![2025屆四川省資陽市資陽市雁江區(qū)九上數(shù)學(xué)期末學(xué)業(yè)水平測(cè)試試題含解析_第1頁](http://file4.renrendoc.com/view2/M02/0C/39/wKhkFmaZUruASCyDAAHZZdB9Os8866.jpg)
![2025屆四川省資陽市資陽市雁江區(qū)九上數(shù)學(xué)期末學(xué)業(yè)水平測(cè)試試題含解析_第2頁](http://file4.renrendoc.com/view2/M02/0C/39/wKhkFmaZUruASCyDAAHZZdB9Os88662.jpg)
![2025屆四川省資陽市資陽市雁江區(qū)九上數(shù)學(xué)期末學(xué)業(yè)水平測(cè)試試題含解析_第3頁](http://file4.renrendoc.com/view2/M02/0C/39/wKhkFmaZUruASCyDAAHZZdB9Os88663.jpg)
![2025屆四川省資陽市資陽市雁江區(qū)九上數(shù)學(xué)期末學(xué)業(yè)水平測(cè)試試題含解析_第4頁](http://file4.renrendoc.com/view2/M02/0C/39/wKhkFmaZUruASCyDAAHZZdB9Os88664.jpg)
![2025屆四川省資陽市資陽市雁江區(qū)九上數(shù)學(xué)期末學(xué)業(yè)水平測(cè)試試題含解析_第5頁](http://file4.renrendoc.com/view2/M02/0C/39/wKhkFmaZUruASCyDAAHZZdB9Os88665.jpg)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2025屆四川省資陽市資陽市雁江區(qū)九上數(shù)學(xué)期末學(xué)業(yè)水平測(cè)試試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請(qǐng)按照題號(hào)順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(每題4分,共48分)1.已知x=1是方程x2+px+1=0的一個(gè)實(shí)數(shù)根,則p的值是()A.0 B.1 C.2 D.﹣22.如圖,在Rt△ABC中,∠C=90°,若AB=5,AC=4,則cosB的值(
)A. B. C. D.3.如圖所示的工件,其俯視圖是()A. B. C. D.4.如果△ABC∽△DEF,相似比為2:1,且△DEF的面積為4,那么△ABC的面積為()A.1 B.4 C.8 D.165.在平面直角坐標(biāo)系中,點(diǎn)P(1,﹣2)是線段AB上一點(diǎn),以原點(diǎn)O為位似中心把△AOB放大到原來的兩倍,則點(diǎn)P對(duì)應(yīng)點(diǎn)的坐標(biāo)為()A.(2,﹣4) B.(2,﹣4)或(﹣2,4)C.(,﹣1) D.(,﹣1)或(﹣,1)6.如圖,在△ABC中E、F分別是AB、AC上的點(diǎn),EF∥BC,且,若△AEF的面積為2,則四邊形EBCF的面積為()A.4 B.6 C.16 D.187.如圖,是矩形內(nèi)的任意一點(diǎn),連接、、、,得到,,,,設(shè)它們的面積分別是,,,,給出如下結(jié)論:①②③若,則④若,則點(diǎn)在矩形的對(duì)角線上.其中正確的結(jié)論的序號(hào)是()A.①② B.②③ C.③④ D.②④8.以下給出的幾何體中,主視圖是矩形,俯視圖是圓的是()A. B. C. D.9.下列語句中,正確的是()①相等的圓周角所對(duì)的弧相等;②同弧或等弧所對(duì)的圓周角相等;③平分弦的直徑垂直于弦,并且平分弦所對(duì)的弧;④圓內(nèi)接平行四邊形一定是矩形.A.①② B.②③ C.②④ D.④10.如圖,正方形ABCD中,對(duì)角線AC,BD交于點(diǎn)O,點(diǎn)M,N分別為OB,OC的中點(diǎn),則cos∠OMN的值為()A. B. C. D.111.二次函數(shù)化為的形式,結(jié)果正確的是()A. B.C. D.12.如果△ABC∽△DEF,且對(duì)應(yīng)邊的AB與DE的長(zhǎng)分別為2、3,則△ABC與△DEF的面積之比為()A.4:9 B.2:3 C.3:2 D.9:4二、填空題(每題4分,共24分)13.設(shè)m,n分別為一元二次方程x2+2x-2021=0的兩個(gè)實(shí)數(shù)根,則m2+3m+n=______.14.如圖,在矩形ABCD中,AB=6,BC=4,M是AD的中點(diǎn),N是AB邊上的動(dòng)點(diǎn),將△AMN沿MN所在直線折疊,得到△,連接,則的最小值是________15.拋物線y=9x2﹣px+4與x軸只有一個(gè)公共點(diǎn),則p的值是_____.16.如圖,有一張直徑為1.2米的圓桌,其高度為0.8米,同時(shí)有一盞燈距地面2米,圓桌在水平地面上的影子是,∥,和是光線,建立如圖所示的平面直角坐標(biāo)系,其中點(diǎn)的坐標(biāo)是.那么點(diǎn)的坐標(biāo)是_________.17.一元二次方程(x﹣5)(x﹣7)=0的解為_____.18.已知二次函數(shù)的圖象如圖所示,并且關(guān)于的一元二次方:有兩個(gè)不相等的實(shí)數(shù)根,下列結(jié)論:①;②;③;④,其中正確的有__________.三、解答題(共78分)19.(8分)解方程(1)(2)20.(8分)如圖,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,點(diǎn)D為邊CB上的一個(gè)動(dòng)點(diǎn)(點(diǎn)D不與點(diǎn)B重合),過D作DO⊥AB,垂足為O,點(diǎn)B′在邊AB上,且與點(diǎn)B關(guān)于直線DO對(duì)稱,連接DB′,AD.(1)求證:△DOB∽△ACB;(2)若AD平分∠CAB,求線段BD的長(zhǎng);(3)當(dāng)△AB′D為等腰三角形時(shí),求線段BD的長(zhǎng).21.(8分)已知:在平面直角坐標(biāo)系中,拋物線()交x軸于A、B兩點(diǎn),交y軸于點(diǎn)C,且對(duì)稱軸為直線x=-2.(1)求該拋物線的解析式及頂點(diǎn)D的坐標(biāo);(2)若點(diǎn)P(0,t)是y軸上的一個(gè)動(dòng)點(diǎn),請(qǐng)進(jìn)行如下探究:探究一:如圖1,設(shè)△PAD的面積為S,令W=t·S,當(dāng)0<t<4時(shí),W是否有最大值?如果有,求出W的最大值和此時(shí)t的值;如果沒有,說明理由;探究二:如圖2,是否存在以P、A、D為頂點(diǎn)的三角形與Rt△AOC相似?如果存在,求點(diǎn)P的坐標(biāo);如果不存在,請(qǐng)說明理由.22.(10分)如圖1,在矩形ABCD中,AB=6cm,BC=8cm,如果點(diǎn)E由點(diǎn)B出發(fā)沿BC方向向點(diǎn)C勻速運(yùn)動(dòng),同時(shí)點(diǎn)F由點(diǎn)D出發(fā)沿DA方向向點(diǎn)A勻速運(yùn)動(dòng),它們的速度分別為每秒2cm和1cm,F(xiàn)Q⊥BC,分別交AC、BC于點(diǎn)P和Q,設(shè)運(yùn)動(dòng)時(shí)間為t秒(0<t<4).(1)連接EF,若運(yùn)動(dòng)時(shí)間t=秒時(shí),求證:△EQF是等腰直角三角形;(2)連接EP,當(dāng)△EPC的面積為3cm2時(shí),求t的值;(3)在運(yùn)動(dòng)過程中,當(dāng)t取何值時(shí),△EPQ與△ADC相似.23.(10分)已知:如圖,在Rt△ABC中,∠ACB=90°,BC="3",tan∠BAC=,將∠ABC對(duì)折,使點(diǎn)C的對(duì)應(yīng)點(diǎn)H恰好落在直線AB上,折痕交AC于點(diǎn)O,以點(diǎn)O為坐標(biāo)原點(diǎn),AC所在直線為x軸建立平面直角坐標(biāo)系(1)求過A、B、O三點(diǎn)的拋物線解析式;(2)若在線段AB上有一動(dòng)點(diǎn)P,過P點(diǎn)作x軸的垂線,交拋物線于M,設(shè)PM的長(zhǎng)度等于d,試探究d有無最大值,如果有,請(qǐng)求出最大值,如果沒有,請(qǐng)說明理由.(3)若在拋物線上有一點(diǎn)E,在對(duì)稱軸上有一點(diǎn)F,且以O(shè)、A、E、F為頂點(diǎn)的四邊形為平行四邊形,試求出點(diǎn)E的坐標(biāo).24.(10分)某區(qū)規(guī)定學(xué)生每天戶外體育活動(dòng)時(shí)間不少于1小時(shí),為了解學(xué)生參加戶外體育活動(dòng)的情況,對(duì)部分學(xué)生每天參加戶外體育活動(dòng)的時(shí)間進(jìn)行了隨機(jī)抽樣調(diào)查,并將調(diào)查結(jié)果繪制成如圖的統(tǒng)計(jì)圖表(不完整).請(qǐng)根據(jù)圖表中的信息,解答下列問題:(1)表中的a=_____,將頻數(shù)分布直方圖補(bǔ)全;(2)該區(qū)8000名學(xué)生中,每天戶外體育活動(dòng)的時(shí)間不足1小時(shí)的學(xué)生大約有多少名?(3)若從參加戶外體育活動(dòng)時(shí)間最長(zhǎng)的3名男生和1名女生中隨機(jī)抽取兩名,請(qǐng)用畫樹狀圖或列表法求恰好抽到1名男生和1名女生的概率.組別時(shí)間(小時(shí))頻數(shù)(人數(shù))頻率A0≤t<0.5200.05B0.5≤t<1a0.3Cl≤t<1.51400.35D1.5≤t<2800.2E2≤t<2.5400.125.(12分)解不等式組,并把解集在數(shù)軸上表示出來:26.如圖一座拱橋的示意圖,已知橋洞的拱形是拋物線.當(dāng)水面寬為12m時(shí),橋洞頂部離水面4m.、(1)建立平面直角坐標(biāo)系,并求該拋物線的函數(shù)表達(dá)式;(2)若水面上升1m,水面寬度將減少多少?
參考答案一、選擇題(每題4分,共48分)1、D【分析】把x=1代入x2+px+1=0,即可求得p的值.【詳解】把x=1代入把x=1代入x2+px+1=0,得1+p+1=0,∴p=-2.故選D.【點(diǎn)睛】本題考查了一元二次方程的解得定義,能使一元二次方程成立的未知數(shù)的值叫作一元二次方程的解,熟練掌握一元二次方程解得定義是解答本題的關(guān)鍵.2、B【分析】先由勾股定理求得BC的長(zhǎng),再由銳角三角函數(shù)的定義求出cosB即可;【詳解】由題意得BC=則cosB=;故答案為:B.【點(diǎn)睛】本題主要考查了勾股定理,銳角三角函數(shù)的定義,掌握勾股定理,銳角三角函數(shù)的定義是解題的關(guān)鍵.3、B【解析】試題分析:從上邊看是一個(gè)同心圓,外圓是實(shí)線,內(nèi)圓是虛線,故選B.點(diǎn)睛:本題考查了簡(jiǎn)單組合體的三視圖,從上邊看得到的圖形是俯視圖.看得見部分的輪廓線要畫成實(shí)線,看不見部分的輪廓線要畫成虛線.4、D【解析】試題分析:根據(jù)相似三角形面積的比等于相似比的平方解答即可.解:∵△ABC∽△DEF,相似比為2:1,∴△ABC和△DEF的面積比為4:1,又△DEF的面積為4,∴△ABC的面積為1.故選D.考點(diǎn):相似三角形的性質(zhì).5、B【分析】根據(jù)位似變換的性質(zhì)計(jì)算即可.【詳解】點(diǎn)P(1,﹣2)是線段AB上一點(diǎn),以原點(diǎn)O為位似中心把△AOB放大到原來的兩倍,則點(diǎn)P的對(duì)應(yīng)點(diǎn)的坐標(biāo)為(1×2,﹣2×2)或(1×(﹣2),﹣2×(﹣2)),即(2,﹣4)或(﹣2,4),故選:B.【點(diǎn)睛】本題考查的是位似變換、坐標(biāo)與圖形的性質(zhì),在平面直角坐標(biāo)系中,如果位似變換是以原點(diǎn)為位似中心,相似比為k,那么位似圖形對(duì)應(yīng)點(diǎn)的坐標(biāo)的比等于k或-k.6、C【解析】解:∵,∴,∵EF∥BC,∴△AEF∽△ABC,∴,∵△AEF的面積為2,∴S△ABC=18,則S四邊形EBCF=S△ABC-S△AEF=18-2=1.故選C.【點(diǎn)睛】本題考查相似三角形的判定與性質(zhì),難度不大.7、D【分析】根據(jù)三角形面積公式、矩形性質(zhì)及相似多邊形的性質(zhì)得出:①矩形對(duì)角線平分矩形,S△ABD=S△BCD,只有P點(diǎn)在BD上時(shí),S?+S?=S?+S4;②根據(jù)底邊相等的兩個(gè)三角形的面積公式求和可知,S?+S?=矩形ABCD面積,同理S?+S4=矩形ABCD面積,所以S?+S?=S?+S4;③根據(jù)底邊相等高不相等的三角形面積比等于高的比來說明即可;④根據(jù)相似四邊形判定和性質(zhì),對(duì)應(yīng)角相等、對(duì)應(yīng)邊成比例的四邊形相似,矩形AEPF∽矩形ABCD推出,點(diǎn)P在對(duì)角線上.【詳解】解:①當(dāng)點(diǎn)P在矩形的對(duì)角線BD上時(shí),S?+S?=S?+S4.但P是矩形ABCD內(nèi)的任意一點(diǎn),所以該等式不一定成立。故①不一定正確;②∵矩形∴AB=CD,AD=BC∵△APD以AD為底邊,△PBC以BC為底邊,這兩三角形的底相等,高的和為AB,∴S?+S?=S矩形ABCD;同理可得S?+S4=S矩形ABCD,∴②S?+S4=S?+S?正確;③若S?=2S?,只能得出△APD與△PBC高度之比是,S?、S4分別是以AB、CD為底的三角形的面積,底相等,高的比不一定等于,S4=2S2不一定正確;故此選項(xiàng)錯(cuò)誤;④過點(diǎn)P分別作PF⊥AD于點(diǎn)F,PE⊥AB于點(diǎn)E,F.若S1=S2,.則AD·PF=AB·PE∴△APD與△PAB的高的比為:∵∠DAE=∠PEA=∠PFA=90°∴四邊形AEPF是矩形,∴矩形AEPF∽矩形ABCD∴∴P點(diǎn)在矩形的對(duì)角線上,選項(xiàng)④正確.故選:D【點(diǎn)睛】本題考查了三角形面積公式的應(yīng)用,相似多邊形的判定和性質(zhì),用相似多邊形性質(zhì)對(duì)應(yīng)邊成比例是解決本題的難點(diǎn).8、D【分析】根據(jù)幾何體的正面看得到的圖形,可得答案.【詳解】A、主視圖是圓,俯視圖是圓,故A不符合題意;B、主視圖是矩形,俯視圖是矩形,故B不符合題意;C、主視圖是三角形,俯視圖是圓,故C不符合題意;D、主視圖是個(gè)矩形,俯視圖是圓,故D符合題意;故選D.【點(diǎn)睛】本題考查了簡(jiǎn)單幾何體的三視圖,熟記簡(jiǎn)單幾何的三視圖是解題關(guān)鍵.9、C【分析】根據(jù)圓周角定理、垂徑定理、圓內(nèi)接四邊形的性質(zhì)定理判斷.【詳解】①在同圓或等圓中,相等的圓周角所對(duì)的弧相等,本說法錯(cuò)誤;②同弧或等弧所對(duì)的圓周角相等,本說法正確;③平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對(duì)的弧,本說法錯(cuò)誤;④圓內(nèi)接平行四邊形一定是矩形,本說法正確;故選:C.【點(diǎn)睛】本題考查的是命題的真假判斷,掌握?qǐng)A周角定理、垂徑定理、圓內(nèi)接四邊形的性質(zhì)定理是解題的關(guān)鍵.10、B【詳解】∵正方形對(duì)角線相等且互相垂直平分∴△OBC是等腰直角三角形,∵點(diǎn)M,N分別為OB,OC的中點(diǎn),∴MN//BC∴△OMN是等腰直角三角形,∴∠OMN=45°∴cos∠OMN=11、A【分析】將選項(xiàng)展開后與原式對(duì)比即可;【詳解】A:,故正確;B:,故錯(cuò)誤;C:,故錯(cuò)誤;D:,故錯(cuò)誤;故選A.【點(diǎn)睛】本題主要考查了二次函數(shù)的三種形式,掌握二次函數(shù)的三種形式是解題的關(guān)鍵.12、A【分析】根據(jù)相似三角形的面積的比等于相似比的平方進(jìn)行計(jì)算.【詳解】∵△ABC∽△DEF,∴△ABC與△DEF的面積之比等于()2=()2=.故選:A.【點(diǎn)睛】本題考查了相似三角形的性質(zhì):相似三角形的對(duì)應(yīng)角相等,對(duì)應(yīng)邊的比相等;相似三角形的對(duì)應(yīng)線段(對(duì)應(yīng)中線、對(duì)應(yīng)角平分線、對(duì)應(yīng)邊上的高)的比等于相似比;相似三角形的面積的比等于相似比的平方.二、填空題(每題4分,共24分)13、1.【分析】根據(jù)一元二次方程的解結(jié)合根與系數(shù)的關(guān)系即可得出m2+2m=2021、m+n=-2,將其代入m2+3m+n中即可求出結(jié)論.【詳解】∵m,n分別為一元二次方程x2+2x-2018=0的兩個(gè)實(shí)數(shù)根,∴m2+2m=2021,m+n=-2,∴m2+3m+n=m2+2m+(m+n)=1+(-2)=1.故答案為1.【點(diǎn)睛】本題考查了根與系數(shù)的關(guān)系以及一元二次方程的解,根據(jù)一元二次方程的解結(jié)合根與系數(shù)的關(guān)系即可得出m2+2m=1、m+n=-2是解題的關(guān)鍵.14、【分析】由折疊的性質(zhì)可得AM=A′M=2,可得點(diǎn)A′在以點(diǎn)M為圓心,AM為半徑的圓上,當(dāng)點(diǎn)A′在線段MC上時(shí),A′C有最小值,由勾股定理可求MC的長(zhǎng),即可求A′C的最小值.【詳解】∵四邊形ABCD是矩形,∴AB=CD=6,BC=AD=4,∵M(jìn)是AD邊的中點(diǎn),∴AM=MD=2,∵將△AMN沿MN所在直線折疊,∴AM=A′M=2,∴點(diǎn)A′在以點(diǎn)M為圓心,AM為半徑的圓上,∴如圖,當(dāng)點(diǎn)A′在線段MC上時(shí),A′C有最小值,∵M(jìn)C===2,∴A′C的最小值=MC?MA′=2?2,故答案為:2?2.【點(diǎn)睛】本題主要考查了翻折變換,矩形的性質(zhì)、勾股定理,解題的關(guān)鍵是分析出A′點(diǎn)運(yùn)動(dòng)的軌跡.15、±1【解析】試題解析:拋物線與x軸只有一個(gè)交點(diǎn),則△=b2-4ac=0,故:p2-4×9×4=0,解得p=±1.故答案為±1.16、【分析】先證明△ABC∽△ADE,再根據(jù)相似三角形的性質(zhì):相似三角形的對(duì)應(yīng)高的比等于相似比求解即可.【詳解】解:∵BC∥DE,∴△ABC∽△ADE,∴,∵BC=1.2,∴DE=2,∴E(4,0).故答案為:(4,0).【點(diǎn)睛】本題考查了中心投影,相似三角形的判定和性質(zhì),準(zhǔn)確識(shí)圖,熟練掌握相似三角形的對(duì)應(yīng)高的比等于相似比是解題的關(guān)鍵.17、x1=5,x2=7【分析】根據(jù)題意利用ab=0得到a=0或b=0,求出解即可.【詳解】解:方程(x﹣5)(x﹣7)=0,可得x﹣5=0或x﹣7=0,解得:x1=5,x2=7,故答案為:x1=5,x2=7.【點(diǎn)睛】本題考查解一元二次方程-因式分解法,熟練掌握因式分解的方法是解本題的關(guān)鍵.18、③【分析】①利用可以用來判定二次函數(shù)與x軸交點(diǎn)個(gè)數(shù),即可得出答案;②根據(jù)圖中當(dāng)時(shí)的值得正負(fù)即可判斷;③由函數(shù)開口方向可判斷的正負(fù),根據(jù)對(duì)稱軸可判斷的正負(fù),再根據(jù)函數(shù)與軸交點(diǎn)可得出的正負(fù),即可得出答案;④根據(jù)方程可以看做函數(shù),就相當(dāng)于函數(shù)(a0)向下平移個(gè)單位長(zhǎng)度,且與有兩個(gè)交點(diǎn),即可得出答案.【詳解】解:①∵函數(shù)與軸有兩個(gè)交點(diǎn),∴,所以①錯(cuò)誤;②∵當(dāng)時(shí),,由圖可知當(dāng),,∴,所以②錯(cuò)誤;③∵函數(shù)開口向上,∴,∵對(duì)稱軸,,∴,∵函數(shù)與軸交于負(fù)半軸,∴,∴,所以③正確;④方程可以看做函數(shù)當(dāng)y=0時(shí)也就是與軸交點(diǎn),∵方程有兩個(gè)不相等的實(shí)數(shù)根,∴函數(shù)與軸有兩個(gè)交點(diǎn)∵函數(shù)就相當(dāng)于函數(shù)向下平移個(gè)單位長(zhǎng)度∴由圖可知當(dāng)函數(shù)向上平移大于2個(gè)單位長(zhǎng)度時(shí),交點(diǎn)不足2個(gè),∴,所以④錯(cuò)誤.正確答案為:③【點(diǎn)睛】本題考查了二次函數(shù)與系數(shù)的關(guān)系:可以用來判定二次函數(shù)與x軸交點(diǎn)的個(gè)數(shù),當(dāng)時(shí),函數(shù)與x軸有2個(gè)交點(diǎn);當(dāng)時(shí),函數(shù)與x軸有1個(gè)交點(diǎn);當(dāng)時(shí),函數(shù)與x軸沒有交點(diǎn).;二次函數(shù)系數(shù)中決定開口方向,當(dāng)時(shí),開口向上,當(dāng)時(shí),開口向下;共同決定對(duì)稱軸的位置,可以根據(jù)“左同右異”來判斷;決定函數(shù)與軸交點(diǎn).三、解答題(共78分)19、(1)x1=1,x2=;(2).【分析】(1)用因式分解法解方程即可;(2)用公式法解方程即可.【詳解】解:(1)原方程可化為:移項(xiàng)得:∴∴或∴,.(2)∵,,,∴,則∴.【點(diǎn)睛】本題考查了一元二次方程的解法,常用的方法有直接開方法、配方法、公式法、因式分解法,靈活選擇合適的方法是解答本題的關(guān)鍵.20、(1)證明見試題解析;(2)1;(3).【解析】試題分析:(1)公共角和直角兩個(gè)角相等,所以相似.(2)由(1)可得三角形相似比,設(shè)BD=x,CD,BD,BO用x表示出來,所以可得BD長(zhǎng).(3)同(2)原理,BD=B′D=x,AB′,B′O,BO用x表示,利用等腰三角形求BD長(zhǎng).試題解析:(1)證明:∵DO⊥AB,∴∠DOB=90°,∴∠ACB=∠DOB=90°,又∵∠B=∠B.∴△DOB∽△ACB.(2)∵AD平分∠CAB,DC⊥AC,DO⊥AB,∴DO=DC,在Rt△ABC中,AC=6,BC=,8,∴AB=10,∵△DOB∽△ACB,∴DO∶BO∶BD=AC∶BC∶AB=3∶4∶1,設(shè)BD=x,則DO=DC=x,BO=x,∵CD+BD=8,∴x+x=8,解得x=,1,即:BD=1.(3)∵點(diǎn)B與點(diǎn)B′關(guān)于直線DO對(duì)稱,∴∠B=∠OB′D,BO=B′O=x,BD=B′D=x,∵∠B為銳角,∴∠OB′D也為銳角,∴∠AB′D為鈍角,∴當(dāng)△AB′D是等腰三角形時(shí),AB′=DB′,∵AB′+B′O+BO=10,∴x+x+x=10,解得x=,即BD=,∴當(dāng)△AB′D為等腰三角形時(shí),BD=.點(diǎn)睛:角平分線問題的輔助線添加及其解題模型.①垂兩邊:如圖(1),已知平分,過點(diǎn)作,,則.②截兩邊:如圖(2),已知平分,點(diǎn)上,在上截取,則≌.③角平分線+平行線→等腰三角形:如圖(3),已知平分,,則;如圖(4),已知平分,,則.(1)(2)(3)(4)④三線合一(利用角平分線+垂線→等腰三角形):如圖(1),已知平分,且,則,.(1)21、(1),D(-2,4).(2)①當(dāng)t=3時(shí),W有最大值,W最大值=1.②存在.只存在一點(diǎn)P(0,2)使Rt△ADP與Rt△AOC相似.【解析】(1)由拋物線的對(duì)稱軸求出a,就得到拋物線的表達(dá)式了;
(2)①下面探究問題一,由拋物線表達(dá)式找出A,B,C三點(diǎn)的坐標(biāo),作DM⊥y軸于M,再由面積關(guān)系:SPAD=S梯形OADM-SAOP-SDMP得到t的表達(dá)式,從而W用t表示出來,轉(zhuǎn)化為求最值問題.
②難度較大,運(yùn)用分類討論思想,可以分三種情況:
(1)當(dāng)∠P1DA=90°時(shí);(2)當(dāng)∠P2AD=90°時(shí);(3)當(dāng)AP3D=90°時(shí)?!驹斀狻拷猓海?)∵拋物線y=ax2-x+3(a≠0)的對(duì)稱軸為直線x=-2.∴D(-2,4).(2)探究一:當(dāng)0<t<4時(shí),W有最大值.
∵拋物線交x軸于A、B兩點(diǎn),交y軸于點(diǎn)C,
∴A(-6,0),B(2,0),C(0,3),
∴OA=6,OC=3.
當(dāng)0<t<4時(shí),作DM⊥y軸于M,
則DM=2,OM=4.
∵P(0,t),
∴OP=t,MP=OM-OP=4-t.
∵S三角形PAD=S梯形OADM-S三角形AOP-S三角形DMP=12-2t
∴W=t(12-2t)=-2(t-3)2+1
∴當(dāng)t=3時(shí),W有最大值,W最大值=1.
探究二:
存在.分三種情況:
①當(dāng)∠P1DA=90°時(shí),作DE⊥x軸于E,則OE=2,DE=4,∠DEA=90°,
∴AE=OA-OE=6-2=4=DE.
∴∠DAE=∠ADE=45°,∴∠P1DE=∠P1DA-∠ADE=90°-45°=45度.
∵DM⊥y軸,OA⊥y軸,
∴DM∥OA,
∴∠MDE=∠DEA=90°,
∴∠MDP1=∠MDE-∠P1DE=90°-45°=45度.
∴P1M=DM=2,此時(shí)又因?yàn)椤螦OC=∠P1DA=90°,
∴Rt△ADP1∽R(shí)t△AOC,
∴OP1=OM-P1M=4-2=2,
∴P1(0,2).
∴當(dāng)∠P1DA=90°時(shí),存在點(diǎn)P1,使Rt△ADP1∽R(shí)t△AOC,
此時(shí)P1點(diǎn)的坐標(biāo)為(0,2)
②當(dāng)∠P2AD=90°時(shí),則∠P2AO=45°,∴△P2AD與△AOC不相似,此時(shí)點(diǎn)P2不存在.③當(dāng)∠AP3D=90°時(shí),以AD為直徑作⊙O1,則⊙O1的半徑圓心O1到y(tǒng)軸的距離d=4.
∵d>r,
∴⊙O1與y軸相離.
不存在點(diǎn)P3,使∠AP3D=90度.
∴綜上所述,只存在一點(diǎn)P(0,2)使Rt△ADP與Rt△AOC相似.22、(1)詳見解析;(2)2秒;(3)2秒或秒或秒.【分析】(1)由題意通過計(jì)算發(fā)現(xiàn)EQ=FQ=6,由此即可證明;(2)根據(jù)題意利用三角形的面積建立方程即可得出結(jié)論;(3)由題意分點(diǎn)E在Q的左側(cè)以及點(diǎn)E在Q的右側(cè)這兩種情況,分別進(jìn)行分析即可得出結(jié)論.【詳解】解:(1)證明:若運(yùn)動(dòng)時(shí)間t=秒,則BE=2×=(cm),DF=(cm),∵四邊形ABCD是矩形∴AD=BC=8(cm),AB=DC=6(cm),∠D=∠BCD=90°∵∠D=∠FQC=∠QCD=90°,∴四邊形CDFQ也是矩形,∴CQ=DF,CD=QF=6(cm),∴EQ=BC﹣BE﹣CQ=8﹣﹣=6(cm),∴EQ=QF=6(cm),又∵FQ⊥BC,∴△EQF是等腰直角三角形;(2)由(1)知,CE=8﹣2t,CQ=t,在Rt△ABC中,tan∠ACB==,在Rt△CPQ中,tan∠ACB===,∴PQ=t,∵△EPC的面積為3cm2,∴S△EPC=CE×PQ=×(8﹣2t)×t=3,∴t=2秒,即t的值為2秒;(3)解:分兩種情況:Ⅰ.如圖1中,點(diǎn)E在Q的左側(cè).①∠PEQ=∠CAD時(shí),△EQP∽△ADC,∵四邊形ABCD是矩形,∴AD∥BC,∴∠CAD=∠ACB,∵△EQP∽△ADC,∴∠CAD=∠QEP,∴∠ACB=∠QEP,∴EQ=CQ,∴CE=2CQ,由(1)知,CQ=t,CE=8-2t,∴8-2t=2t,∴t=2秒;②∠PEQ=∠ACD時(shí),△EPQ∽△CAD,∴,∵FQ⊥BC,∴FQ∥AB,∴△CPQ∽△CAB,∴,即,解得:,∴,解得:;Ⅱ.如圖2中,點(diǎn)E在Q的右側(cè).∵0<t<4,∴點(diǎn)E不能與點(diǎn)C重合,∴只存在△EPQ∽△CAD,可得,即,解得:;綜上所述,t的值為2秒或秒或秒時(shí),△EPQ與△ADC相似.【點(diǎn)睛】本題是相似形綜合題,主要考查矩形的性質(zhì)和判定,三角函數(shù),相似三角形的判定和性質(zhì),用方程的思想解決問題是解本題的關(guān)鍵.23、(1)y=;(2)當(dāng)t=時(shí),d有最大值,最大值為2;(3)在拋物線上存在三個(gè)點(diǎn):E1(,-),E2(,),E3(-,),使以O(shè)、A、E、F為頂點(diǎn)的四邊形為平行四邊形.【解析】(1)在Rt△ABC中,根據(jù)∠BAC的正切函數(shù)可求得AC=1,再根據(jù)勾股定理求得AB,設(shè)OC=m,連接OH由對(duì)稱性知,OH=OC=m,BH=BC=3,∠BHO=∠BCO=90°,即得AH=AB-BH=2,OA=1-m.在Rt△AOH中,根據(jù)勾股定理可求得m的值,即可得到點(diǎn)O、A、B的坐標(biāo),根據(jù)拋物線的對(duì)稱性可設(shè)過A、B、O三點(diǎn)的拋物線的解析式為:y=ax(x-),再把B點(diǎn)坐標(biāo)代入即可求得結(jié)果;(2)設(shè)直線AB的解析式為y=kx+b,根據(jù)待定系數(shù)法求得直線AB的解析式,設(shè)動(dòng)點(diǎn)P(t,),則M(t,),先表示出d關(guān)于t的函數(shù)關(guān)系式,再根據(jù)二次函數(shù)的性質(zhì)即可求得結(jié)果;(3)設(shè)拋物線y=的頂點(diǎn)為D,先求得拋物線的對(duì)稱軸,與拋物線的頂點(diǎn)坐標(biāo),根據(jù)拋物線的對(duì)稱性,A、O兩點(diǎn)關(guān)于對(duì)稱軸對(duì)稱.分AO為平行四邊形的對(duì)角線時(shí),AO為平行四邊形的邊時(shí),根據(jù)平行四邊形的性質(zhì)求解即可.【詳解】(1)在Rt△ABC中,∵BC=3,tan∠BAC=,∴AC=1.∴AB=.設(shè)OC=m,連接OH由對(duì)稱性知,OH=OC=m,BH=BC=3,∠BHO=∠BCO=90°,∴AH=AB-BH=2,OA=1-m.∴在Rt△AOH中,OH2+AH2=OA2,即m2+22=(1-m)2,得m=.∴OC=,OA=AC-OC=,∴O(0,0)A(,0),B(-,3).設(shè)過A、B、O三點(diǎn)的拋物線的解析式為:y=ax(x-).把x=,y=3代入解析式,得a=.∴y=x(x-)=.即過A、B、O三點(diǎn)的拋物線的解析式為y=.(2)設(shè)直線AB的解析式為y=kx+b,根據(jù)題意得,解之得,.∴直線AB的解析式為y=.設(shè)動(dòng)點(diǎn)P(t,),則M(t,).∴d=()—()=—=∴當(dāng)t=時(shí),d有最大值,最大值為2.(3)設(shè)拋物線y=的頂點(diǎn)為D.∵y==,∴拋物線的對(duì)稱軸x=,頂點(diǎn)D(,-).根據(jù)拋物線的對(duì)稱性,A、O兩點(diǎn)關(guān)于對(duì)稱軸對(duì)稱.當(dāng)AO為平行四邊形的對(duì)角線時(shí),拋物線的頂點(diǎn)D以及點(diǎn)D關(guān)于x軸對(duì)稱的點(diǎn)F與A、O四點(diǎn)為頂點(diǎn)的四邊形一定是平行四邊形.這時(shí)點(diǎn)D即為點(diǎn)E,所以E點(diǎn)坐標(biāo)為().當(dāng)AO為平行四邊形的邊時(shí),由OA=,知拋物線存在點(diǎn)E的橫坐標(biāo)為或,即或,分別把x=和x=代入二次函數(shù)解析式y(tǒng)=中,得點(diǎn)E(,)或E(-,).所以在拋物線上存在三個(gè)點(diǎn):E1(,-),E2(,),E3(-,),使以O(shè)、A、E、F為
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 金融租賃居間合同模板
- 始興縣中醫(yī)院特殊用房設(shè)施設(shè)備采購及安裝及醫(yī)療設(shè)備采購項(xiàng)目招標(biāo)文件
- 終止合同退款協(xié)議
- 未維修事故車買賣合同協(xié)議書
- 企業(yè)人才培養(yǎng)與發(fā)展作業(yè)指導(dǎo)書
- 質(zhì)押礦產(chǎn)權(quán)收益權(quán)擔(dān)保協(xié)議書
- 養(yǎng)雞業(yè)養(yǎng)殖技術(shù)手冊(cè)
- 庫房轉(zhuǎn)租合同
- 智能倉儲(chǔ)標(biāo)準(zhǔn)化管理與供應(yīng)鏈優(yōu)化項(xiàng)目實(shí)踐
- 焊接結(jié)構(gòu)分析與優(yōu)化作業(yè)指導(dǎo)書
- 中央2025年交通運(yùn)輸部所屬事業(yè)單位招聘261人筆試歷年參考題庫附帶答案詳解
- 2025年上半年上半年重慶三峽融資擔(dān)保集團(tuán)股份限公司招聘6人易考易錯(cuò)模擬試題(共500題)試卷后附參考答案
- 特殊教育學(xué)校2024-2025學(xué)年度第二學(xué)期教學(xué)工作計(jì)劃
- 2025年技術(shù)員個(gè)人工作計(jì)劃例文(四篇)
- 勞保穿戴要求培訓(xùn)
- 工業(yè)控制系統(tǒng)應(yīng)用與安全防護(hù)技術(shù)(微課版)課件 第1章 緒論
- 藍(lán)色插畫風(fēng)徽州印象旅游景點(diǎn)景區(qū)文化宣傳
- 2024年形勢(shì)與政策課件及講稿合集
- 無人機(jī)運(yùn)營(yíng)方案
- 【公開課】同一直線上二力的合成+課件+2024-2025學(xué)年+人教版(2024)初中物理八年級(jí)下冊(cè)+
- 南京信息工程大學(xué)《教師領(lǐng)導(dǎo)力》2021-2022學(xué)年第一學(xué)期期末試卷
評(píng)論
0/150
提交評(píng)論