版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2022-2023學(xué)年高三上數(shù)學(xué)期末模擬試卷注意事項1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知拋物線:,直線與分別相交于點,與的準(zhǔn)線相交于點,若,則()A.3 B. C. D.2.在中,,,,則邊上的高為()A. B.2 C. D.3.已知集合,,若AB,則實數(shù)的取值范圍是()A. B. C. D.4.已知復(fù)數(shù),其中,,是虛數(shù)單位,則()A. B. C. D.5.的展開式中有理項有()A.項 B.項 C.項 D.項6.已知三棱錐的體積為2,是邊長為2的等邊三角形,且三棱錐的外接球的球心恰好是中點,則球的表面積為()A. B. C. D.7.如圖,平面四邊形中,,,,,現(xiàn)將沿翻折,使點移動至點,且,則三棱錐的外接球的表面積為()A. B. C. D.8.已知雙曲線:的左、右兩個焦點分別為,,若存在點滿足,則該雙曲線的離心率為()A.2 B. C. D.59.已知為虛數(shù)單位,復(fù)數(shù),則其共軛復(fù)數(shù)()A. B. C. D.10.山東煙臺蘋果因“果形端正、色澤艷麗、果肉甜脆、香氣濃郁”享譽國內(nèi)外.據(jù)統(tǒng)計,煙臺蘋果(把蘋果近似看成球體)的直徑(單位:)服從正態(tài)分布,則直徑在內(nèi)的概率為()附:若,則,.A.0.6826 B.0.8413 C.0.8185 D.0.954411.的圖象如圖所示,,若將的圖象向左平移個單位長度后所得圖象與的圖象重合,則可取的值的是()A. B. C. D.12.已知雙曲線,為坐標(biāo)原點,、為其左、右焦點,點在的漸近線上,,且,則該雙曲線的漸近線方程為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.某校為了解學(xué)生學(xué)習(xí)的情況,采用分層抽樣的方法從高一人、高二人、高三人中,抽取人進(jìn)行問卷調(diào)查.已知高一被抽取的人數(shù)為,那么高三被抽取的人數(shù)為_______.14.命題“”的否定是______.15.如圖,已知,,為的中點,為以為直徑的圓上一動點,則的最小值是_____.16.已知雙曲線的一條漸近線為,且經(jīng)過拋物線的焦點,則雙曲線的標(biāo)準(zhǔn)方程為______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)貧困人口全面脫貧是全面建成小康社會的標(biāo)志性指標(biāo).黨的十九屆四中全會提出“堅決打贏脫貧攻堅戰(zhàn),建立解決相對貧困的長效機制”對當(dāng)前和下一個階段的扶貧工作進(jìn)行了前瞻性的部署,即2020年要通過精準(zhǔn)扶貧全面消除絕對貧困,實現(xiàn)全面建成小康社會的奮斗目標(biāo).為了響應(yīng)黨的號召,某市對口某貧困鄉(xiāng)鎮(zhèn)開展扶貧工作.對某種農(nóng)產(chǎn)品加工生產(chǎn)銷售進(jìn)行指導(dǎo),經(jīng)調(diào)查知,在一個銷售季度內(nèi),每售出一噸該產(chǎn)品獲利5萬元,未售出的商品,每噸虧損2萬元.經(jīng)統(tǒng)計,兩市場以往100個銷售周期該產(chǎn)品的市場需求量的頻數(shù)分布如下表:市場:需求量(噸)90100110頻數(shù)205030市場:需求量(噸)90100110頻數(shù)106030把市場需求量的頻率視為需求量的概率,設(shè)該廠在下個銷售周期內(nèi)生產(chǎn)噸該產(chǎn)品,在、兩市場同時銷售,以(單位:噸)表示下一個銷售周期兩市場的需求量,(單位:萬元)表示下一個銷售周期兩市場的銷售總利潤.(1)求的概率;(2)以銷售利潤的期望為決策依據(jù),確定下個銷售周期內(nèi)生產(chǎn)量噸還是噸?并說明理由.18.(12分)等比數(shù)列中,.(Ⅰ)求的通項公式;(Ⅱ)記為的前項和.若,求.19.(12分)在中,.(Ⅰ)求角的大小;(Ⅱ)若,,求的值.20.(12分)已知函數(shù)(1)若函數(shù)有且只有一個零點,求實數(shù)的取值范圍;(2)若函數(shù)對恒成立,求實數(shù)的取值范圍.21.(12分)已知函數(shù).(1)解不等式;(2)若函數(shù)的最小值為,求的最小值.22.(10分)某公司打算引進(jìn)一臺設(shè)備使用一年,現(xiàn)有甲、乙兩種設(shè)備可供選擇.甲設(shè)備每臺10000元,乙設(shè)備每臺9000元.此外設(shè)備使用期間還需維修,對于每臺設(shè)備,一年間三次及三次以內(nèi)免費維修,三次以外的維修費用均為每次1000元.該公司統(tǒng)計了曾使用過的甲、乙各50臺設(shè)備在一年間的維修次數(shù),得到下面的頻數(shù)分布表,以這兩種設(shè)備分別在50臺中的維修次數(shù)頻率代替維修次數(shù)發(fā)生的概率.維修次數(shù)23456甲設(shè)備5103050乙設(shè)備05151515(1)設(shè)甲、乙兩種設(shè)備每臺購買和一年間維修的花費總額分別為和,求和的分布列;(2)若以數(shù)學(xué)期望為決策依據(jù),希望設(shè)備購買和一年間維修的花費總額盡量低,且維修次數(shù)盡量少,則需要購買哪種設(shè)備?請說明理由.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】
根據(jù)拋物線的定義以及三角形的中位線,斜率的定義表示即可求得答案.【詳解】顯然直線過拋物線的焦點如圖,過A,M作準(zhǔn)線的垂直,垂足分別為C,D,過M作AC的垂線,垂足為E根據(jù)拋物線的定義可知MD=MF,AC=AF,又AM=MN,所以M為AN的中點,所以MD為三角形NAC的中位線,故MD=CE=EA=AC設(shè)MF=t,則MD=t,AF=AC=2t,所以AM=3t,在直角三角形AEM中,ME=所以故選:C【點睛】本題考查求拋物線的焦點弦的斜率,常見于利用拋物線的定義構(gòu)建關(guān)系,屬于中檔題.2、C【解析】
結(jié)合正弦定理、三角形的內(nèi)角和定理、兩角和的正弦公式,求得邊長,由此求得邊上的高.【詳解】過作,交的延長線于.由于,所以為鈍角,且,所以.在三角形中,由正弦定理得,即,所以.在中有,即邊上的高為.故選:C【點睛】本小題主要考查正弦定理解三角形,考查三角形的內(nèi)角和定理、兩角和的正弦公式,屬于中檔題.3、D【解析】
先化簡,再根據(jù),且AB求解.【詳解】因為,又因為,且AB,所以.故選:D【點睛】本題主要考查集合的基本運算,還考查了運算求解的能力,屬于基礎(chǔ)題.4、D【解析】試題分析:由,得,則,故選D.考點:1、復(fù)數(shù)的運算;2、復(fù)數(shù)的模.5、B【解析】
由二項展開式定理求出通項,求出的指數(shù)為整數(shù)時的個數(shù),即可求解.【詳解】,,當(dāng),,,時,為有理項,共項.故選:B.【點睛】本題考查二項展開式項的特征,熟練掌握二項展開式的通項公式是解題的關(guān)鍵,屬于基礎(chǔ)題.6、A【解析】
根據(jù)是中點這一條件,將棱錐的高轉(zhuǎn)化為球心到平面的距離,即可用勾股定理求解.【詳解】解:設(shè)點到平面的距離為,因為是中點,所以到平面的距離為,三棱錐的體積,解得,作平面,垂足為的外心,所以,且,所以在中,,此為球的半徑,.故選:A.【點睛】本題考查球的表面積,考查點到平面的距離,屬于中檔題.7、C【解析】
由題意可得面,可知,因為,則面,于是.由此推出三棱錐外接球球心是的中點,進(jìn)而算出,外接球半徑為1,得出結(jié)果.【詳解】解:由,翻折后得到,又,則面,可知.又因為,則面,于是,因此三棱錐外接球球心是的中點.計算可知,則外接球半徑為1,從而外接球表面積為.故選:C.【點睛】本題主要考查簡單的幾何體、球的表面積等基礎(chǔ)知識;考查空間想象能力、推理論證能力、運算求解能力及創(chuàng)新意識,屬于中檔題.8、B【解析】
利用雙曲線的定義和條件中的比例關(guān)系可求.【詳解】.選B.【點睛】本題主要考查雙曲線的定義及離心率,離心率求解時,一般是把已知條件,轉(zhuǎn)化為a,b,c的關(guān)系式.9、B【解析】
先根據(jù)復(fù)數(shù)的乘法計算出,然后再根據(jù)共軛復(fù)數(shù)的概念直接寫出即可.【詳解】由,所以其共軛復(fù)數(shù).故選:B.【點睛】本題考查復(fù)數(shù)的乘法運算以及共軛復(fù)數(shù)的概念,難度較易.10、C【解析】
根據(jù)服從的正態(tài)分布可得,,將所求概率轉(zhuǎn)化為,結(jié)合正態(tài)分布曲線的性質(zhì)可求得結(jié)果.【詳解】由題意,,,則,,所以,.故果實直徑在內(nèi)的概率為0.8185.故選:C【點睛】本題考查根據(jù)正態(tài)分布求解待定區(qū)間的概率問題,考查了正態(tài)曲線的對稱性,屬于基礎(chǔ)題.11、B【解析】
根據(jù)圖象求得函數(shù)的解析式,即可得出函數(shù)的解析式,然后求出變換后的函數(shù)解析式,結(jié)合題意可得出關(guān)于的等式,即可得出結(jié)果.【詳解】由圖象可得,函數(shù)的最小正周期為,,,則,,取,,則,,,可得,當(dāng)時,.故選:B.【點睛】本題考查利用圖象求函數(shù)解析式,同時也考查了利用函數(shù)圖象變換求參數(shù),考查計算能力,屬于中等題.12、D【解析】
根據(jù),先確定出的長度,然后利用雙曲線定義將轉(zhuǎn)化為的關(guān)系式,化簡后可得到的值,即可求漸近線方程.【詳解】如圖所示:因為,所以,又因為,所以,所以,所以,所以,所以,所以,所以漸近線方程為.故選:D.【點睛】本題考查根據(jù)雙曲線中的長度關(guān)系求解漸近線方程,難度一般.注意雙曲線的焦點到漸近線的距離等于虛軸長度的一半.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】由分層抽樣的知識可得,即,所以高三被抽取的人數(shù)為,應(yīng)填答案.14、,【解析】
根據(jù)特稱命題的否定為全稱命題得到結(jié)果即可.【詳解】解:因為特稱命題的否定是全稱命題,所以,命題,則該命題的否定是:,故答案為:,.【點睛】本題考查全稱命題與特稱命題的否定關(guān)系,屬于基礎(chǔ)題.15、【解析】
建立合適的直角坐標(biāo)系,求出相關(guān)點的坐標(biāo),進(jìn)而可得的坐標(biāo)表示,利用平面向量數(shù)量積的坐標(biāo)表示求出的表達(dá)式,求出其最小值即可.【詳解】建立直角坐標(biāo)系如圖所示:則點,,,設(shè)點,所以,由平面向量數(shù)量積的坐標(biāo)表示可得,,其中,因為,所以的最小值為.故答案為:【點睛】本題考查平面向量數(shù)量積的坐標(biāo)表示和利用輔助角公式求最值;考查數(shù)形結(jié)合思想和轉(zhuǎn)化與化歸能力、運算求解能力;建立直角坐標(biāo)系,把表示為關(guān)于角的三角函數(shù),利用輔助角公式求最值是求解本題的關(guān)鍵;屬于中檔題.16、【解析】
設(shè)以直線為漸近線的雙曲線的方程為,再由雙曲線經(jīng)過拋物線焦點,能求出雙曲線方程.【詳解】解:設(shè)以直線為漸近線的雙曲線的方程為,∵雙曲線經(jīng)過拋物線焦點,∴,∴雙曲線方程為,故答案為:.【點睛】本題主要考查雙曲線方程的求法,考查拋物線、雙曲線簡單性質(zhì)的合理運用,屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)噸,理由見解析【解析】
(1)設(shè)“市場需求量為90,100,110噸”分別記為事件,,,“市場需求量為90,100,110噸”分別記為事件,,,由題可得,,,,,,代入,計算可得答案;(2)可取180,190,200,210,220,求出噸和噸時的期望,比較大小即可.【詳解】(1)設(shè)“市場需求量為90,100,110噸”分別記為事件,,,“市場需求量為90,100,110噸”分別記為事件,,,則,,,,,,;(2)可取180,190,200,210,220,當(dāng)時,當(dāng)時,.,時,平均利潤大,所以下個銷售周期內(nèi)生產(chǎn)量噸.【點睛】本題考查離散型隨機變量的期望,是中檔題.18、(Ⅰ)或(Ⅱ)12【解析】
(1)先設(shè)數(shù)列的公比為,根據(jù)題中條件求出公比,即可得出通項公式;(2)根據(jù)(1)的結(jié)果,由等比數(shù)列的求和公式,即可求出結(jié)果.【詳解】(1)設(shè)數(shù)列的公比為,,,或.(2)時,,解得;時,,無正整數(shù)解;綜上所述.【點睛】本題主要考查等比數(shù)列,熟記等比數(shù)列的通項公式與求和公式即可,屬于基礎(chǔ)題型.19、(1);(2).【解析】試題分析:(1)由正弦定理得到.消去公因式得到所以.進(jìn)而得到角A;(2)結(jié)合三角形的面積公式,和余弦定理得到,聯(lián)立兩式得到.解析:(I)因為,所以,由正弦定理,得.又因為,,所以.又因為,所以.(II)由,得,由余弦定理,得,即,因為,解得.因為,所以.20、(1);(2).【解析】
(1)求導(dǎo)得到,討論和兩種情況,計算函數(shù)的單調(diào)性,得到,再討論,,三種情況,計算得到答案.(2)計算得到,討論,兩種情況,分別計算單調(diào)性得到函數(shù)最值,得到答案.【詳解】(1),①當(dāng)時恒成立,所以單調(diào)遞增,因為,所以有唯一零點,即符合題意;②當(dāng)時,令,函數(shù)在上單調(diào)遞減,在上單調(diào)遞增,函數(shù)。(i)當(dāng)即,所以符合題意,(ii)當(dāng)即時,因為,故存在,所以不符題意(iii)當(dāng)時,因為,設(shè),所以,單調(diào)遞增,即,故存在,使得,不符題意;綜上,的取值范圍為。(2)。①當(dāng)時,恒成立,所以單調(diào)遞增,所以,即符合題意;②當(dāng)時,恒成立,所以單調(diào)遞增,又因為,所以存在,使得,且當(dāng)時,。即在上單調(diào)遞減,所以,不符題意。綜上,的取值范圍為.【點睛】本題考查了函數(shù)的零點問題,恒成立問題,意在考查學(xué)生的分類討論能力和綜合應(yīng)用能力.21、(1)(2)【解析】
(1)用分類討論思想去掉絕對值符號后可解不等式;(2)由(1)得的最小值為4,則由,代換后用基本不等式可得最小值.【詳解】解:(1)討論:當(dāng)時,,即,此時無解;當(dāng)時,;當(dāng)時,.所求不等式的解集為(2)分析知,函數(shù)的最小值為4,當(dāng)且僅當(dāng)時等號成立.的最小值為4.【點睛】本題考查解絕對值不等式,考查用基本不等式求最小值.解絕對值不等式的方法是分類討論思想.22、(1)分布列見解析,分布列見解析;(2)甲設(shè)備,理由見解析【解析】
(1)的可能取值為10000,11000,12000,的可能取值為9000,10000,11000,12000,計算
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 簧片的沖壓課程設(shè)計
- 素描的微課程設(shè)計
- 爬蟲課程設(shè)計大一作業(yè)
- 種植櫻桃課程設(shè)計意圖
- 物理架構(gòu)與實踐課程設(shè)計
- 礦壓課程設(shè)計
- 2024年湖南省建筑安全員考試題庫及答案
- 2024安徽省安全員A證考試題庫附答案
- 插床圖紙課程設(shè)計
- 畜產(chǎn)品加工與畜產(chǎn)品質(zhì)量安全保障措施的實施考核試卷
- 《合規(guī)培訓(xùn)》課件
- DD 2019-11 地-井瞬變電磁法技術(shù)規(guī)程
- 黑龍江省哈爾濱市香坊區(qū)2023-2024學(xué)年八年級上學(xué)期期末數(shù)學(xué)試題
- 老人及兒童合理用藥課件
- 《格林童話》課外閱讀試題及答案
- 重型再生障礙性貧血造血干細(xì)胞移植治療課件
- 私立民辦高中學(xué)校項目投資計劃書
- 《電機與電氣控制技術(shù)》教學(xué)設(shè)計及授課計劃表
- “銷售技巧課件-讓你掌握銷售技巧”
- 2019北師大版高中英語選修一UNIT 2 單詞短語句子復(fù)習(xí)默寫單
- 房地產(chǎn)項目保密協(xié)議
評論
0/150
提交評論