山東省泰安市大津口中學(xué)2022年數(shù)學(xué)九上期末監(jiān)測模擬試題含解析_第1頁
山東省泰安市大津口中學(xué)2022年數(shù)學(xué)九上期末監(jiān)測模擬試題含解析_第2頁
山東省泰安市大津口中學(xué)2022年數(shù)學(xué)九上期末監(jiān)測模擬試題含解析_第3頁
山東省泰安市大津口中學(xué)2022年數(shù)學(xué)九上期末監(jiān)測模擬試題含解析_第4頁
山東省泰安市大津口中學(xué)2022年數(shù)學(xué)九上期末監(jiān)測模擬試題含解析_第5頁
已閱讀5頁,還剩18頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

2022-2023學(xué)年九上數(shù)學(xué)期末模擬試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(每題4分,共48分)1.下列光線所形成的投影不是中心投影的是()A.太陽光線 B.臺燈的光線 C.手電筒的光線 D.路燈的光線2.一個盒子里有完全相同的三個小球,球上分別標(biāo)上數(shù)字-2、1、4隨機摸出一個小球(不放回)其數(shù)字記為p,再隨機摸出另一個小球其數(shù)字記為q,則滿足關(guān)于x的方程有實數(shù)根的概率是()A. B. C. D.3.如圖1,點F從菱形ABCD的頂點A出發(fā),沿A→D→B以1cm/s的速度勻速運動到點B,圖2是點F運動時,△FBC的面積y(cm2)隨時間x(s)變化的關(guān)系圖象,則a的值為()A. B.2 C. D.24.已知反比例函數(shù)y=,下列結(jié)論中不正確的是()A.圖象經(jīng)過點(﹣1,﹣1) B.圖象在第一、三象限C.當(dāng)x>1時,y>1 D.當(dāng)x<0時,y隨著x的增大而減小5.二次函數(shù)y=x2+4x+3,當(dāng)0≤x≤時,y的最大值為()A.3 B.7 C. D.6.二次函數(shù)y=-2(x+1)2+3的圖象的頂點坐標(biāo)是()A.(1,3) B.(-1,3) C.(1,-3) D.(-1,-3)7.如圖,是的弦,半徑于點,且的長是()A. B. C. D.8.關(guān)于x的一元二次方程(2x-1)2+n2+1=0的根的情況是()A.有兩個不相等的實數(shù)根 B.有兩個相等的實數(shù)根C.沒有實數(shù)根 D.無法判定9.如圖,AB∥CD,點E在CA的延長線上.若∠BAE=40°,則∠ACD的大小為()A.150° B.140° C.130° D.120°10.如圖,在一張矩形紙片中,對角線,點分別是和的中點,現(xiàn)將這張紙片折疊,使點落在上的點處,折痕為,若的延長線恰好經(jīng)過點,則點到對角線的距離為().A. B. C. D.11.解方程2(5x-1)2=3(5x-1)的最適當(dāng)?shù)姆椒ㄊ牵ǎ〢.直接開平方法. B.配方法 C.公式法 D.分解因式法12.如圖,將一個Rt△ABC形狀的楔子從木樁的底端點P處沿水平方向打入木樁底下,使木樁向上運動,已知楔子斜面的傾斜角為20°,若楔子沿水平方向前移8cm(如箭頭所示),則木樁上升了()A.8tan20° B. C.8sin20° D.8cos20°二、填空題(每題4分,共24分)13.拋物線y=﹣(x+)2﹣3的頂點坐標(biāo)是_____.14.已知扇形的面積為4π,半徑為6,則此扇形的圓心角為_____度.15.如圖,在△ABC中,∠ACB=90°,點G是△ABC的重心,且AG⊥CG,CG的延長線交AB于H.則S△AGH:S△ABC的值為____.16.將拋物線向左平移3個單位,再向下平移2個單位,則得到的拋物線解析式是________.(結(jié)果寫成頂點式)17.在△ABC中,若∠A=30°,∠B=45°,AC=,則BC=_______.18.反比例函數(shù)y=的圖象經(jīng)過點(﹣2,3),則k的值為_____.三、解答題(共78分)19.(8分)如圖,在中,,矩形的頂點、分別在邊、上,、在邊上.(1)求證:∽;(2)若,則面積與面積的比為.20.(8分)用適當(dāng)?shù)姆椒ń庀铝蟹匠蹋?1)4x2-1=0;(2)3x2+x-5=0;21.(8分)如圖,四邊形中的三個頂點在⊙上,是優(yōu)弧上的一個動點(不與點、重合).(1)當(dāng)圓心在內(nèi)部,∠ABO+∠ADO=70°時,求∠BOD的度數(shù);(2)當(dāng)點A在優(yōu)弧BD上運動,四邊形為平行四邊形時,探究與的數(shù)量關(guān)系.22.(10分)某廣告公司設(shè)計一幅周長為16米的矩形廣告牌,廣告設(shè)計費為每平方米2000元.設(shè)矩形一邊長為x,面積為S平方米.(1)求S與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;(2)設(shè)計費能達到24000元嗎?為什么?(3)當(dāng)x是多少米時,設(shè)計費最多?最多是多少元?23.(10分)對于平面直角坐標(biāo)系中的圖形M,N,給出如下定義:如果點P為圖形M上任意一點,點Q為圖形N上任意一點,那么稱線段PQ長度的最小值為圖形M,N的“近距離”,記作d(M,N).若圖形M,N的“近距離”小于或等于1,則稱圖形M,N互為“可及圖形”.(1)當(dāng)⊙O的半徑為2時,①如果點A(0,1),B(3,4),那么d(A,⊙O)=_______,d(B,⊙O)=________;②如果直線與⊙O互為“可及圖形”,求b的取值范圍;(2)⊙G的圓心G在軸上,半徑為1,直線與x軸交于點C,與y軸交于點D,如果⊙G和∠CDO互為“可及圖形”,直接寫出圓心G的橫坐標(biāo)m的取值范圍.24.(10分)天水某公交公司將淘汰某一條線路上“冒黑煙”較嚴(yán)重的公交車,計劃購買A型和B型兩行環(huán)保節(jié)能公交車共10輛,若購買A型公交車1輛,B型公交車2輛,共需400萬元;若購買A型公交車2輛,B型公交車1輛,共需350萬元,(1)求購買A型和B型公交車每輛各需多少萬元?(2)預(yù)計在該條線路上A型和B型公交車每輛年均載客量分別為60萬人次和100萬人次.若該公司購買A型和B型公交車的總費用不超過1220萬元,且確保這10輛公交車在該線路的年均載客量總和不少于650萬人次,則該公司有哪幾種購車方案?哪種購車方案總費用最少?最少總費用是多少?25.(12分)解方程(1)(x+1)2﹣25=0(2)x2﹣4x﹣2=026.(2016山東省聊城市)如圖,在直角坐標(biāo)系中,直線與反比例函數(shù)的圖象交于關(guān)于原點對稱的A,B兩點,已知A點的縱坐標(biāo)是1.(1)求反比例函數(shù)的表達式;(2)將直線向上平移后與反比例函數(shù)在第二象限內(nèi)交于點C,如果△ABC的面積為48,求平移后的直線的函數(shù)表達式.

參考答案一、選擇題(每題4分,共48分)1、A【分析】利用中心投影(光由一點向外散射形成的投影叫做中心投影)和平行投影(由平行光線形成的投影是平行投影)的定義即可判斷出.【詳解】解:A.太陽距離地球很遠(yuǎn),我們認(rèn)為是平行光線,因此不是中心投影.

B.臺燈的光線是由臺燈光源發(fā)出的光線,是中心投影;

C.手電筒的光線是由手電筒光源發(fā)出的光線,是中心投影;

D.路燈的光線是由路燈光源發(fā)出的光線,是中心投影.

所以,只有A不是中心投影.

故選:A.【點睛】本題考查了中心投影和平行投影的定義.熟記定義,并理解一般情況下,太陽光線可以近似的看成平行光線是解決此題的關(guān)鍵.2、A【詳解】解:列表如下:

-214-2---(1,-2)(4,-2)1(-2,1)---(4,1)4(-2,4)(1,4)---所有等可能的情況有6種,其中滿足關(guān)于x的方程x2+px+q=0有實數(shù)根,即滿足p2-4q≥0的情況有4種,則P(滿足方程的根)=故選:A.3、C【分析】通過分析圖象,點F從點A到D用as,此時,△FBC的面積為a,依此可求菱形的高DE,再由圖象可知,BD=,應(yīng)用兩次勾股定理分別求BE和a.【詳解】過點D作DE⊥BC于點E.由圖象可知,點F由點A到點D用時為as,△FBC的面積為acm1..∴AD=a.∴DE?AD=a.∴DE=1.當(dāng)點F從D到B時,用s.∴BD=.Rt△DBE中,BE=,∵四邊形ABCD是菱形,∴EC=a-1,DC=a,Rt△DEC中,a1=11+(a-1)1.解得a=.故選C.【點睛】本題綜合考查了菱形性質(zhì)和一次函數(shù)圖象性質(zhì),解答過程中要注意函數(shù)圖象變化與動點位置之間的關(guān)系.4、C【分析】根據(jù)反比例函數(shù)的性質(zhì),利用排除法求解.【詳解】A、x=﹣1,y==﹣1,∴圖象經(jīng)過點(﹣1,﹣1),正確;B、∵k=1>0;,∴圖象在第一、三象限,正確;C、當(dāng)x=1時,y=1,∵圖象在第一象限內(nèi)y隨x的增大而減小,∴當(dāng)x>1時y<1,錯誤;D、∵k=1>0,∴圖象在第三象限內(nèi)y隨x的增大而減小,正確.故選:C.【點睛】此題考查反比例函數(shù)的性質(zhì),正確掌握函數(shù)的增減性,k值與圖象所在象限的關(guān)系.5、D【解析】利用配方法把二次函數(shù)解析式化為頂點式,根據(jù)二次函數(shù)的性質(zhì)解答.【詳解】解:y=x2+4x+3=x2+4x+4﹣1=(x+2)2﹣1,則當(dāng)x>﹣2時,y隨x的增大而增大,∴當(dāng)x=時,y的最大值為()2+4×+3=,故選:D.【點睛】本題考查配方法把二次函數(shù)解析式化為頂點式根據(jù)二次函數(shù)性質(zhì)解答的運用6、B【解析】分析:據(jù)二次函數(shù)的頂點式,可直接得出其頂點坐標(biāo);解:∵二次函數(shù)的解析式為:y=-(x-1)2+3,∴其圖象的頂點坐標(biāo)是:(1,3);故選A.7、C【分析】利用勾股定理和垂徑定理即可求解.【詳解】∵,∴AD=4cm在Rt△AOD中,OA2=OD2+AD2,∴25=(5?DC)2+16,∴DC=2cm.故選:C.【點睛】主要考查了垂徑定理的運用.垂徑定理:垂直于弦的直徑平分這條弦,并且平分這條弦所對的兩條?。獯祟愵}一般要把半徑、弦心距、弦的一半構(gòu)建在一個直角三角形里,運用勾股定理求解.8、C【分析】先對原方程進行變形,然后進行判定即可.【詳解】解:由原方程可以化為:(2x-1)2=-n2-1∵(2x-1)2≥0,-n2-1≤-1∴原方程沒有實數(shù)根.故答案為C.【點睛】本題考查了一元二次方程的解,解題的關(guān)鍵在于對方程的變形,而不是運用根的判別式.9、B【解析】試題分析:如圖,延長DC到F,則∵AB∥CD,∠BAE=40°,∴∠ECF=∠BAE=40°.∴∠ACD=180°-∠ECF=140°.故選B.考點:1.平行線的性質(zhì);2.平角性質(zhì).10、B【分析】設(shè)DH與AC交于點M,易得EG為△CDH的中位線,所以DG=HG,然后證明△ADG≌△AHG,可得AD=AH,∠DAG=∠HAG,可推出∠BAH=∠HAG=∠DAG=30°,然后設(shè)BH=a,則BC=AD=AH=2a,利用勾股定理建立方程可求出a,然后在Rt△AGM中,求出GM,AG,再求斜邊AM上的高即為G到AC的距離.【詳解】如圖,設(shè)DH與AC交于點M,過G作GN⊥AC于N,∵E、F分別是CD和AB的中點,∴EF∥BC∴EG為△CDH的中位線∴DG=HG由折疊的性質(zhì)可知∠AGH=∠B=90°∴∠AGD=∠AGH=90°在△ADG和△AHG中,∵DG=HG,∠AGD=∠AGH,AG=AG∴△ADG≌△AHG(SAS)∴AD=AH,AG=AB,∠DAG=∠HAG由折疊的性質(zhì)可知∠HAG=∠BAH,∴∠BAH=∠HAG=∠DAG=∠BAD=30°設(shè)BH=a,在Rt△ABH中,∠BAH=30°∴AH=2a∴BC=AD=AH=2a,AB=在Rt△ABC中,AB2+BC2=AC2即解得∴DH=2GH=2BH=,AG=AB=∵CH∥AD∴△CHM∽△ADM∴∴AM=AC=,HM=DH=∴GM=GH-HM=在Rt△AGM中,∴故選B.【點睛】本題考查了矩形的性質(zhì),折疊的性質(zhì),全等三角形與相似三角形的判定與性質(zhì),以及勾股定理的應(yīng)用,解題的關(guān)鍵是求出∠BAH=30°,再利用勾股定理求出邊長.11、D【詳解】解:方程可化為[2(5x-1)-3](5x-1)=0,即(10x-5)(5x-1)=0,根據(jù)分析可知分解因式法最為合適.故選D.12、A【解析】根據(jù)已知,運用直角三角形和三角函數(shù)得到上升的高度為:8tan20°.【詳解】設(shè)木樁上升了h米,∴由已知圖形可得:tan20°=,∴木樁上升的高度h=8tan20°故選B.二、填空題(每題4分,共24分)13、(﹣,﹣3)【分析】根據(jù)y=a(x﹣h)2+k的頂點是(h,k),可得答案.【詳解】解:y=﹣(x+)2﹣3的頂點坐標(biāo)是(﹣,﹣3),故答案為:(﹣,﹣3).【點睛】本題考查了拋物線頂點坐標(biāo)的問題,掌握拋物線頂點式解析式是解題的關(guān)鍵.14、1【分析】利用扇形面積計算公式:設(shè)圓心角是n°,圓的半徑為R的扇形面積為S,則由此構(gòu)建方程即可得出答案.【詳解】解:設(shè)該扇形的圓心角度數(shù)為n°,∵扇形的面積為4π,半徑為6,∴4π=,解得:n=1.∴該扇形的圓心角度數(shù)為:1°.故答案為:1.【點睛】此題考查了扇形面積的計算,熟練掌握公式是解此題的關(guān)鍵.15、1:6【分析】根據(jù)重心的性質(zhì)得到,求得,根據(jù)CH為AB邊上的中線,于是得到,從而得到結(jié)論.【詳解】∵點G是△ABC的重心,∴,∴,∴,∵CH為AB邊上的中線,∴,∴,∴,故答案為:.【點睛】本題考查了三角形的重心:三角形的重心是三角形三邊中線的交點;重心到頂點的距離與重心到對邊中點的距離之比為2:1.16、【分析】根據(jù)“左加右減、上加下減”的原則進行解答即可.【詳解】解:將拋物線y=x2向左平移3個單位后所得直線解析式為:y=(x+3)2;再向下平移2個單位為:.故答案為:【點睛】本題考查的是二次函數(shù)的圖象與幾何變換,熟知函數(shù)圖象平移的法則是解答此題的關(guān)鍵.17、【分析】作CD⊥AB于點D,先在Rt△ACD中求得CD的長,再解Rt△BCD即得結(jié)果.【詳解】如圖,作CD⊥AB于點D:,∠A=30°,,得,,∠B=45°,,解得考點:本題考查的是解直角三角形點評:解答本題的關(guān)鍵是作高,構(gòu)造直角三角形,正確把握公共邊CD的作用.18、-1【解析】將點(?2,3)代入解析式可求出k的值.【詳解】把(?2,3)代入函數(shù)y=中,得3=,解得k=?1.故答案為?1.【點睛】主要考查了用待定系數(shù)法求反比例函數(shù)的解析式.先設(shè)y=,再把已知點的坐標(biāo)代入可求出k值,即得到反比例函數(shù)的解析式.三、解答題(共78分)19、(1)見解析;(2)1.【分析】(1)先證∠AGD=∠B,再根據(jù)∠ADG=∠BEF=90°,即可證明;(2)由(1)得∽,則△ADG面積與△BEF面積的比==1.【詳解】(1)證:在矩形中,=90°∴=90°∵=90°∴=90°∴在和中∵,=90°∴∽(2)解:∵四邊形DEFG為矩形,∴GD=EF,∵△ADG∽△FEB,∴故答案為1.【點睛】本題考查了相似三角形的判定與性質(zhì),根據(jù)題意證得△ADG∽△FEB是解答本題的關(guān)鍵.20、(1);(2)【分析】(1)把方程化為:再利用直接開平方法求解即可得到答案;(2)由再計算利用公式法求解即可得到答案.【詳解】解:(1)(2)b2-4ac=61>,【點睛】本題考查的是一元二次方程的解法,掌握直接開平方法,公式法解一元二次方程是解題的關(guān)鍵.21、(1)140°;(2)當(dāng)點A在優(yōu)弧BD上運動,四邊形為平行四邊形時,點O在∠BAD內(nèi)部時,+=60°;點O在∠BAD外部時,|-|=60°.【解析】(1)連接OA,如圖1,根據(jù)等腰三角形的性質(zhì)得∠OAB=∠ABO,∠OAD=∠ADO,則∠OAB+∠OAD=∠ABO+∠ADO=70°,然后根據(jù)圓周角定理易得∠BOD=2∠BAD=140°;(2)分點O在∠BAD內(nèi)部和外部兩種情形分類討論:①當(dāng)點O在∠BAD內(nèi)部時,首先根據(jù)四邊形OBCD為平行四邊形,可得∠BOD=∠BCD,∠OBC=∠ODC;然后根據(jù)∠BAD+∠BCD=180°,∠BAD=∠BOD,求出∠BOD的度數(shù),進而求出∠BAD的度數(shù);最后根據(jù)平行四邊形的性質(zhì),求出∠OBC、∠ODC的度數(shù),再根據(jù)∠ABC+∠ADC=180°,求出∠OBA+∠ODA等于多少即可.②當(dāng)點O在∠BAD外部時:Ⅰ、首先根據(jù)四邊形OBCD為平行四邊形,可得∠BOD=∠BCD,∠OBC=∠ODC;然后根據(jù)∠BAD+∠BCD=180°,∠BAD=∠BOD,求出∠BOD的度數(shù),進而求出∠BAD的度數(shù);最后根據(jù)OA=OD,OA=OB,判斷出∠OAD=∠ODA,∠OAB=∠OBA,進而判斷出∠OBA=∠ODA+60°即可.Ⅱ、首先根據(jù)四邊形OBCD為平行四邊形,可得∠BOD=∠BCD,∠OBC=∠ODC;然后根據(jù)∠BAD+∠BCD=180°,∠BAD=∠BOD,求出∠BOD的度數(shù),進而求出∠BAD的度數(shù);最后根據(jù)OA=OD,OA=OB,判斷出∠OAD=∠ODA,∠OAB=∠OBA,進而判斷出∠ODA=∠OBA+60°即可.【詳解】(1)連接OA,如圖1,∵OA=OB,OA=OD,∵∠OAB=∠ABO,∠OAD=∠ADO,∴∠OAB+∠OAD=∠ABO+∠ADO=70°,即∠BAD=70°,∴∠BOD=2∠BAD=140°;(2)①如圖2,,∵四邊形OBCD為平行四邊形,∴∠BOD=∠BCD,∠OBC=∠ODC,又∵∠BAD+∠BCD=180°,∠BAD=∠BOD,∴∠BOD+∠BOD=180°,∴∠BOD=120°,∠BAD=120°÷2=60°,∴∠OBC=∠ODC=180°-120°=60°,又∵∠ABC+∠ADC=180°,∴∠OBA+∠ODA=180°-(∠OBC+∠ODC)=180°-(60°+60°)=180°-120°=60°②Ⅰ、如圖3,,∵四邊形OBCD為平行四邊形,∴∠BOD=∠BCD,∠OBC=∠ODC,又∵∠BAD+∠BCD=180°,∠BAD=∠BOD,∴∠BOD+∠BOD=180°,∴∠BOD=120°,∠BAD=120°÷2=60°,∴∠OAB=∠OAD+∠BAD=∠OAD+60°,∵OA=OD,OA=OB,∴∠OAD=∠ODA,∠OAB=∠OBA,∴∠OBA-∠ODA=60°.Ⅱ、如圖4,,∵四邊形OBCD為平行四邊形,∴∠BOD=∠BCD,∠OBC=∠ODC,又∵∠BAD+∠BCD=180°,∠BAD=∠BOD,∴∠BOD+∠BOD=180°,∴∠BOD=120°,∠BAD=120°÷2=60°,∴∠OAB=∠OAD-∠BAD=∠OAD-60°,∵OA=OD,OA=OB,∴∠OAD=∠ODA,∠OAB=∠OBA,∴∠OBA=∠ODA-60°,即∠ODA-∠OBA=60°.所以,當(dāng)點A在優(yōu)弧BD上運動,四邊形為平行四邊形時,點O在∠BAD內(nèi)部時,+=60°;點O在∠BAD外部時,|-|=60°.【點睛】(1)此題主要考查了圓周角定理的應(yīng)用,要熟練掌握,解答此題的關(guān)鍵是要明確:在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半.(2)此題還考查了三角形的內(nèi)角和定理,要熟練掌握,解答此題的關(guān)鍵是要明確:三角形的內(nèi)角和是180°.(3)此題還考查了平行四邊形的性質(zhì)和應(yīng)用,要熟練掌握,解答此題的關(guān)鍵是要明確平行四邊形的性質(zhì):①邊:平行四邊形的對邊相等.②角:平行四邊形的對角相等.③對角線:平行四邊形的對角線互相平分.(4)此題還考查了圓內(nèi)接四邊形的性質(zhì),要熟練掌握,解答此題的關(guān)鍵是要明確:①圓內(nèi)接四邊形的對角互補.②圓內(nèi)接四邊形的任意一個外角等于它的內(nèi)對角(就是和它相鄰的內(nèi)角的對角).22、(1)S=﹣x2+8x,其中0<x<8;(2)能,理由見解析;(3)當(dāng)x=4米時,矩形的最大面積為16平方米,設(shè)計費最多,最多是32000元.【解析】試題分析:(1)由矩形的一邊長為x、周長為16得出另一邊長為8﹣x,根據(jù)矩形的面積公式可得答案;(2)由設(shè)計費為24000元得出矩形面積為12平方米,據(jù)此列出方程,解之求得x的值,從而得出答案;(3)將函數(shù)解析式配方成頂點式,可得函數(shù)的最值情況.試題解析:(1)∵矩形的一邊為x米,周長為16米,∴另一邊長為(8﹣x)米,∴S=x(8﹣x)=,其中0<x<8,即(0<x<8);(2)能,∵設(shè)計費能達到24000元,∴當(dāng)設(shè)計費為24000元時,面積為24000÷200=12(平方米),即=12,解得:x=2或x=6,∴設(shè)計費能達到24000元.(3)∵=,∴當(dāng)x=4時,S最大值=16,∴當(dāng)x=4米時,矩形的最大面積為16平方米,設(shè)計費最多,最多是32000元.考點:二次函數(shù)的應(yīng)用;一元二次方程的應(yīng)用;二次函數(shù)的最值;最值問題.23、(1)①1,3;②;(2),.【分析】(1)①根據(jù)圖形M,N間的“近距離”的定義結(jié)合已知條件求解即可.②根據(jù)可及圖形的定義作出符合題意的圖形,結(jié)合圖形作答即可;(2)分兩種情況進行討論即可.【詳解】(1)①如圖:根據(jù)近距離的定義可知:d(A,⊙O)=AC=2-1=1.過點B作BE⊥x軸于點E,則OB==5∴d(B,⊙O)=OB-OD=5-2=3.故答案為1,3.②∵由題意可知直線與⊙O互為“可及圖形”,⊙O的半徑為2,∴.∴.∴.(2)①當(dāng)⊙G與邊OD是可及圖形時,d(O,⊙G)=OG-1,∴即-1≤m-1≤1解得:.②當(dāng)⊙G與邊CD是可及圖形時,如圖,過點G作GE⊥CD于E,d(E,⊙G)=EG-1,由近距離的定義可知d(E,⊙G)的最大值為1,∴此時EG=2,∵∠GCE=45°,∴GC=2.∵OC=5,∴OG=5-2.根據(jù)對稱性,OG的最大值為5+2.∴綜上所述,m的取值范圍為:或【點睛】本題主要考查了圓的綜合知識,正確理解“近距離”和“可及圖形”的概念是解題的關(guān)鍵.24、(1)購買A型公交車每輛需100萬元,購買B型公交車每輛需150萬元.(2)購買A型公交車8輛,則B型公交車2輛費用最少,最少總費用為1100萬元.【解析】(1)設(shè)購買A型公交車每輛需x萬元,購買B型公交車每輛需y萬元,根據(jù)“A型公交車1輛,B型公交車2輛,共需400萬元;A型公交車2輛,B型公交車1輛,共需350萬元”列出方程組解決問題;(2)設(shè)購買A型公交車a輛,則B型公交車(10-a)輛,由“購買A型和B型公交車的總費用不超過1220萬元”和“10輛公交車在該線路的年均載客總和不少于650萬人次”列出不等式組探討得出答案即可.【詳解】(1)設(shè)購買A型公交車每輛需x萬元,購買B型公交車每輛需y萬元,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論