浙江省寧波市東錢湖中學(xué)2024年中考數(shù)學(xué)模擬試卷含解析_第1頁
浙江省寧波市東錢湖中學(xué)2024年中考數(shù)學(xué)模擬試卷含解析_第2頁
浙江省寧波市東錢湖中學(xué)2024年中考數(shù)學(xué)模擬試卷含解析_第3頁
浙江省寧波市東錢湖中學(xué)2024年中考數(shù)學(xué)模擬試卷含解析_第4頁
浙江省寧波市東錢湖中學(xué)2024年中考數(shù)學(xué)模擬試卷含解析_第5頁
已閱讀5頁,還剩14頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

浙江省寧波市東錢湖中學(xué)2024年中考數(shù)學(xué)模擬精編試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(共10小題,每小題3分,共30分)1.如圖,在四邊形ABCD中,對角線AC⊥BD,垂足為O,點E、F、G、H分別為邊AD、AB、BC、CD的中點.若AC=10,BD=6,則四邊形EFGH的面積為()A.20 B.15 C.30 D.602.如圖所示,在平面直角坐標系中,點A、B、C的坐標分別為(﹣1,3)、(﹣4,1)、(﹣2,1),將△ABC沿一確定方向平移得到△A1B1C1,點B的對應(yīng)點B1的坐標是(1,2),則點A1,C1的坐標分別是()A.A1(4,4),C1(3,2) B.A1(3,3),C1(2,1)C.A1(4,3),C1(2,3) D.A1(3,4),C1(2,2)3.方程的根是()A.x=2 B.x=0 C.x1=0,x2=-2 D.x1=0,x2=24.將一圓形紙片對折后再對折,得到下圖,然后沿著圖中的虛線剪開,得到兩部分,其中一部分展開后的平面圖形是()A. B. C. D.5.下列事件中是必然事件的是()A.早晨的太陽一定從東方升起B(yǎng).中秋節(jié)的晚上一定能看到月亮C.打開電視機,正在播少兒節(jié)目D.小紅今年14歲,她一定是初中學(xué)生6.函數(shù)y=的自變量x的取值范圍是()A.x≠2 B.x<2 C.x≥2 D.x>27.已知一組數(shù)據(jù)a,b,c的平均數(shù)為5,方差為4,那么數(shù)據(jù)a﹣2,b﹣2,c﹣2的平均數(shù)和方差分別是.()A.3,2 B.3,4 C.5,2 D.5,48.將一把直尺與一塊直角三角板如圖放置,如果,那么的度數(shù)為().A. B. C. D.9.下列圖形都是由同樣大小的菱形按照一定規(guī)律所組成的,其中第①個圖形中一共有3個菱形,第②個圖形中一共有7個菱形,第③個圖形中一共有13個菱形,…,按此規(guī)律排列下去,第⑨個圖形中菱形的個數(shù)為()A.73 B.81 C.91 D.10910.二次函數(shù)的圖象如圖所示,則反比例函數(shù)與一次函數(shù)在同一坐標系中的大致圖象是()A. B. C. D.二、填空題(本大題共6個小題,每小題3分,共18分)11.小青在八年級上學(xué)期的數(shù)學(xué)成績?nèi)缦卤硭荆綍r測驗期中考試期末考試成績869081如果學(xué)期總評成績根據(jù)如圖所示的權(quán)重計算,小青該學(xué)期的總評成績是_____分.12.化簡:=__________.13.若一個圓錐的側(cè)面展開圖是一個半徑為6cm,圓心角為120°的扇形,則該圓錐的側(cè)面面積為______cm(結(jié)果保留π).14.如圖,四邊形ABCD為矩形,H、F分別為AD、BC邊的中點,四邊形EFGH為矩形,E、G分別在AB、CD邊上,則圖中四個直角三角形面積之和與矩形EFGH的面積之比為_____.15.二次函數(shù)y=(x﹣2m)2+1,當m<x<m+1時,y隨x的增大而減小,則m的取值范圍是_____.16.在如圖的正方形方格紙中,每個小的四邊形都是相同的正方形,A,B,C,D都在格點處,AB與CD相交于O,則tan∠BOD的值等于__________.三、解答題(共8題,共72分)17.(8分)已知關(guān)于x的分式方程=2①和一元二次方程mx2﹣3mx+m﹣1=0②中,m為常數(shù),方程①的根為非負數(shù).(1)求m的取值范圍;(2)若方程②有兩個整數(shù)根x1、x2,且m為整數(shù),求方程②的整數(shù)根.18.(8分)瑞安市曹村鎮(zhèn)“八百年燈會”成為溫州“申遺”的寶貴項目.某公司生產(chǎn)了一種紀念花燈,每件紀念花燈制造成本為18元.設(shè)銷售單價x(元),每日銷售量y(件)每日的利潤w(元).在試銷過程中,每日銷售量y(件)、每日的利潤w(元)與銷售單價x(元)之間存在一定的關(guān)系,其幾組對應(yīng)量如下表所示:(元)19202130(件)62605840(1)根據(jù)表中數(shù)據(jù)的規(guī)律,分別寫出毎日銷售量y(件),每日的利潤w(元)關(guān)于銷售單價x(元)之間的函數(shù)表達式.(利潤=(銷售單價﹣成本單價)×銷售件數(shù)).當銷售單價為多少元時,公司每日能夠獲得最大利潤?最大利潤是多少?根據(jù)物價局規(guī)定,這種紀念品的銷售單價不得高于32元,如果公司要獲得每日不低于350元的利潤,那么制造這種紀念花燈每日的最低制造成本需要多少元?19.(8分)如今很多初中生購買飲品飲用,既影響身體健康又給家庭增加不必要的開銷,為此數(shù)學(xué)興趣小組對本班同學(xué)一天飲用飲品的情況進行了調(diào)查,大致可分為四種:A:自帶白開水;B:瓶裝礦泉水;C:碳酸飲料;D:非碳酸飲料.根據(jù)統(tǒng)計結(jié)果繪制如下兩個統(tǒng)計圖(如圖),根據(jù)統(tǒng)計圖提供的信息,解答下列問題:(1)請你補全條形統(tǒng)計圖;(2)在扇形統(tǒng)計圖中,求“碳酸飲料”所在的扇形的圓心角的度數(shù);(3)為了養(yǎng)成良好的生活習(xí)慣,班主任決定在自帶白開水的5名同學(xué)(男生2人,女生3人)中隨機抽取2名同學(xué)擔任生活監(jiān)督員,請用列表法或樹狀圖法求出恰好抽到一男一女的概率.20.(8分)為了掌握我市中考模擬數(shù)學(xué)試題的命題質(zhì)量與難度系數(shù),命題教師赴我市某地選取一個水平相當?shù)某跞昙夁M行調(diào)研,命題教師將隨機抽取的部分學(xué)生成績(得分為整數(shù),滿分為160分)分為5組:第一組85~100;第二組100~115;第三組115~130;第四組130~145;第五組145~160,統(tǒng)計后得到如圖1和如圖2所示的頻數(shù)分布直方圖(每組含最小值不含最大值)和扇形統(tǒng)計圖,觀察圖形的信息,回答下列問題:(1)本次調(diào)查共隨機抽取了該年級多少名學(xué)生?并將頻數(shù)分布直方圖補充完整;(2)若將得分轉(zhuǎn)化為等級,規(guī)定:得分低于100分評為“D”,100~130分評為“C”,130~145分評為“B”,145~160分評為“A”,那么該年級1600名學(xué)生中,考試成績評為“B”的學(xué)生大約有多少名?(3)如果第一組有兩名女生和兩名男生,第五組只有一名是男生,針對考試成績情況,命題教師決定從第一組、第五組分別隨機選出一名同學(xué)談?wù)勛鲱}的感想,請你用列表或畫樹狀圖的方法求出所選兩名學(xué)生剛好是一名女生和一名男生的概率.21.(8分)問題探究(1)如圖①,點E、F分別在正方形ABCD的邊BC、CD上,∠EAF=45°,則線段BE、EF、FD之間的數(shù)量關(guān)系為;(2)如圖②,在△ADC中,AD=2,CD=4,∠ADC是一個不固定的角,以AC為邊向△ADC的另一側(cè)作等邊△ABC,連接BD,則BD的長是否存在最大值?若存在,請求出其最大值;若不存在,請說明理由;問題解決(3)如圖③,在四邊形ABCD中,AB=AD,∠BAD=60°,BC=4,若BD⊥CD,垂足為點D,則對角線AC的長是否存在最大值?若存在,請求出其最大值;若不存在,請說明理由.22.(10分)某超市開展早市促銷活動,為早到的顧客準備一份簡易早餐,餐品為四樣A:菜包、B:面包、C:雞蛋、D:油條.超市約定:隨機發(fā)放,早餐一人一份,一份兩樣,一樣一個.按約定,“某顧客在該天早餐得到兩個雞蛋”是事件(填“隨機”、“必然”或“不可能”);請用列表或畫樹狀圖的方法,求出某顧客該天早餐剛好得到菜包和油條的概率.23.(12分)如圖:求作一點P,使,并且使點P到的兩邊的距離相等.24.如圖,已知:△ABC中,AB=AC,M是BC的中點,D、E分別是AB、AC邊上的點,且BD=CE.求證:MD=ME.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、B【解析】

有一個角是直角的平行四邊形是矩形.利用中位線定理可得出四邊形EFGH是矩形,根據(jù)矩形的面積公式解答即可.【詳解】∵點E、F分別為四邊形ABCD的邊AD、AB的中點,∴EF∥BD,且EF=BD=1.同理求得EH∥AC∥GF,且EH=GF=AC=5,又∵AC⊥BD,∴EF∥GH,F(xiàn)G∥HE且EF⊥FG.四邊形EFGH是矩形.∴四邊形EFGH的面積=EF?EH=1×5=2,即四邊形EFGH的面積是2.故選B.【點睛】本題考查的是中點四邊形.解題時,利用了矩形的判定以及矩形的定理,矩形的判定定理有:(1)有一個角是直角的平行四邊形是矩形;(2)有三個角是直角的四邊形是矩形;(1)對角線互相平分且相等的四邊形是矩形.2、A【解析】分析:根據(jù)B點的變化,確定平移的規(guī)律,將△ABC向右移5個單位、上移1個單位,然后確定A、C平移后的坐標即可.詳解:由點B(﹣4,1)的對應(yīng)點B1的坐標是(1,2)知,需將△ABC向右移5個單位、上移1個單位,則點A(﹣1,3)的對應(yīng)點A1的坐標為(4,4)、點C(﹣2,1)的對應(yīng)點C1的坐標為(3,2),故選A.點睛:此題主要考查了平面直角坐標系中的平移,關(guān)鍵是根據(jù)已知點的平移變化總結(jié)出平移的規(guī)律.3、C【解析】試題解析:x(x+1)=0,

?x=0或x+1=0,

解得x1=0,x1=-1.

故選C.4、C【解析】

嚴格按照圖中的方法親自動手操作一下,即可很直觀地呈現(xiàn)出來.【詳解】根據(jù)題意知,剪去的紙片一定是一個四邊形,且對角線互相垂直.故選C.【點睛】本題主要考查學(xué)生的動手能力及空間想象能力.對于此類問題,學(xué)生只要親自動手操作,答案就會很直觀地呈現(xiàn).5、A【解析】

必然事件就是一定發(fā)生的事件,即發(fā)生的概率是1的事件,依據(jù)定義即可求解.【詳解】解:B、C、D選項為不確定事件,即隨機事件.故錯誤;

一定發(fā)生的事件只有第一個答案,早晨的太陽一定從東方升起.故選A.【點睛】該題考查的是對必然事件的概念的理解;必然事件就是一定發(fā)生的事件.6、D【解析】

根據(jù)被開放式的非負性和分母不等于零列出不等式即可解題.【詳解】解:∵函數(shù)y=有意義,∴x-20,即x>2故選D【點睛】本題考查了根式有意義的條件,屬于簡單題,注意分母也不能等于零是解題關(guān)鍵.7、B【解析】試題分析:平均數(shù)為(a?2+b?2+c?2)=(3×5-6)=3;原來的方差:;新的方差:,故選B.考點:平均數(shù);方差.8、D【解析】

根據(jù)三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和求出∠1,再根據(jù)兩直線平行,同位角相等可得∠2=∠1.【詳解】如圖,由三角形的外角性質(zhì)得:∠1=90°+∠1=90°+58°=148°.∵直尺的兩邊互相平行,∴∠2=∠1=148°.故選D.【點睛】本題考查了平行線的性質(zhì),三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和的性質(zhì),熟記性質(zhì)是解題的關(guān)鍵.9、C【解析】試題解析:第①個圖形中一共有3個菱形,3=12+2;第②個圖形中共有7個菱形,7=22+3;第③個圖形中共有13個菱形,13=32+4;…,第n個圖形中菱形的個數(shù)為:n2+n+1;第⑨個圖形中菱形的個數(shù)92+9+1=1.故選C.考點:圖形的變化規(guī)律.10、D【解析】

根據(jù)拋物線和直線的關(guān)系分析.【詳解】由拋物線圖像可知,所以反比例函數(shù)應(yīng)在二、四象限,一次函數(shù)過原點,應(yīng)在二、四象限.故選D【點睛】考核知識點:反比例函數(shù)圖象.二、填空題(本大題共6個小題,每小題3分,共18分)11、84.2【解析】小青該學(xué)期的總評成績?yōu)?86×10%+90×30%+81×60%=84.2(分),故答案為:84.2.12、a+b【解析】

將原式通分相減,然后用平方差公式分解因式,再約分化簡即可?!驹斀狻拷猓涸?===a+b【點睛】此題主要考查了分式的混合運算,熟練掌握運算法則是解本題的關(guān)鍵.13、12π【解析】根據(jù)圓錐的側(cè)面展開圖是扇形可得,,∴該圓錐的側(cè)面面積為:12π,故答案為12π.14、1:1【解析】

根據(jù)矩形性質(zhì)得出AD=BC,AD∥BC,∠D=90°,求出四邊形HFCD是矩形,得出△HFG的面積是CD×DH=S矩形HFCD,推出S△HFG=S△DHG+S△CFG,同理S△HEF=S△BEF+S△AEH,即可得出答案.【詳解】連接HF,∵四邊形ABCD為矩形,∴AD=BC,AD∥BC,∠D=90°∵H、F分別為AD、BC邊的中點,∴DH=CF,DH∥CF,∵∠D=90°,∴四邊形HFCD是矩形,∴△HFG的面積是CD×DH=S矩形HFCD,即S△HFG=S△DHG+S△CFG,同理S△HEF=S△BEF+S△AEH,∴圖中四個直角三角形面積之和與矩形EFGH的面積之比是1:1,故答案為1:1.【點睛】本題考查了矩形的性質(zhì)和判定,三角形的面積,主要考查學(xué)生的推理能力.15、m>1【解析】由條件可知二次函數(shù)對稱軸為x=2m,且開口向上,由二次函數(shù)的性質(zhì)可知在對稱軸的左側(cè)時y隨x的增大而減小,可求得m+1<2m,即m>1.故答案為m>1.點睛:本題主要考查二次函數(shù)的性質(zhì),掌握當拋物線開口向下時,在對稱軸右側(cè)y隨x的增大而減小是解題的關(guān)鍵.16、3【解析】試題解析:平移CD到C′D′交AB于O′,如圖所示,則∠BO′D′=∠BOD,∴tan∠BOD=tan∠BO′D′,設(shè)每個小正方形的邊長為a,則O′B=,O′D′=,BD′=3a,作BE⊥O′D′于點E,則BE=,∴O′E=,∴tanBO′E=,∴tan∠BOD=3.考點:解直角三角形.三、解答題(共8題,共72分)17、(1)且,;(2)當m=1時,方程的整數(shù)根為0和3.【解析】

(1)先解出分式方程①的解,根據(jù)分式的意義和方程①的根為非負數(shù)得出的取值;

(2)根據(jù)根與系數(shù)的關(guān)系得到x1+x2=3,,根據(jù)方程的兩個根都是整數(shù)可得m=1或.結(jié)合(1)的結(jié)論可知m1.解方程即可.【詳解】解:(1)∵關(guān)于x的分式方程的根為非負數(shù),∴且.又∵,且,∴解得且.又∵方程為一元二次方程,∴.綜上可得:且,.(2)∵一元二次方程有兩個整數(shù)根x1、x2,m為整數(shù),∴x1+x2=3,,∴為整數(shù),∴m=1或.又∵且,,∴m1.當m=1時,原方程可化為.解得:,.∴當m=1時,方程的整數(shù)根為0和3.【點睛】考查了解分式方程,一元二次方程根與系數(shù)的關(guān)系,解一元二次方程等,熟練掌握方程的解法是解題的關(guān)鍵.18、(1)y=﹣2x+100,w=﹣2x2+136x﹣1800;(2)當銷售單價為34元時,每日能獲得最大利潤,最大利潤是1元;(3)制造這種紀念花燈每日的最低制造成本需要648元.【解析】

(1)觀察表中數(shù)據(jù),發(fā)現(xiàn)y與x之間存在一次函數(shù)關(guān)系,設(shè)y=kx+b.列方程組得到y(tǒng)關(guān)于x的函數(shù)表達式y(tǒng)=﹣2x+100,根據(jù)題意得到w=﹣2x2+136x﹣1800;(2)把w=﹣2x2+136x﹣1800配方得到w=﹣2(x﹣34)2+1.根據(jù)二次函數(shù)的性質(zhì)即可得到結(jié)論;(3)根據(jù)題意列方程即可得到即可.【詳解】解:(1)觀察表中數(shù)據(jù),發(fā)現(xiàn)y與x之間存在一次函數(shù)關(guān)系,設(shè)y=kx+b.則,解得,∴y=﹣2x+100,∴y關(guān)于x的函數(shù)表達式y(tǒng)=﹣2x+100,∴w=(x﹣18)?y=(x﹣18)(﹣2x+100)∴w=﹣2x2+136x﹣1800;(2)∵w=﹣2x2+136x﹣1800=﹣2(x﹣34)2+1.∴當銷售單價為34元時,∴每日能獲得最大利潤1元;(3)當w=350時,350=﹣2x2+136x﹣1800,解得x=25或43,由題意可得25≤x≤32,則當x=32時,18(﹣2x+100)=648,∴制造這種紀念花燈每日的最低制造成本需要648元.【點睛】此題主要考查了二次函數(shù)的應(yīng)用,根據(jù)已知得出函數(shù)關(guān)系式.19、(1)詳見解析;(2)72°;(3)3【解析】

(1)由B類型的人數(shù)及其百分比求得總?cè)藬?shù),在用總?cè)藬?shù)減去其余各組人數(shù)得出C類型人數(shù),即可補全條形圖;(2)用360°乘以C類別人數(shù)所占比例即可得;(3)用列表法或畫樹狀圖法列出所有等可能結(jié)果,從中確定恰好抽到一男一女的結(jié)果數(shù),根據(jù)概率公式求解可得.【詳解】解:(1)∵抽查的總?cè)藬?shù)為:20÷40%=50(人)∴C類人數(shù)為:50-5-20-15=10(人)補全條形統(tǒng)計圖如下:(2)“碳酸飲料”所在的扇形的圓心角度數(shù)為:10(3)設(shè)男生為A1、A2,女生為B1、B畫樹狀圖得:∴恰好抽到一男一女的情況共有12種,分別是A∴P(恰好抽到一男一女)=12【點睛】本題考查的是條形統(tǒng)計圖和扇形統(tǒng)計圖的綜合運用以及概率的求法,讀懂統(tǒng)計圖,從不同的統(tǒng)計圖中得到必要的信息是解決問題的關(guān)鍵.條形統(tǒng)計圖能清楚地表示出每個項目的數(shù)據(jù);扇形統(tǒng)計圖直接反映部分占總體的百分比大?。?0、(1)50(2)420(3)P=【解析】試題分析:(1)首先根據(jù)題意得:本次調(diào)查共隨機抽取了該年級學(xué)生數(shù)為:20÷40%=50(名);則可求得第五組人數(shù)為:50﹣4﹣8﹣20﹣14=4(名);即可補全統(tǒng)計圖;(2)由題意可求得130~145分所占比例,進而求出答案;(3)首先根據(jù)題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結(jié)果與所選兩名學(xué)生剛好是一名女生和一名男生的情況,再利用概率公式求解即可求得答案.試題解析:(1)根據(jù)題意得:本次調(diào)查共隨機抽取了該年級學(xué)生數(shù)為:20÷40%=50(名);則第五組人數(shù)為:50﹣4﹣8﹣20﹣14=4(名);如圖:(2)根據(jù)題意得:考試成績評為“B”的學(xué)生大約有×1600=448(名),答:考試成績評為“B”的學(xué)生大約有448名;(3)畫樹狀圖得:∵共有16種等可能的結(jié)果,所選兩名學(xué)生剛好是一名女生和一名男生的有8種情況,∴所選兩名學(xué)生剛好是一名女生和一名男生的概率為:=.考點:1、樹狀圖法與列表法求概率的知識,2、直方圖與扇形統(tǒng)計圖的知識視頻21、(1)BE+DF=EF;(2)存在,BD的最大值為6;(3)存在,AC的最大值為2+2.【解析】

(1)作輔助線,首先證明△ABE≌△ADG,再證明△AEF≌△AEG,進而得到EF=FG問題即可解決;(2)將△ABD繞著點B順時針旋轉(zhuǎn)60°,得到△BCE,連接DE,由旋轉(zhuǎn)可得,CE=AD=2,BD=BE,∠DBE=60°,可得DE=BD,根據(jù)DE<DC+CE,則當D、C、E三點共線時,DE存在最大值,問題即可解決;(3)以BC為邊作等邊三角形BCE,過點E作EF⊥BC于點F,連接DE,由旋轉(zhuǎn)的性質(zhì)得△DBE是等邊三角形,則DE=AC,根據(jù)在等邊三角形BCE中,EF⊥BC,可求出BF,EF,以BC為直徑作⊙F,則點D在⊙F上,連接DF,可求出DF,則AC=DE≤DF+EF,代入數(shù)值即可解決問題.【詳解】(1)如圖①,延長CD至G,使得DG=BE,∵正方形ABCD中,AB=AD,∠B=∠AFG=90°,∴△ABE≌△ADG,∴AE=AG,∠BAE=∠DAG,∵∠EAF=45°,∠BAD=90°,∴∠BAE+∠DAF=45°,∴∠DAG+∠DAF=45°,即∠GAF=∠EAF,又∵AF=AF,∴△AEF≌△AEG,∴EF=GF=DG+DF=BE+DF,故答案為:BE+DF=EF;(2)存在.在等邊三角形ABC中,AB=BC,∠ABC=60°,如圖②,將△ABD繞著點B順時針旋轉(zhuǎn)60°,得到△BCE,連接DE.由旋轉(zhuǎn)可得,CE=AD=2,BD=BE,∠DBE=60°,∴△DBE是等邊三角形,∴DE=BD

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論