)不等式的內(nèi)容有更深入的了解,同時(shí)這也是考生升入高一級(jí)學(xué)校后,繼續(xù)學(xué)習(xí)數(shù)學(xué)的需要,保障他們在將來的大學(xué)學(xué)習(xí)中實(shí)現(xiàn)可持續(xù)發(fā)展。因此,結(jié)合我省教學(xué)實(shí)際和體現(xiàn)新課程理念及要求,今年對(duì)理科考生增加“選修4-5”中“不等式的基本性質(zhì)和一元二次不等式的解法”的考查內(nèi)容。增加的考查內(nèi)容是高中新課程的選修內(nèi)容,是“不等式”中的基本知識(shí)和基本方法,但這部分內(nèi)容對(duì)于高中數(shù)學(xué)教學(xué)以及高等數(shù)學(xué)來說都是重要的,屬于《大綱》指定的選考內(nèi)容之一。因?yàn)槠鋬?nèi)容比較簡單,要求也不太高,而且不單獨(dú)就此命制選做題,因此,對(duì)考生備考來說負(fù)擔(dān)不重。然而這一變動(dòng)對(duì)于促進(jìn)高中新課程實(shí)施,穩(wěn)步推進(jìn)高考的改革具有重要意義。
其次,今年的《說明》對(duì)某些考試內(nèi)容的考查要求也做了一些調(diào)整。
考慮到“數(shù)學(xué)命題”是學(xué)生獲得新知的必由之路,也是提高數(shù)學(xué)素養(yǎng)的基礎(chǔ)。所以今年對(duì)“命題”的考查要求有所提高,增加了對(duì)“理解命題的概念”的要求;另外對(duì)“了解命題的逆命題、否命題與逆否命題”的要求更加具體,改為“了解‘若,則’形式的命題的逆命題、否命題與逆否命題”。
今年對(duì)文科考生“會(huì)計(jì)算一些隨機(jī)事件所含的基本事件數(shù)及事件發(fā)生的概率”的考查要求有所降低,要求考生“會(huì)用列舉法計(jì)算一些隨機(jī)事件所含的基本事件數(shù)及事件發(fā)生的概率”等。
五、考試形式及試卷結(jié)構(gòu)
本次考試仍然采用閉卷、筆試的形式??荚囅薅ㄓ脮r(shí)為120分鐘。試卷包括第Ⅰ卷和第Ⅱ卷。滿分為150分。第Ⅰ卷為四選一型的單項(xiàng)選擇題,共12題,60分。第Ⅱ卷為填空題和解答題。填空題共4題,16分。填空題只要求直接填寫結(jié)果,不必寫出計(jì)算過程或推證過程。解答題包括計(jì)算題、證明題和應(yīng)用題等,共6題,74分。解答應(yīng)寫出文字說明、演算步驟或推證過程。
試卷由容易題、中等難度題和難題組成。其中,將以中等難度題為主。
大學(xué)數(shù)學(xué)函數(shù)類型總結(jié)第2篇第一章:函數(shù)與極限
1.理解函數(shù)的概念,掌握函數(shù)的表示方法。
2.會(huì)建立簡單應(yīng)用問題中的函數(shù)關(guān)系式。
3.了解函數(shù)的奇偶性、單調(diào)性、周期性、和有界性。
4.掌握基本初等函數(shù)的性質(zhì)及圖形。
5.理解復(fù)合函數(shù)及分段函數(shù)的有關(guān)概念,了解反函數(shù)及隱函數(shù)的概念。
6.理解函數(shù)連續(xù)性的概念(含左連續(xù)和右連續(xù))會(huì)判別函數(shù)間斷點(diǎn)的類型。
7.理解極限的概念,理解函數(shù)左極限與右極限的概念,以及極限存在與左右極限間的關(guān)系。
8.掌握極限存在的兩個(gè)準(zhǔn)則,并會(huì)利用它們求極限,掌握利用兩個(gè)重要極限求極限的方法。
9.掌握極限性質(zhì)及四則運(yùn)算法則。
10.理解無窮孝無窮大的概念,掌握無窮小的比較方法,會(huì)用等價(jià)無窮小求極限。
第二章:導(dǎo)數(shù)與微分
1.理解導(dǎo)數(shù)與微分的概念,理解導(dǎo)數(shù)與微分的關(guān)系,理解導(dǎo)數(shù)的幾何意義,會(huì)求平面曲線的切線方程和法線方程,了解導(dǎo)數(shù)的物理意義,會(huì)用導(dǎo)數(shù)描寫一些物理量,理解函數(shù)的可導(dǎo)性與連續(xù)性之間的關(guān)系。
2.掌握導(dǎo)數(shù)的四則運(yùn)算法則和復(fù)合函數(shù)的求導(dǎo)法則,掌握初等函數(shù)的求導(dǎo)公式,了解微分的四則運(yùn)算法則和一階微分形式的不變性,會(huì)求初等函數(shù)的微分。
3.會(huì)求隱函數(shù)和參數(shù)方程所確定的函數(shù)以及反函數(shù)的導(dǎo)數(shù)。
4.會(huì)求分段函數(shù)的導(dǎo)數(shù),了解高階導(dǎo)數(shù)的概念,會(huì)求簡單函數(shù)的高階導(dǎo)數(shù)。
第三章:微分中值定理與導(dǎo)數(shù)的應(yīng)用
1.熟練運(yùn)用微分中值定理證明簡單命題。
2.熟練運(yùn)用羅比達(dá)法則和泰勒公式求極限和證明命題。
3.了解函數(shù)圖形的作圖步驟。了解方程求近似解的兩種方法:二分法、切線法。
4.會(huì)求函數(shù)單調(diào)區(qū)間、凸凹區(qū)間、極值、拐點(diǎn)以及漸進(jìn)線、曲率。
第四章:不定積分
1.理解原函數(shù)和不定積分的概念,掌握不定積分的'基本公式和性質(zhì)。
2.會(huì)求有理函數(shù)、三角函數(shù)、有理式和簡單無理函數(shù)的不定積分
3.掌握不定積分的分步積分法。
4.掌握不定積分的換元積分法。
第五章:定積分
1.理解定積分的概念,掌握定積分的性質(zhì)及定積分中值定理。
2.掌握定積分的換元積分法與分步積分法。
3.了解廣義積分的概念,并會(huì)計(jì)算廣義積分,
4.掌握反常積分的運(yùn)算。
5.理解變上限定積分定義的函數(shù),會(huì)求它的導(dǎo)數(shù),掌握牛頓萊布尼茨公式。
第六章:定積分的應(yīng)用
1.掌握用定積分計(jì)算一些物理量(功、引力、壓力)。
2.掌握用定積分表達(dá)和計(jì)算一些幾何量(平面圖形的面積、平面曲線的弧長、旋轉(zhuǎn)體的體積和側(cè)面積、平行截面面積為已知的立體體積)及函數(shù)的平均值。
第七章:微分方程
1.了解微分方程及其解、階、通解、初始條件和特解等概念。
2.會(huì)解奇次微分方程,會(huì)用簡單變量代換解某些微分方程.
3.掌握可分離變量的微分方程,會(huì)用簡單變量代換解某些微分方程。
4.掌握二階常系數(shù)齊次微分方程的解法,并會(huì)解某些高于二階的常系數(shù)齊次微分方程。
5.掌握一階線性微分方程的解法,會(huì)解伯努利方程.
6.會(huì)用降階法解下列微分方程y=f(x,y).
7.會(huì)解自由項(xiàng)為多項(xiàng)式,指數(shù)函數(shù),正弦函數(shù),余弦函數(shù),以及它們的和與積的二階常系數(shù)非齊次線性微分方程。
8.會(huì)解歐拉方程。
第八章:空間解析幾何與向量代數(shù)
1.理解空間直線坐標(biāo)系,理解向量的概念及其表示。
2.掌握向量的數(shù)量、積向量積、混合積并能用坐標(biāo)表達(dá)式進(jìn)行運(yùn)算,了解兩個(gè)向量垂直、平行的條件。
3.掌握向量的線性運(yùn)算,掌握單位向量、方向角與方向余弦,掌握向量的坐標(biāo)表達(dá)式掌握用坐標(biāo)表達(dá)式進(jìn)行向量運(yùn)算方法。
4.掌握直線方程的求法,會(huì)利用平面、直線的相互關(guān)系解決有關(guān)問題,會(huì)求點(diǎn)到直線及點(diǎn)到平面的距離。
5.掌握平面方程及其求法,會(huì)求平面與平面的夾角,并會(huì)用平面的相互關(guān)系(平行相交垂直)解決有關(guān)問題。
6.理解曲面方程的概念,了解二次曲面方程及其圖形,會(huì)求以坐標(biāo)軸為旋轉(zhuǎn)軸的旋轉(zhuǎn)曲面及母線平行于坐標(biāo)軸的柱面方程。
7.了解空間曲線的概念,了解空間曲線的參數(shù)方程和一般方程,了解空間曲線在坐標(biāo)平面上的投影,并會(huì)求其方程。
大學(xué)數(shù)學(xué)函數(shù)類型總結(jié)第3篇知識(shí)點(diǎn)一:函數(shù)、極限與連續(xù)
重點(diǎn)考查極限的計(jì)算、已知極限確定原式中的未知參數(shù)、函數(shù)連續(xù)性的討論、間斷點(diǎn)類型的判斷、無窮小階的比較、討論連續(xù)函數(shù)在給定區(qū)間上零點(diǎn)的個(gè)數(shù)、確定方程在給定區(qū)間上有無實(shí)根。
知識(shí)點(diǎn)二:一元函數(shù)微分學(xué)
重點(diǎn)考查導(dǎo)數(shù)與微分的定義、函數(shù)導(dǎo)數(shù)與微分的計(jì)算(包括隱函數(shù)求導(dǎo))、利用洛比達(dá)法則求不定式極限、函數(shù)極值與最值、方程根的個(gè)數(shù)、函數(shù)不等式的證明、與中值定理相關(guān)的證明、在物理和經(jīng)濟(jì)等方面的實(shí)際應(yīng)用、曲線漸近線的求法。
知識(shí)點(diǎn)三:一元函數(shù)積分學(xué)
重點(diǎn)考查不定積分的計(jì)算、定積分的計(jì)算、廣義積分的計(jì)算及判斂、變上限函數(shù)的求導(dǎo)和極限、利用積分中值定理和積分性質(zhì)的證明、定積分的幾何應(yīng)用和物理應(yīng)用。
知識(shí)點(diǎn)四:向量代數(shù)與空間解析幾何(數(shù)一)
主要考查向量的運(yùn)算、平面方程和直線方程及其求法、平面與平面、平面與直線、直線與直線之間的夾角,并會(huì)利用平面、直線的相互關(guān)系(平行、垂直、相交等))解決有關(guān)問題等,該部分一般不單獨(dú)考查,主要作為曲線積分和曲面積分的基礎(chǔ)。
知識(shí)點(diǎn)五:多元函數(shù)微分學(xué)
重點(diǎn)考查多元函數(shù)極限存在、連續(xù)性、偏導(dǎo)數(shù)存在、可微分及偏導(dǎo)連續(xù)等問題、多元函數(shù)和隱函數(shù)的一階、二階偏導(dǎo)數(shù)求法、有條件極值和無條件極值。另外,數(shù)一還要求掌握方向?qū)?shù)、梯度、曲線的切線與法平面、曲面的切平面與法線。
知識(shí)點(diǎn)六:多元函數(shù)積分學(xué)
重點(diǎn)考查二重積分在直角坐標(biāo)和極坐標(biāo)下的計(jì)算、累次積分、積分換序。此外,數(shù)一還要求掌握三重積分的計(jì)算、兩類曲線積分和兩種曲面積分的計(jì)算、格林公式、高斯公式及斯托克斯公式。
知識(shí)點(diǎn)七:無窮級(jí)數(shù)(數(shù)一、數(shù)三)
重點(diǎn)考查正項(xiàng)級(jí)數(shù)的基本性質(zhì)和斂散性判別、一般項(xiàng)級(jí)數(shù)絕對(duì)收斂和條件收斂的判別、冪級(jí)數(shù)收斂半徑、收斂域及和函數(shù)的求法以及冪級(jí)數(shù)在特定點(diǎn)的展開問題。
知識(shí)點(diǎn)八:常微分方程及差分方程
重點(diǎn)考查一階微分方程的通解或特解、二階線性常系數(shù)齊次和非齊次方程的特解或通解、微分方程的建立與求解。此外,數(shù)三考查差分方程的基本概念與一介常系數(shù)線形方程求解方法。數(shù)一還要求會(huì)伯努利方程、歐拉公式等。
大學(xué)數(shù)學(xué)函數(shù)類型總結(jié)第4篇1、定義:
用符號(hào)〉,=,〈號(hào)連接的式子叫不等式。
2、性質(zhì):
①不等式的兩邊都加上或減去同一個(gè)整式,不等號(hào)方向不變。
②不等式的兩邊都乘以或者除以一個(gè)正數(shù),不等號(hào)方向不變。
③不等式的兩邊都乘以或除以同一個(gè)負(fù)數(shù),不等號(hào)方向相反。
3、分類:
①一元一次不等式:左右兩邊都是整式,只含有一個(gè)未知數(shù),且未知數(shù)的次數(shù)是1的不等式叫一元一次不等式。
②一元一次不等式組:
a、關(guān)于同一個(gè)未知數(shù)的幾個(gè)一元一次不等式合在一起,就組成了一元一次不等式組。
b、一元一次不等式組中各個(gè)不等式的解集的公共部分,叫做這個(gè)一元一次不等式組的解集。
4、考點(diǎn):
①解一元一次不等式(組)
②根據(jù)具體問題中的數(shù)量關(guān)系列不等式(組)并解決簡單實(shí)際問題
③用數(shù)軸表示一元一次不等式(組)的解集
高考數(shù)學(xué)三學(xué)習(xí)方法
逐步形成“以我為主”的學(xué)習(xí)模式
數(shù)學(xué)不是靠老師教會(huì)的,而是在老師的引導(dǎo)下,靠自己主動(dòng)的思維活動(dòng)去獲取的。學(xué)習(xí)數(shù)學(xué)一定要講究“活”,只看書不做題不行,只埋頭做題不總結(jié)積累也不行。記數(shù)學(xué)筆記,特別是對(duì)概念理解的不同側(cè)面和數(shù)學(xué)規(guī)律,教師在課堂中拓展的課外知識(shí)。記錄下來本章你覺得最有價(jià)值的思想方法或例題,以及你還存在的未解決的問題,以便今后將其補(bǔ)上。
要建立數(shù)學(xué)糾錯(cuò)本。把平時(shí)容易出現(xiàn)錯(cuò)誤的知識(shí)或推理記載下來,以防再犯。爭取做到:找錯(cuò)、析錯(cuò)、改錯(cuò)、防錯(cuò)。達(dá)到:能從反面入手深入理解正確東西;能由果朔因把錯(cuò)誤原因弄個(gè)水落石出、以便對(duì)癥下藥;解答問題完整、推理嚴(yán)密。
高考數(shù)學(xué)三學(xué)習(xí)技巧
養(yǎng)成良好的學(xué)習(xí)數(shù)學(xué)習(xí)慣
多質(zhì)疑、勤思考、好動(dòng)手、重歸納、注意應(yīng)用。學(xué)生在學(xué)習(xí)數(shù)學(xué)的過程中,要把教師所傳授的知識(shí)翻譯成為自己的特殊語言,并永久記憶在自己的腦海中。良好的學(xué)習(xí)數(shù)學(xué)習(xí)慣包括課前自學(xué)、專心上課、及時(shí)復(fù)習(xí)、獨(dú)立作業(yè)、解決疑難、系統(tǒng)小結(jié)和課外學(xué)習(xí)幾個(gè)方面。
及時(shí)了解、掌握常用的數(shù)學(xué)思想和方法
中學(xué)數(shù)學(xué)學(xué)習(xí)要重點(diǎn)掌握的的數(shù)學(xué)思想有以上幾個(gè):集合與對(duì)應(yīng)思想,分類討論思想,數(shù)形結(jié)合思想,運(yùn)動(dòng)思想,轉(zhuǎn)化思想,變換思想。
有了數(shù)學(xué)思想以后,還要掌握具體的方法,比如:換元、待定系數(shù)、數(shù)學(xué)歸納法、分析法、綜合法、反證法等等。在具體的方法中,常用的有:觀察與實(shí)驗(yàn),聯(lián)想與類比,比較與分類,分析與綜合,歸納與演繹,一般與特殊,有限與無限,抽象與概括等。
大學(xué)數(shù)學(xué)函數(shù)類型總結(jié)第5篇三角函數(shù)。
注意歸一公式、誘導(dǎo)公式的正確性。
數(shù)列題。
1、證明一個(gè)數(shù)列是等差(等比)數(shù)列時(shí),最后下結(jié)論時(shí)要寫上以誰為首項(xiàng),誰為公差(公比)的等差(等比)數(shù)列;
2、最后一問證明不等式成立時(shí),如果一端是常數(shù),另一端是含有n的式子時(shí),一般考慮用放縮法;如果兩端都是含n的式子,一般考慮數(shù)學(xué)歸納法(用數(shù)學(xué)歸納法時(shí),當(dāng)n=k+1時(shí),一定利用上n=k時(shí)的假設(shè),否則不正確。利用上假設(shè)后,如何把當(dāng)前的式子轉(zhuǎn)化到目標(biāo)式子,一般進(jìn)行適當(dāng)?shù)姆趴s,這一點(diǎn)是有難度的。簡潔的方法是,用當(dāng)前的式子減去目標(biāo)式子,看符號(hào),得到目標(biāo)式子,下結(jié)論時(shí)一定寫上綜上:由①②得證;
3、證明不等式時(shí),有時(shí)構(gòu)造函數(shù),利用函數(shù)單調(diào)性很簡單
立體幾何題。
1、證明線面位置關(guān)系,一般不需要去建系,更簡單;
2、求異面直線所成的角、線面角、二面角、存在性問題、幾何體的高、表面積、體積等問題時(shí),要建系;
3、注意向量所成的角的余弦值(范圍)與所求角的余弦值(范圍)的關(guān)系。
概率問題。
1、搞清隨機(jī)試驗(yàn)包含的所有基本事件和所求事件包含的基本事件的個(gè)數(shù);
2、搞清是什么概率模型,套用哪個(gè)公式;
3、記準(zhǔn)均值、方差、標(biāo)準(zhǔn)差公式;
4、求概率時(shí),正難則反(根據(jù)p1+p2+……+pn=1);
5、注意計(jì)數(shù)時(shí)利用列舉、樹圖等基本方法;
6、注意放回抽樣,不放回抽樣;
正弦、余弦典型例題。
1、在△ABC中,∠C=90°,a=1,c=4,則sinA的值為
2、已知α為銳角,且,則α的度數(shù)是()A、30°B、45°C、60°D、90°
3、在△ABC中,若,∠A,∠B為銳角,則∠C的度數(shù)是()A、75°B、90°C、105°D、120°
4、若∠A為銳角,且,則A=()A、15°B、30°C、45°D、60°
5、在△ABC中,AB=AC=2,AD⊥BC,垂足為D,且AD=,E是AC中點(diǎn),EF⊥BC,垂足為F,求sin∠EBF的值。
正弦、余弦解題訣竅。
1、已知兩角及一邊,或兩邊及一邊的對(duì)角(對(duì)三角形是否存在要討論)用正弦定理。
2、已知三邊,或兩邊及其夾角用余弦定理
3、余弦定理對(duì)于確定三角形形狀非常有用,只需要知道角的余弦值為正,為負(fù),還是為零,就可以確定是鈍角。直角還是銳角。
大學(xué)數(shù)學(xué)函數(shù)類型總結(jié)第6篇一、提供思維空間,激活分散的知識(shí)點(diǎn)
小學(xué)數(shù)學(xué)總復(fù)習(xí)的基本任務(wù),就是要讓學(xué)生進(jìn)一步熟悉、鞏固和深化小學(xué)數(shù)學(xué)最基礎(chǔ)、最核心的知識(shí)點(diǎn),以便能由此出發(fā)進(jìn)一步了解這些知識(shí)點(diǎn)間的關(guān)聯(lián)。因而數(shù)學(xué)總復(fù)習(xí)課首先要激活相關(guān)內(nèi)容的知識(shí)點(diǎn)。教師要注意調(diào)動(dòng)學(xué)生的主動(dòng)性,提供思維空間,注意組織學(xué)生通過思考、交流,再現(xiàn)、激活以往分散學(xué)習(xí)的知識(shí)點(diǎn)。
對(duì)于有些內(nèi)容的復(fù)習(xí),可以以具有一定思考空間的問題,引導(dǎo)學(xué)生回憶、交流已學(xué)知識(shí)點(diǎn)。例如,在復(fù)習(xí)數(shù)的運(yùn)算時(shí),可以引導(dǎo)學(xué)生回憶、交流:在小學(xué)階段你學(xué)過哪些四則運(yùn)算?你能舉例說一說這些運(yùn)算的方法嗎?能結(jié)合你的例子說說為什么要這樣算嗎?這樣的問題,有利于學(xué)生主動(dòng)、積極地回憶、提取相關(guān)內(nèi)容,加深理解,促進(jìn)學(xué)生的思考與互動(dòng)交流。
對(duì)于有些內(nèi)容的復(fù)習(xí),還可以設(shè)置一些問題情境,喚醒學(xué)生的記憶,再現(xiàn)知識(shí)點(diǎn)。例如,在復(fù)習(xí)“可能性”的知識(shí)時(shí),可以設(shè)置這樣的情境:用兩個(gè)透明袋,一個(gè)袋里全部放紅球,一個(gè)袋里放綠球和黃球(兩種球個(gè)數(shù)可以不同),讓學(xué)生思考:如果從不同的袋里任意摸一個(gè)球,你對(duì)結(jié)果有什么想法?從而回憶在一定條件下事件發(fā)生的結(jié)果及相關(guān)內(nèi)容,激活“可能性”的知識(shí)。
二、突出溝通整理,建構(gòu)完整的“知識(shí)鏈”
學(xué)生學(xué)習(xí)、理解與掌握數(shù)學(xué)知識(shí),就是認(rèn)識(shí)、理解知識(shí)本質(zhì)及相互間的聯(lián)系,形成良好的數(shù)學(xué)認(rèn)知結(jié)構(gòu)。數(shù)學(xué)復(fù)習(xí)課突出“知識(shí)鏈”的建構(gòu)與完善,就能在原來學(xué)習(xí)的基礎(chǔ)上,幫助學(xué)生進(jìn)一步調(diào)整和明晰數(shù)學(xué)認(rèn)知結(jié)構(gòu),優(yōu)化數(shù)學(xué)知識(shí)在頭腦里的組織方式,從而清晰地把握知識(shí)間的內(nèi)在聯(lián)系,有條理地儲(chǔ)存和記憶數(shù)學(xué)知識(shí),并達(dá)到對(duì)知識(shí)理解的融會(huì)貫通。因此,數(shù)學(xué)復(fù)習(xí)課要在激活、再現(xiàn)相關(guān)知識(shí)點(diǎn)的基礎(chǔ)上,引導(dǎo)學(xué)生比較、整理、歸納,建構(gòu)知識(shí)間的聯(lián)系,使知識(shí)的理解更精當(dāng),知識(shí)條理更清晰,形成知識(shí)的網(wǎng)狀結(jié)構(gòu)。
組織學(xué)生溝通整理,首先要依據(jù)數(shù)學(xué)知識(shí)結(jié)構(gòu)合理地劃分為若干個(gè)知識(shí)塊,按塊狀知識(shí)有序地組織復(fù)習(xí);然后再根據(jù)知識(shí)間聯(lián)系的緊密程度,把塊狀知識(shí)里若干個(gè)知識(shí)點(diǎn)劃分為一個(gè)小塊,作為一個(gè)課時(shí)內(nèi)容。這樣按內(nèi)在聯(lián)系有系統(tǒng)地安排復(fù)習(xí)內(nèi)容,就便于在激活知識(shí)點(diǎn)的基礎(chǔ)上組織學(xué)生梳理知識(shí),形成“知識(shí)鏈”。
溝通整理知識(shí)間的聯(lián)系,可以引導(dǎo)學(xué)生立足知識(shí)點(diǎn),結(jié)合知識(shí)產(chǎn)生、理解的過程,主動(dòng)思考和整理、歸納。例如,復(fù)習(xí)圍成的平面圖形的認(rèn)識(shí),可以在再現(xiàn)學(xué)過的平面圖形的基礎(chǔ)上,引導(dǎo)學(xué)生小組討論、合作整理、系統(tǒng)歸納:這些圍成的平面圖形各有哪些特點(diǎn)呢?你能根據(jù)它們的特點(diǎn)把這些圖形分類整理、并找出相互間
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- DB51T 675-2018 青貯玉米栽培技術(shù)規(guī)程
- 石棉投資規(guī)劃項(xiàng)目建議書
- 拋光機(jī)投資規(guī)劃項(xiàng)目建議書
- 電阻焊機(jī)項(xiàng)目立項(xiàng)申請報(bào)告
- 新建輸出齒輪項(xiàng)目立項(xiàng)申請報(bào)告
- 玻璃陶瓷包裝制品生產(chǎn)加工項(xiàng)目可行性研究報(bào)告
- 2024-2030年新版中國可塑劑項(xiàng)目可行性研究報(bào)告
- 2024-2030年撰寫:中國食品紙盒印字機(jī)行業(yè)發(fā)展趨勢及競爭調(diào)研分析報(bào)告
- 2024-2030年撰寫:中國冰激凌機(jī)行業(yè)發(fā)展趨勢及競爭調(diào)研分析報(bào)告
- 2024-2030年屋頂軸流風(fēng)機(jī)公司技術(shù)改造及擴(kuò)產(chǎn)項(xiàng)目可行性研究報(bào)告
- 報(bào)價(jià)單報(bào)價(jià)單
- 面試評(píng)估表及評(píng)分標(biāo)準(zhǔn)及面試評(píng)估表及評(píng)估標(biāo)準(zhǔn)
- 消防安全重點(diǎn)單位規(guī)范化管理手冊
- 【拓展閱讀】類文閱讀《王羲之吃墨》
- 熱電廠機(jī)組A級(jí)檢修策劃書
- 浙教版數(shù)學(xué)八年級(jí)下冊全冊優(yōu)質(zhì)課件
- 第三講:蘇聯(lián)模式興衰
- GB/T 5623-2008產(chǎn)品電耗定額制定和管理導(dǎo)則
- GB/T 41002-2022兒童箱包通用技術(shù)規(guī)范
- 光學(xué)5(光的偏振)
- GB/T 20833-2007旋轉(zhuǎn)電機(jī)定子線棒及繞組局部放電的測量方法及評(píng)定導(dǎo)則
評(píng)論
0/150
提交評(píng)論