版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2022-2023學年九上數(shù)學期末模擬試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(每小題3分,共30分)1.如圖,點E是正方形ABCD的邊DC上一點,把△ADE繞點A順時針旋轉90°到△ABF的位置,若四邊形AECF的面積為25,DE=3,則AE的長為()A. B.5 C.8 D.42.若用圓心角為120°,半徑為9的扇形圍成一個圓錐側面(接縫忽略不計),則這個圓錐的底面直徑是()A.3 B.6C.9 D.123.方程5x2=6x﹣8化成一元二次方程一般形式后,二次項系數(shù)、一次項系數(shù)、常數(shù)項分別是()A.5、6、﹣8B.5,﹣6,﹣8C.5,﹣6,8D.6,5,﹣84.已知下列命題:①對角線互相平分的四邊形是平行四邊形;②內(nèi)錯角相等;③對角線互相垂直的四邊形是菱形;④矩形的對角線相等,其中假命題有()A.個 B.個 C.個 D.個5.如圖,在Rt△ABC中,∠ACB=90°,若,BC=2,則sin∠A的值為()A. B. C. D.6.下列方程中,關于x的一元二次方程是()A.2x﹣3=x B.2x+3y=5 C.2x﹣x2=1 D.7.如圖,在△ABC中,點D,E分別在邊AB,AC上,且,則S△ADE:S四邊形BCED的值為()A.1: B.1:3 C.1:8 D.1:98.正方形具有而菱形不具有的性質(zhì)是()A.對角線互相平分 B.對角線相等C.對角線平分一組對角 D.對角線互相垂直9.小明同學以正六邊形三個不相鄰的頂點為圓心,邊長為半徑,向外作三段圓弧,設計了如圖所示的圖案,已知正六邊形的邊長為1,則該圖案外圍輪廓的周長為()A. B. C. D.10.下列命題是真命題的個數(shù)是().①64的平方根是;②,則;③三角形三條內(nèi)角平分線交于一點,此點到三角形三邊的距離相等;④三角形三邊的垂直平分線交于一點.A.1個 B.2個 C.3個 D.4個二、填空題(每小題3分,共24分)11.已知關于x的一元二次方程(m-2)2x2+(2m+1)x+1=0有兩個實數(shù)根,則m的取值范圍是_____.12.如果點A(-1,4)、B(m,4)在拋物線y=a(x-1)2+h上,那么m的值為_____.13.已知二次函數(shù)的圖象如圖所示,并且關于的一元二次方:有兩個不相等的實數(shù)根,下列結論:①;②;③;④,其中正確的有__________.14.如圖,AB為⊙O的直徑,點D是弧AC的中點,弦BD,AC交于點E,若DE=2,BE=4,則tan∠ABD=_____.15.如圖,在△ABC中,∠BAC=90°,AB=AC=,點D、E分別在BC、AC上(點D不與點B、C重合),且∠ADE=45°,若△ADE是等腰三角形,則CE=_____.16.=___17.如圖,點A,B,C在⊙O上,CO的延長線交AB于點D,∠A=50°,∠B=30°,則∠ADC的度數(shù)為_____.18.如圖,的半徑為,的面積為,點為弦上一動點,當長為整數(shù)時,點有__________個.三、解答題(共66分)19.(10分)如圖,二次函數(shù)的圖像經(jīng)過,兩點.(1)求該函數(shù)的解析式;(2)若該二次函數(shù)圖像與軸交于、兩點,求的面積;(3)若點在二次函數(shù)圖像的對稱軸上,當周長最短時,求點的坐標.20.(6分)如圖1,△ABC是等邊三角形,點D在BC上,BD=2CD,點F是射線AC上的動點,點M是射線AD上的動點,∠AFM=∠DAB,F(xiàn)M的延長線與射線AB交于點E,設AM=x,△AME與△ABD重疊部分的面積為y,y與x的函數(shù)圖象如圖2所示(其中0<x≤m,m<x<n,x≥n時,函數(shù)的解析式不同).(1)填空:AB=_______;(2)求出y與x的函數(shù)關系式,并求出x的取值范圍.21.(6分)如圖,矩形ABCD中,AB=6cm,AD=8cm,點P從點A出發(fā),以每秒一個單位的速度沿A→B→C的方向運動;同時點Q從點B出發(fā),以每秒2個單位的速度沿B→C→D的方向運動,當其中一點到達終點后兩點都停止運動.設兩點運動的時間為t秒.(1)當t=時,兩點停止運動;(2)設△BPQ的面積面積為S(平方單位)①求S與t之間的函數(shù)關系式;②求t為何值時,△BPQ面積最大,最大面積是多少?22.(8分)如圖,Rt△ABC中,∠C=90°,E是AB邊上一點,D是AC邊上一點,且點D不與A、C重合,ED⊥AC.(1)當sinB=時,①求證:BE=2CD.②當△ADE繞點A旋轉到如圖2的位置時(45°<∠CAD<90°).BE=2CD是否成立?若成立,請給出證明;若不成立.請說明理由.(2)當sinB=時,將△ADE繞點A旋轉到∠DEB=90°,若AC=10,AD=2,求線段CD的長.23.(8分)甲、乙兩臺機器共同加工一批零件,一共用了小時.在加工過程中乙機器因故障停止工作,排除故障后,乙機器提高了工作效率且保持不變,繼續(xù)加工.甲機器在加工過程中工作效率保持不變.甲、乙兩臺機器加工零件的總數(shù)(個)與甲加工時間之間的函數(shù)圖象為折線,如圖所示.(1)這批零件一共有個,甲機器每小時加工個零件,乙機器排除故障后每小時加工個零件;(2)當時,求與之間的函數(shù)解析式;(3)在整個加工過程中,甲加工多長時間時,甲與乙加工的零件個數(shù)相等?24.(8分)用一塊邊長為的正方形薄鋼片制作成一個沒有蓋的長方體盒子,可先在薄鋼片的四個角上截去四個相同的小正方形(如圖①),然后把四邊折合起來(如圖②).若做成的盒子的底面積為時,求截去的小正方形的邊長.25.(10分)如圖,某中學準備建一個面積為300m2的矩形花園,它的一邊利用圖書館的后墻,另外三邊所圍的柵欄的總長度是50m,求垂直于墻的邊AB的長度?(后墻MN最長可利用25米)26.(10分)如圖,拋物線()與雙曲線相交于點、,已知點坐標,點在第三象限內(nèi),且的面積為3(為坐標原點).(1)求實數(shù)、、的值;(2)在該拋物線的對稱軸上是否存在點使得為等腰三角形?若存在請求出所有的點的坐標,若不存在請說明理由.(3)在坐標系內(nèi)有一個點,恰使得,現(xiàn)要求在軸上找出點使得的周長最小,請求出的坐標和周長的最小值.
參考答案一、選擇題(每小題3分,共30分)1、A【分析】利用旋轉的性質(zhì)得出四邊形AECF的面積等于正方形ABCD的面積,進而可求出正方形的邊長,再利用勾股定理得出答案.【詳解】把順時針旋轉的位置,四邊形AECF的面積等于正方形ABCD的面積等于25,,,中,.故選A.【點睛】此題主要考查了旋轉的性質(zhì)以及正方形的性質(zhì),正確利用旋轉的性質(zhì)得出對應邊關系是解題關鍵.2、B【詳解】設這個圓錐的底面半徑為r,∵扇形的弧長==1π,∴2πr=1π,∴2r=1,即圓錐的底面直徑為1.故選B.3、C【解析】根據(jù)一元二次方程的一般形式進行解答即可.【詳解】5x2=6x﹣8化成一元二次方程一般形式是5x2﹣6x+8=0,它的二次項系數(shù)是5,一次項系數(shù)是﹣6,常數(shù)項是8,故選C.【點睛】本題考查了一元二次方程的一般形式,一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常數(shù)且a≠0)特別要注意a≠0的條件.這是在做題過程中容易忽視的知識點.在一般形式中ax2叫二次項,bx叫一次項,c是常數(shù)項.其中a,b,c分別叫二次項系數(shù),一次項系數(shù),常數(shù)項.4、B【分析】利用平行四邊形的判定、平行線的性質(zhì)、菱形的判定和矩形的性質(zhì)分別對各命題進行判斷即可.【詳解】解:①根據(jù)平行四邊形的判定定理可知,對角線互相平分的四邊形是平行四邊形,故①是真命題;②兩直線平行,內(nèi)錯角相等,故②為假命題;③根據(jù)菱形的判定定理,對角線互相垂直且平分的四邊形是菱形,故③是假命題;④根據(jù)矩形的性質(zhì),矩形的對角線相等,故④是真命題;故選:B.【點睛】本題考查了命題與定理的知識,解題的關鍵是熟悉平行四邊形的判定、平行線的性質(zhì)、菱形的判定及矩形的性質(zhì),難度不大.5、C【分析】先利用勾股定理求出AB的長,然后再求sin∠A的大?。驹斀狻拷猓骸咴赗t△ABC中,,BC=2∴AB=∴sin∠A=故選:C.【點睛】本題考查銳角三角形的三角函數(shù)和勾股定理,需要注意求三角函數(shù)時,一定要是在直角三角形當中.6、C【分析】利用一元二次方程的定義判斷即可.【詳解】A、方程2x﹣3=x為一元一次方程,不符合題意;B、方程2x+3y=5是二元一次方程,不符合題意;C、方程2x﹣x2=1是一元二次方程,符合題意;D、方程x+=7是分式方程,不符合題意,故選:C.【點睛】本題考查了一元一次方程的問題,掌握一元一次方程的定義是解題的關鍵.7、C【分析】易證△ADE∽△ABC,然后根據(jù)相似三角形面積的比等于相似比的平方,繼而求得S△ADE:S四邊形BCED的值.【詳解】∵,∠A=∠A,∴△ADE∽△ABC,∴S△ADE:S△ABC=1:9,∴S△ADE:S四邊形BCED=1:8,故選C.【點睛】此題考查了相似三角形的判定與性質(zhì).此題難度不大,注意掌握相似三角形面積的比等于相似比的平方定理的應用是解此題的關鍵.8、B【分析】根據(jù)正方形和菱形的性質(zhì)逐項分析可得解.【詳解】根據(jù)正方形對角線的性質(zhì):平分、相等、垂直;菱形對角線的性質(zhì):平分、垂直,故選B.【點睛】考點:1.菱形的性質(zhì);2.正方形的性質(zhì).9、C【分析】根據(jù)正六邊形的邊長相等,每個內(nèi)角為120度,可知圖案外圍輪廓的周長為三個半徑為1、圓心角為240度的弧長之和.【詳解】由題意可知:
∵正六邊形的內(nèi)角,∴扇形的圓心角,
∵正六邊形的邊長為1,
∴該圖案外圍輪廓的周長,
故選:C.【點睛】本題考查了弧長的計算公式,正多邊形和圓,正六邊形的性質(zhì),正確的識別圖形是解題的關鍵.10、C【分析】分別根據(jù)平方根、等式性質(zhì)、三角形角平分線、線段垂直平分線性質(zhì)進行分析即可.【詳解】①64的平方根是,正確,是真命題;②,則不一定,可能;故錯誤;③根據(jù)角平分線性質(zhì),三角形三條內(nèi)角平分線交于一點,此點到三角形三邊的距離相等;是真命題;④根據(jù)三角形外心定義,三角形三邊的垂直平分線交于一點,是真命題;故選:C【點睛】考核知識點:命題的真假.理解平方根、等式性質(zhì)、三角形角平分線、線段垂直平分線性質(zhì)是關鍵.二、填空題(每小題3分,共24分)11、且.【詳解】∵關于x的一元二次方程(m﹣1)1x1+(1m+1)x+1=0有兩個不相等的實數(shù)根,∴△=b1﹣4ac>0,即(1m+1)1﹣4×(m﹣1)1×1>0,解這個不等式得,m>,又∵二次項系數(shù)是(m﹣1)1≠0,∴m≠1故M得取值范圍是m>且m≠1.故答案為m>且m≠1.考點:根的判別式12、1【分析】根據(jù)函數(shù)值相等兩點關于對稱軸對稱,可得答案.【詳解】由點A(﹣1,4)、B(m,4)在拋物線y=a(x﹣1)2+h上,得:(﹣1,4)與(m,4)關于對稱軸x=1對稱,m﹣1=1﹣(﹣1),解得:m=1.故答案為1.【點睛】本題考查了二次函數(shù)圖象上點的坐標特征,利用函數(shù)值相等兩點關于對稱軸對稱得出m﹣1=1﹣(﹣1)是解題的關鍵.13、③【分析】①利用可以用來判定二次函數(shù)與x軸交點個數(shù),即可得出答案;②根據(jù)圖中當時的值得正負即可判斷;③由函數(shù)開口方向可判斷的正負,根據(jù)對稱軸可判斷的正負,再根據(jù)函數(shù)與軸交點可得出的正負,即可得出答案;④根據(jù)方程可以看做函數(shù),就相當于函數(shù)(a0)向下平移個單位長度,且與有兩個交點,即可得出答案.【詳解】解:①∵函數(shù)與軸有兩個交點,∴,所以①錯誤;②∵當時,,由圖可知當,,∴,所以②錯誤;③∵函數(shù)開口向上,∴,∵對稱軸,,∴,∵函數(shù)與軸交于負半軸,∴,∴,所以③正確;④方程可以看做函數(shù)當y=0時也就是與軸交點,∵方程有兩個不相等的實數(shù)根,∴函數(shù)與軸有兩個交點∵函數(shù)就相當于函數(shù)向下平移個單位長度∴由圖可知當函數(shù)向上平移大于2個單位長度時,交點不足2個,∴,所以④錯誤.正確答案為:③【點睛】本題考查了二次函數(shù)與系數(shù)的關系:可以用來判定二次函數(shù)與x軸交點的個數(shù),當時,函數(shù)與x軸有2個交點;當時,函數(shù)與x軸有1個交點;當時,函數(shù)與x軸沒有交點.;二次函數(shù)系數(shù)中決定開口方向,當時,開口向上,當時,開口向下;共同決定對稱軸的位置,可以根據(jù)“左同右異”來判斷;決定函數(shù)與軸交點.14、【分析】根據(jù)圓周角定理得到∠DAC=∠B,得到△ADE∽△BDA,根據(jù)相似三角形的性質(zhì)求出AD,根據(jù)正切的定義解答即可.【詳解】∵點D是弧AC的中點,∴,∴∠DAC=∠ABD,又∵∠ADE=∠BDA,∴△ADE∽△BDA,∴,即,解得:AD=2,∵AB為⊙O的直徑,∴∠ADB=90°,∴tan∠ABD=tan∠DAE.故答案為:.【點睛】本題考查了相似三角形的判定和性質(zhì)、圓周角定理、正切的定義,掌握相似三角形的判定定理和性質(zhì)定理是解答本題的關鍵.15、2﹣或.【分析】當△ABD∽△DCE時,可能是DA=DE,也可能是ED=EA,所以要分兩種情況求出CE長.【詳解】解:∵∠BAC=90°,AB=AC=2,∴∠B=∠C=45°.∵∠ADE=45°,∴∠B=∠C=∠ADE.∵∠ADB=∠C+∠DAC,∠DEC=∠ADE+∠DAC,∴∠ADB=∠DEC.∵∠ADC+∠B+∠BAD=180,∠DEC+∠C+∠CDE=180°,∴∠ADC+∠B+∠BAD=∠DEC+∠C+∠CDE,∴∠EDC=∠BAD,∴△ABD∽△DCE∵∠DAE<∠BAC=90°,∠ADE=45°,∴當△ADE是等腰三角形時,第一種可能是AD=DE.∴△ABD≌△DCE.∴CD=AB=.∴BD=2﹣=CE,當△ADE是等腰三角形時,第二種可能是ED=EA.∵∠ADE=45°,∴此時有∠DEA=90°.即△ADE為等腰直角三角形.∴AE=DE=AC=.∴CE=AC=當AD=EA時,點D與點B重合,不合題意,所以舍去,因此CE的長為2﹣或.故答案為:2﹣或.【點睛】此題主要考查相似三角形的應用,解題的關鍵是熟知全等三角形的性質(zhì)及等腰直角三角形的性質(zhì).16、【分析】原式利用特殊角的三角函數(shù)值計算即可得到結果.【詳解】解:原式==.故答案為:.【點睛】此題考查了實數(shù)的運算,熟練掌握運算法則是解本題的關鍵.17、110°【解析】試題分析:∵∠A=50°,∴∠BOC=2∠A=100°,∵∠B=30°,∠BOC=∠B+∠BDC,∴∠BDC=∠BOC﹣∠B=100°﹣30°=70°,∴∠ADC=180°﹣∠BDC=110°,故答案為110°.考點:圓周角定理.18、4【分析】從的半徑為,的面積為,可得∠AOB=90°,故OP的最小值為OP⊥AB時,為3,最大值為P與A或B點重合時,為6,故,當長為整數(shù)時,OP可以為5或6,根據(jù)圓的對稱性,這樣的P點共有4個.【詳解】∵的半徑為,的面積為∴∠AOB=90°又OA=OB=6∴AB=當OP⊥AB時,OP有最小值,此時OP=AB=當P與A或B點重合時,OP有最大值,為6,故當OP長為整數(shù)時,OP可以為5或6,根據(jù)圓的對稱性,這樣的P點共有4個.故答案為:4【點睛】本題考查的是圓的對稱性及最大值、最小值問題,根據(jù)“垂線段最短”確定OP的取值范圍是關鍵.三、解答題(共66分)19、(1);(2)6;(3)【解析】(1)將M,N兩點代入求出b,c值,即可確定表達式;(2)令y=0求x的值,即可確定A、B兩點的坐標,求線段AB長,由三角形面積公式求解.(3)求出拋物線的對稱軸,確定M關于對稱軸的對稱點G的坐標,直線NG與對稱軸的交點即為所求P點,利用一次函數(shù)求出P點坐標.【詳解】解:將點,代入中得,,解得,,∴y與x之間的函數(shù)關系式為;(2)如圖,當y=0時,,∴x1=3,x2=-1,∴A(-1,0),B(3,0),∴AB=4,∴S△ABM=.即的面積是6.(3)如圖,拋物線的對稱軸為直線,點關于直線x=1的對稱點坐標為G(2,3),∴PM=PG,連MG交拋物線對稱軸于點P,此時NP+PM=NP+PG最小,即周長最短.設直線NG的表達式為y=mx+n,將N(-2,-5),G(2,3)代入得,,解得,,∴y=2m-1,∴P點坐標為(1,1).【點睛】本題考查拋物線與圖形的綜合題,涉及待定系數(shù)法求解析式,圖象的交點問題,利用對稱性解決線段和的最小值問題,利用函數(shù)觀點解決圖形問題是解答此題的關鍵.如圖,二次函數(shù)y=-x2+bx+c的圖像經(jīng)過M(0,3),N(-2,-5)兩點.20、(1)6;(2)【分析】(1)作高,由圖象得出△ABD的面積,再由BD=2CD,得出△ABC的面積,利用三角形的面積公式求解即可;(2)先求出,,,的值,再利用勾股定理可得AD的值,再利用三角形相似,分類討論,求解即可.【詳解】(1)解:如圖1,過點A作AH⊥BC,垂足為H,則,,由圖象可知.由,可知,.是等邊三角形,可知,,,,得.(2)解:如圖2,作高,則,,由圖象可知.由,可知,.是等邊三角形,可知,,,,得.,,,.由勾股定理可得,.由,可得,,,.當點與點重合時,,.當時,如圖1,,,.當時,如圖4,,,.,,..當時,如圖5,.綜上,.【點睛】本題考查了三角形的面積公式,勾股定理及相似三角形的判定與性質(zhì),解題的關鍵是熟練掌握這些性質(zhì),并注意分類討論思想的應用.21、(1)1;(2)①當0<t<4時,S=﹣t2+6t,當4≤t<6時,S=﹣4t+2,當6<t≤1時,S=t2﹣10t+2,②t=3時,△PBQ的面積最大,最大值為3【分析】(1)求出點Q的運動時間即可判斷.(2)①的三個時間段分別求出△PBQ的面積即可.②利用①中結論,求出各個時間段的面積的最大值即可判斷.【詳解】解:(1)∵四邊形ABCD是矩形,∴AD=BC=8cm,AB=CD=6cm,∴BC+AD=14cm,∴t=14÷2=1,故答案為1.(2)①當0<t<4時,S=?(6﹣t)×2t=﹣t2+6t.當4≤t<6時,S=?(6﹣t)×8=﹣4t+2.當6<t≤1時,S=(t﹣6)?(2t﹣8)=t2﹣10t+2.②當0<t<4時,S=?(6﹣t)×2t=﹣t2+6t=﹣(t﹣3)2+3,∵﹣1<0,∴t=3時,△PBQ的面積最大,最小值為3.當4≤t<6時,S=?(6﹣t)×8=﹣4t+2,∵﹣4<0,∴t=4時,△PBQ的面積最大,最大值為8,當6<t≤1時,S=(t﹣6)?(2t﹣8)=t2﹣10t+2=(t﹣5)2﹣1,t=1時,△PBQ的面積最大,最大值為3,綜上所述,t=3時,△PBQ的面積最大,最大值為3.【點睛】本題主要考查了二次函數(shù)在幾何圖形中的應用,涉及了分類討論的數(shù)學思想,靈活的利用二次函數(shù)的性質(zhì)求三角形面積的最大值是解題的關鍵.22、(1)①證明見解析;②BE=2CD成立.理由見解析;(2)2或4.【分析】(1)①作EH⊥BC于點H,由sinB=可得∠B=30°,∠A=60°,根據(jù)ED⊥AC可證明四邊形CDEH是矩形,根據(jù)矩形的性質(zhì)可得EH=CD,根據(jù)正弦的定義即可得BE=2CD;②根據(jù)旋轉的性質(zhì)可得∠BAC=∠EAD,利用角的和差關系可得∠CAD=∠BAE,根據(jù)=可證明△ACD∽△ABE,及相似三角形的性質(zhì)可得,進而可得BE=2CD;(2)由sinB=可得∠ABC=∠BAC=∠DAE=45°,根據(jù)ED⊥AC可得AD=DE,AC=BC,如圖,分兩種情況討論,通過證明△ACD∽△ABE,求出CD的長即可.【詳解】(1)①作EH⊥BC于點H,∵Rt△ABC中,∠C=90°,sinB=,∴∠B=30°,∴∠A=60°,∵ED⊥AC∴∠ADE=∠C=90°,∴四邊形CDEH是矩形,即EH=CD.∴在Rt△BEH中,∠B=30°∴BE=2EH∴BE=2CD.②BE=2CD成立.理由:∵△ADE繞點A旋轉到如圖2的位置,∴∠BAC=∠EAD=60°,∴∠BAC+∠BAD=∠EAD+∠BAD,即∠CAD=∠BAE,∵AC:AB=1:2,AD:AE=1:2,∴,∴△ACD∽△ABE,∴,又∵Rt△ABC中,=2,∴=2,即BE=2CD.(2)∵sinB=,∴∠ABC=∠BAC=∠DAE=45°,∵ED⊥AC,∴∠AED=∠BAC=45°,∴AD=DE,AC=BC,將△ADE繞點A旋轉,∠DEB=90°,分兩種情況:①如圖所示,過A作AF⊥BE于F,則∠F=90°,當∠DEB=90°時,∠ADE=∠DEF=90°,又∵AD=DE,∴四邊形ADEF是正方形,∴AD=AF=EF=2,∵AC=10=BC,∴AB=10,∴Rt△ABF中,BF==6,∴BE=BF﹣EF=4,又∵△ABC和△ADE都是直角三角形,且∠BAC=∠EAD=45°,∴∠CAD=∠BAE,∵AC:AB=1:,AD:AE=1:,∴,∴△ACD∽△ABE,∴=,即=,∴CD=2;②如圖所示,過A作AF⊥BE于F,則∠AFE=∠AFB=90°,當∠DEB=90°,∠DEB=∠ADE=90°,又∵AD=ED,∴四邊形ADEF是正方形,∴AD=EF=AF=2,又∵AC=10=BC,∴AB=10,∴Rt△ABF中,BF==6,∴BE=BF+EF=8,又∵△ACD∽△ABE,∴=,即=,∴CD=4,綜上所述,線段CD的長為2或4.【點睛】本題考查三角函數(shù)的定義、特殊角的三角函數(shù)值及相似三角形的判定與性質(zhì),根據(jù)正弦值得出∠ABC的度數(shù)并熟練掌握相似三角形的判定定理解題關鍵.23、(1);(2);(3)甲加工或時,甲與乙加工的零件個數(shù)相等.【解析】(1)觀察圖象可得零件總個數(shù),觀察AB段可得甲機器的速度,觀察BC段結合甲的速度可求得乙的速度;(2)設當時,與之間的函數(shù)解析式為,利用待定系數(shù)法求解即可;(3)分乙機器出現(xiàn)故障前與修好故障后兩種情況分別進行討論求解即可.【詳解】(1)觀察圖象可知一共加工零件270個,甲機器每小時加工零件:(90-50)÷(3-1)=20個,乙機器排除故障后每小時加工零件:(270-90)÷(6-3)-20=40個,故答案為:270,20,40;設當時,與之間的函數(shù)解析式為把,,代入解析式,得解得設甲加工小時時,甲與乙加工的零件個數(shù)相等,乙機器出現(xiàn)故障時已加工零件50-20=30個,,;乙機器修好后,根據(jù)題意則有,,答:甲加工或時,甲與乙加工的零件個數(shù)相等.【點睛】本題考查了一次函數(shù)的應用,弄清題意,讀懂函數(shù)圖象,理清各量間的關系是解題的關鍵.24
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年環(huán)保型鋰電池生產(chǎn)與銷售合同
- 2025版石灰石原材料采購合同2篇
- 2024幼兒園環(huán)境創(chuàng)設用藝術教材及教具采購合同范本3篇
- 2024年鋁塑門窗制作與施工一體化合同
- 2024年薪酬保密合同
- 2025版能源資源勘探開發(fā)合同規(guī)范模板3篇
- 二零二五年度事業(yè)單位勞動合同規(guī)范與操作手冊2篇
- 2024年自然人借款合同范本3篇
- 常州大學懷德學院《學前兒童數(shù)學教育》2023-2024學年第一學期期末試卷
- 二零二五年度PE管材改性技術與產(chǎn)品銷售合同6篇
- 汽車標準-商用車輛前軸總成
- 個人貸款月供款計算表模板
- 先玉335玉米品種介紹課件講解
- 康復醫(yī)院籌建計劃書
- 吊籃安裝拆卸專項施工方案
- 提升高中生領導能力和組織能力的建議
- 2024屆新高考物理沖刺復習:“正則動量”解決帶電粒子在磁場中的運動問題
- 國開電大行政管理??啤侗O(jiān)督學》期末考試總題庫2024版
- 軟件工程網(wǎng)上書店管理系統(tǒng)詳細課程設計報告(很經(jīng)典)
- 人教鄂教版版五年級上冊科學期末測試題
- 小學語文大單元教學及單篇教學策略
評論
0/150
提交評論