版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
四川省成都市天府七中學2024年中考試題猜想數(shù)學試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.如圖,A點是半圓上一個三等分點,B點是弧AN的中點,P點是直徑MN上一動點,⊙O的半徑為1,則AP+BP的最小值為A.1 B. C. D.2.如圖是二次函數(shù)y=ax2+bx+c的圖象,對于下列說法:①ac>0,②2a+b>0,③4ac<b2,④a+b+c<0,⑤當x>0時,y隨x的增大而減小,其中正確的是()A.①②③ B.①②④ C.②③④ D.③④⑤3.如圖,甲圓柱型容器的底面積為30cm2,高為8cm,乙圓柱型容器底面積為xcm2,若將甲容器裝滿水,然后再將甲容器里的水全部倒入乙容器中(乙容器無水溢出),則乙容器水面高度y(cm)與x(cm2)之間的大致圖象是()A. B. C. D.4.下列圖形中,既是軸對稱圖形又是中心對稱圖形的是A. B. C. D.5.下列圖案中,是軸對稱圖形但不是中心對稱圖形的是()A. B. C. D.6.拋物線y=3(x﹣2)2+5的頂點坐標是()A.(﹣2,5)B.(﹣2,﹣5)C.(2,5)D.(2,﹣5)7.如圖,一次函數(shù)和反比例函數(shù)的圖象相交于,兩點,則使成立的取值范圍是()A.或 B.或C.或 D.或8.已知△ABC中,∠BAC=90°,用尺規(guī)過點A作一條直線,使其將△ABC分成兩個相似的三角形,其作法不正確的是(
)A.
B.C.
D.9.小明和他的爸爸媽媽共3人站成一排拍照,他的爸爸媽媽相鄰的概率是()A. B. C. D.10.如圖,長度為10m的木條,從兩邊各截取長度為xm的木條,若得到的三根木條能組成三角形,則x可以取的值為()A.2m B.m C.3m D.6m二、填空題(共7小題,每小題3分,滿分21分)11.如圖,Rt△ABC中,∠ABC=90°,AB=BC,直線l1、l2、l1分別通過A、B、C三點,且l1∥l2∥l1.若l1與l2的距離為5,l2與l1的距離為7,則Rt△ABC的面積為___________12.如圖,在平面直角坐標系中,反比例函數(shù)y=(x>0)的圖象交矩形OABC的邊AB于點D,交BC于點E,且BE=2EC,若四邊形ODBE的面積為8,則k=_____.13.某社區(qū)有一塊空地需要綠化,某綠化組承擔了此項任務,綠化組工作一段時間后,提高了工作效率.該綠化組完成的綠化面積S(單位:m1)與工作時間t(單位:h)之間的函數(shù)關系如圖所示,則該綠化組提高工作效率前每小時完成的綠化面積是_____m1.14.因式分解:=_______________.15.如圖所示,三角形ABC的面積為1cm1.AP垂直∠B的平分線BP于P.則與三角形PBC的面積相等的長方形是()A.B.C.D.16.某校為了解本校九年級學生足球訓練情況,隨機抽查該年級若干名學生進行測試,然后把測試結果分為4個等級:A、B、C、D,并將統(tǒng)計結果繪制成兩幅不完整的統(tǒng)計圖.該年級共有700人,估計該年級足球測試成績?yōu)镈等的人數(shù)為_____人.17.不等式5﹣2x<1的解集為_____.三、解答題(共7小題,滿分69分)18.(10分)如圖,一次函數(shù)的圖象與反比例函數(shù)(為常數(shù),且)的圖象交于A(1,a)、B兩點.求反比例函數(shù)的表達式及點B的坐標;在x軸上找一點P,使PA+PB的值最小,求滿足條件的點P的坐標及△PAB的面積.19.(5分)在平面直角坐標系中,某個函數(shù)圖象上任意兩點的坐標分別為(﹣t,y1)和(t,y2)(其中t為常數(shù)且t>0),將x<﹣t的部分沿直線y=y(tǒng)1翻折,翻折后的圖象記為G1;將x>t的部分沿直線y=y(tǒng)2翻折,翻折后的圖象記為G2,將G1和G2及原函數(shù)圖象剩余的部分組成新的圖象G.例如:如圖,當t=1時,原函數(shù)y=x,圖象G所對應的函數(shù)關系式為y=.(1)當t=時,原函數(shù)為y=x+1,圖象G與坐標軸的交點坐標是.(2)當t=時,原函數(shù)為y=x2﹣2x①圖象G所對應的函數(shù)值y隨x的增大而減小時,x的取值范圍是.②圖象G所對應的函數(shù)是否有最大值,如果有,請求出最大值;如果沒有,請說明理由.(3)對應函數(shù)y=x2﹣2nx+n2﹣3(n為常數(shù)).①n=﹣1時,若圖象G與直線y=2恰好有兩個交點,求t的取值范圍.②當t=2時,若圖象G在n2﹣2≤x≤n2﹣1上的函數(shù)值y隨x的增大而減小,直接寫出n的取值范圍.20.(8分)科技改變生活,手機導航極大方便了人們的出行,如圖,小明一家自駕到古鎮(zhèn)C游玩,到達A地后,導航顯示車輛應沿北偏西55°方向行駛4千米至B地,再沿北偏東35°方向行駛一段距離到達古鎮(zhèn)C,小明發(fā)現(xiàn)古鎮(zhèn)C恰好在A地的正北方向,求B、C兩地的距離(結果保留整數(shù))(參考數(shù)據:tan55°≈1.4,tan35°≈0.7,sin55°≈0.8)21.(10分)解分式方程:x+1x-1-22.(10分)如圖,拋物線y=ax2+bx(a<0)過點E(10,0),矩形ABCD的邊AB在線段OE上(點A在點B的左邊),點C,D在拋物線上.設A(t,0),當t=2時,AD=1.求拋物線的函數(shù)表達式.當t為何值時,矩形ABCD的周長有最大值?最大值是多少?保持t=2時的矩形ABCD不動,向右平移拋物線.當平移后的拋物線與矩形的邊有兩個交點G,H,且直線GH平分矩形的面積時,求拋物線平移的距離.23.(12分)已知關于x的一元二次方程為常數(shù).求證:不論m為何值,該方程總有兩個不相等的實數(shù)根;若該方程一個根為5,求m的值.24.(14分)已知,拋物線y=﹣x2+bx+c經過點A(﹣1,0)和C(0,3).(1)求拋物線的解析式;(2)設點M在拋物線的對稱軸上,當△MAC是以AC為直角邊的直角三角形時,求點M的坐標.
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、C【解析】作點A關于MN的對稱點A′,連接A′B,交MN于點P,則PA+PB最小,連接OA′,AA′.∵點A與A′關于MN對稱,點A是半圓上的一個三等分點,∴∠A′ON=∠AON=60°,PA=PA′,∵點B是弧AN∧的中點,∴∠BON=30°,∴∠A′OB=∠A′ON+∠BON=90°,又∵OA=OA′=1,∴A′B=∴PA+PB=PA′+PB=A′B=故選:C.2、C【解析】
根據二次函數(shù)的圖象與性質即可求出答案.【詳解】解:①由圖象可知:a>0,c<0,∴ac<0,故①錯誤;②由于對稱軸可知:<1,∴2a+b>0,故②正確;③由于拋物線與x軸有兩個交點,∴△=b2﹣4ac>0,故③正確;④由圖象可知:x=1時,y=a+b+c<0,故④正確;⑤當x>時,y隨著x的增大而增大,故⑤錯誤;故選:C.【點睛】本題考查二次函數(shù),解題的關鍵是熟練運用二次函數(shù)的圖象與性質,本題屬于基礎題型.3、C【解析】
根據題意可以寫出y關于x的函數(shù)關系式,然后令x=40求出相應的y值,即可解答本題.【詳解】解:由題意可得,y==,當x=40時,y=6,故選C.【點睛】本題考查了反比例函數(shù)的圖象,根據題意列出函數(shù)解析式是解決此題的關鍵.4、D【解析】
根據軸對稱圖形和中心對稱圖形的定義逐項識別即可,在平面內,把一個圖形繞某一點旋轉180°,如果旋轉后的圖形能夠與原來的圖形重合,那么這個圖形就叫做中心對稱圖形;如果一個圖形沿一條直線折疊,直線兩旁的部分能夠互相重合,這個圖形叫做軸對稱圖形.【詳解】解:A.是軸對稱圖形,但不是中心對稱圖形,故不符合題意;B.不是軸對稱圖形,是中心對稱圖形,故不符合題意;C.是軸對稱圖形,但不是中心對稱圖形,故不符合題意;D.既是軸對稱圖形又是中心對稱圖形,故符合題意.故選D.【點睛】本題考查了軸對稱圖形和中心對稱圖形的識別,熟練掌握軸對稱圖形和中心對稱圖形的定義是解答本題的關鍵.5、D【解析】分析:根據軸對稱圖形與中心對稱圖形的概念分別分析得出答案.詳解:A.是軸對稱圖形,也是中心對稱圖形,故此選項錯誤;B.不是軸對稱圖形,也不是中心對稱圖形,故此選項錯誤;C.不是軸對稱圖形,是中心對稱圖形,故此選項錯誤;D.是軸對稱圖形,不是中心對稱圖形,故此選項正確.故選D.點睛:本題考查了軸對稱圖形和中心對稱圖形的概念.軸對稱圖形的關鍵是尋找對稱軸,圖形沿對稱軸折疊后可重合;中心對稱圖形是要尋找對稱中心,圖形旋轉180°后與原圖形重合.6、C【解析】
根據二次函數(shù)的性質y=a(x﹣h)2+k的頂點坐標是(h,k)進行求解即可.【詳解】∵拋物線解析式為y=3(x-2)2+5,∴二次函數(shù)圖象的頂點坐標是(2,5),故選C.【點睛】本題考查了二次函數(shù)的性質,根據拋物線的頂點式,可確定拋物線的開口方向,頂點坐標(對稱軸),最大(最小)值,增減性等.7、B【解析】
根據圖象找出一次函數(shù)圖象在反比例函數(shù)圖象上方時對應的自變量的取值范圍即可.【詳解】觀察函數(shù)圖象可發(fā)現(xiàn):或時,一次函數(shù)圖象在反比例函數(shù)圖象上方,∴使成立的取值范圍是或,故選B.【點睛】本題考查了反比例函數(shù)與一次函數(shù)綜合,函數(shù)與不等式,利用數(shù)形結合思想是解題的關鍵.8、D【解析】分析:根據過直線外一點作這條直線的垂線,及線段中垂線的做法,圓周角定理,分別作出直角三角形斜邊上的垂線,根據直角三角形斜邊上的垂線,把原直角三角形分成了兩個小直角三角形,圖中的三個直角三角形式彼此相似的;即可作出判斷.詳解:A、在角∠BAC內作作∠CAD=∠B,交BC于點D,根據余角的定義及等量代換得出∠B+∠BAD=90°,進而得出AD⊥BC,根據直角三角形斜邊上的垂線,把原直角三角形分成了兩個小直角三角形,圖中的三個直角三角形式彼此相似的;A不符合題意;B、以點A為圓心,略小于AB的長為半徑,畫弧,交線段BC兩點,再分別以這兩點為圓心,大于兩交點間的距離為半徑畫弧,兩弧相交于一點,過這一點與A點作直線,該直線是BC的垂線;根據直角三角形斜邊上的垂線,把原直角三角形分成了兩個小直角三角形,圖中的三個直角三角形是彼此相似的;B不符合題意;C、以AB為直徑作圓,該圓交BC于點D,根據圓周角定理,過AD兩點作直線該直線垂直于BC,根據直角三角形斜邊上的垂線,把原直角三角形分成了兩個小直角三角形,圖中的三個直角三角形式彼此相似的;C不符合題意;D、以點B為圓心BA的長為半徑畫弧,交BC于點E,再以E點為圓心,AB的長為半徑畫弧,在BC的另一側交前弧于一點,過這一點及A點作直線,該直線不一定是BE的垂線;從而就不能保證兩個小三角形相似;D符合題意;故選D.點睛:此題主要考查了相似變換以及相似三角形的判定,正確掌握相似三角形的判定方法是解題關鍵.9、D【解析】試題解析:設小明為A,爸爸為B,媽媽為C,則所有的可能性是:(ABC),(ACB),(BAC),(BCA),(CAB),(CBA),∴他的爸爸媽媽相鄰的概率是:,故選D.10、C【解析】
依據題意,三根木條的長度分別為xm,xm,(10-2x)m,在根據三角形的三邊關系即可判斷.【詳解】解:由題意可知,三根木條的長度分別為xm,xm,(10-2x)m,∵三根木條要組成三角形,∴x-x<10-2x<x+x,解得:.故選擇C.【點睛】本題主要考察了三角形三邊的關系,關鍵是掌握三角形兩邊之和大于第三邊,兩邊之差的絕對值小于第三邊.二、填空題(共7小題,每小題3分,滿分21分)11、17【解析】過點B作EF⊥l2,交l1于E,交l1于F,如圖,∵EF⊥l2,l1∥l2∥l1,∴EF⊥l1⊥l1,∴∠ABE+∠EAB=90°,∠AEB=∠BFC=90°,又∵∠ABC=90°,∴∠ABE+∠FBC=90°,∴∠EAB=∠FBC,在△ABE和△BCF中,,∴△ABE≌△BCF,∴BE=CF=5,AE=BF=7,在Rt△ABE中,AB2=BE2+AE2,∴AB2=74,∴S△ABC=AB?BC=AB2=17.故答案是17.點睛:本題考查了全等三角形的判定和性質、勾股定理、平行線間的距離,三角形的面積公式,解題的關鍵是做輔助線,構造全等三角形,通過證明三角形全等對應邊相等,再利用三角形的面積公式即可得解.12、1【解析】
連接OB,由矩形的性質和已知條件得出△OBD的面積=△OBE的面積=四邊形ODBE的面積,再求出△OCE的面積為2,即可得出k的值.【詳解】連接OB,如圖所示:∵四邊形OABC是矩形,∴∠OAD=∠OCE=∠DBE=90°,△OAB的面積=△OBC的面積,∵D、E在反比例函數(shù)y=(x>0)的圖象上,∴△OAD的面積=△OCE的面積,∴△OBD的面積=△OBE的面積=四邊形ODBE的面積=1,∵BE=2EC,∴△OCE的面積=△OBE的面積=2,∴k=1.故答案為:1.【點睛】本題考查了反比例函數(shù)的系數(shù)k的幾何意義:在反比例函數(shù)y=xk圖象中任取一點,過這一個點向x軸和y軸分別作垂線,與坐標軸圍成的矩形的面積是定值|k|.在反比例函數(shù)的圖象上任意一點向坐標軸作垂線,這一點和垂足以及坐標原點所構成的三角形的面積是|k|,且保持不變.13、150【解析】設綠化面積與工作時間的函數(shù)解析式為,因為函數(shù)圖象經過,兩點,將兩點坐標代入函數(shù)解析式得得,將其代入得,解得,∴一次函數(shù)解析式為,將代入得,故提高工作效率前每小時完成的綠化面積為.14、a(a+b)(a-b).【解析】分析:本題考查的是提公因式法和利用平方差公式分解因式.解析:原式=a(a+b)(a-b).故答案為a(a+b)(a-b).15、B【解析】
過P點作PE⊥BP,垂足為P,交BC于E,根據AP垂直∠B的平分線BP于P,即可求出△ABP≌△BEP,又知△APC和△CPE等底同高,可以證明兩三角形面積相等,即可證明三角形PBC的面積.【詳解】解:過P點作PE⊥BP,垂足為P,交BC于E,∵AP垂直∠B的平分線BP于P,∠ABP=∠EBP,又知BP=BP,∠APB=∠BPE=90°,∴△ABP≌△BEP,∴AP=PE,∵△APC和△CPE等底同高,∴S△APC=S△PCE,∴三角形PBC的面積=三角形ABC的面積=cm1,選項中只有B的長方形面積為cm1,故選B.16、1【解析】試題解析:∵總人數(shù)為14÷28%=50(人),∴該年級足球測試成績?yōu)镈等的人數(shù)為(人).故答案為:1.17、x>1.【解析】
根據不等式的解法解答.【詳解】解:,.故答案為【點睛】此題重點考查學生對不等式解的理解,掌握不等式的解法是解題的關鍵.三、解答題(共7小題,滿分69分)18、(1),;(2)P,.【解析】試題分析:(1)由點A在一次函數(shù)圖象上,結合一次函數(shù)解析式可求出點A的坐標,再由點A的坐標利用待定系數(shù)法即可求出反比例函數(shù)解析式,聯(lián)立兩函數(shù)解析式成方程組,解方程組即可求出點B坐標;(2)作點B作關于x軸的對稱點D,交x軸于點C,連接AD,交x軸于點P,連接PB.由點B、D的對稱性結合點B的坐標找出點D的坐標,設直線AD的解析式為y=mx+n,結合點A、D的坐標利用待定系數(shù)法求出直線AD的解析式,令直線AD的解析式中y=0求出點P的坐標,再通過分割圖形結合三角形的面積公式即可得出結論.試題解析:(1)把點A(1,a)代入一次函數(shù)y=-x+4,得:a=-1+4,解得:a=3,∴點A的坐標為(1,3).把點A(1,3)代入反比例函數(shù)y=,得:3=k,∴反比例函數(shù)的表達式y(tǒng)=,聯(lián)立兩個函數(shù)關系式成方程組得:,解得:,或,∴點B的坐標為(3,1).(2)作點B作關于x軸的對稱點D,交x軸于點C,連接AD,交x軸于點P,此時PA+PB的值最小,連接PB,如圖所示.∵點B、D關于x軸對稱,點B的坐標為(3,1),∴點D的坐標為(3,-1).設直線AD的解析式為y=mx+n,把A,D兩點代入得:,解得:,∴直線AD的解析式為y=-2x+1.令y=-2x+1中y=0,則-2x+1=0,解得:x=,∴點P的坐標為(,0).S△PAB=S△ABD-S△PBD=BD?(xB-xA)-BD?(xB-xP)=×[1-(-1)]×(3-1)-×[1-(-1)]×(3-)=.考點:1.反比例函數(shù)與一次函數(shù)的交點問題;2.待定系數(shù)法求一次函數(shù)解析式;3.軸對稱-最短路線問題.19、(1)(2,0);(2)①﹣≤x≤1或x≥;②圖象G所對應的函數(shù)有最大值為;(3)①;②n≤或n≥.【解析】
(1)根據題意分別求出翻轉之后部分的表達式及自變量的取值范圍,將y=0代入,求出x值,即可求出圖象G與坐標軸的交點坐標;(2)畫出函數(shù)草圖,求出翻轉點和函數(shù)頂點的坐標,①根據圖象的增減性可求出y隨x的增大而減小時,x的取值范圍,②根據圖象很容易計算出函數(shù)最大值;(3)①將n=﹣1代入到函數(shù)中求出原函數(shù)的表達式,計算y=2時,x的值.據(2)中的圖象,函數(shù)與y=2恰好有兩個交點時t大于右邊交點的橫坐標且-t大于左邊交點的橫坐標,據此求解.②畫出函數(shù)草圖,分別計算函數(shù)左邊的翻轉點A,右邊的翻轉點C,函數(shù)的頂點B的橫坐標(可用含n的代數(shù)式表示),根據函數(shù)草圖以及題意列出關于n的不等式求解即可.【詳解】(1)當x=時,y=,當x≥時,翻折后函數(shù)的表達式為:y=﹣x+b,將點(,)坐標代入上式并解得:翻折后函數(shù)的表達式為:y=﹣x+2,當y=0時,x=2,即函數(shù)與x軸交點坐標為:(2,0);同理沿x=﹣翻折后當時函數(shù)的表達式為:y=﹣x,函數(shù)與x軸交點坐標為:(0,0),因為所以舍去.故答案為:(2,0);(2)當t=時,由函數(shù)為y=x2﹣2x構建的新函數(shù)G的圖象,如下圖所示:點A、B分別是t=﹣、t=的兩個翻折點,點C是拋物線原頂點,則點A、B、C的橫坐標分別為﹣、1、,①函數(shù)值y隨x的增大而減小時,﹣≤x≤1或x≥,故答案為:﹣≤x≤1或x≥;②函數(shù)在點A處取得最大值,x=﹣,y=(﹣)2﹣2×(﹣)=,答:圖象G所對應的函數(shù)有最大值為;(3)n=﹣1時,y=x2+2x﹣2,①參考(2)中的圖象知:當y=2時,y=x2+2x﹣2=2,解得:x=﹣1±,若圖象G與直線y=2恰好有兩個交點,則t>﹣1且-t>,所以;②函數(shù)的對稱軸為:x=n,令y=x2﹣2nx+n2﹣3=0,則x=n±,當t=2時,點A、B、C的橫坐標分別為:﹣2,n,2,當x=n在y軸左側時,(n≤0),此時原函數(shù)與x軸的交點坐標(n+,0)在x=2的左側,如下圖所示,則函數(shù)在AB段和點C右側,故:﹣2≤x≤n,即:在﹣2≤n2﹣2≤x≤n2﹣1≤n,解得:n≤;當x=n在y軸右側時,(n≥0),同理可得:n≥;綜上:n≤或n≥.【點睛】在做本題時,可先根據題意分別畫出函數(shù)的草圖,根據草圖進行分析更加直觀.在做第(1)問時,需注意翻轉后的函數(shù)是分段函數(shù),所以對最終的解要進行分析,排除掉自變量之外的解;(2)根據草圖很直觀的便可求得;(3)①需注意圖象G與直線y=2恰好有兩個交點,多于2個交點的要排除;②根據草圖和增減性,列出不等式,求解即可.20、B、C兩地的距離大約是6千米.【解析】
過B作BD⊥AC于點D,在直角△ABD中利用三角函數(shù)求得BD的長,然后在直角△BCD中利用三角函數(shù)求得BC的長.【詳解】解:過B作于點D.在中,千米,中,,千米,千米.答:B、C兩地的距離大約是6千米.【點睛】此題考查了方向角問題.此題難度適中,解此題的關鍵是將方向角問題轉化為解直角三角形的知識,利用三角函數(shù)的知識求解.21、方程無解【解析】
找出分式方程的最簡公分母,去分母后轉化為整式方程,求出整式方程的解得到x的值,再代入最簡公分母進行檢驗即可.【詳解】解:方程的兩邊同乘(x+1)(x?1),得:x+12x2x2∴此方程無解【點睛】本題主要考查了解分式方程,解分式方程的步驟:①去分母;②解整式方程;③驗根.22、(1);(2)當t=1時,矩形ABCD的周長有最大值,最大值為;(3)拋物線向右平移的距離是1個單位.【解析】
(1)由點E的坐標設拋物線的交點式,再把點D的坐標(2,1)代入計算可得;
(2)由拋物線的對稱性得BE=OA=t,據此知AB=10-2t,再由x=t時AD=,根據矩形的周長公式列出函數(shù)解析式,配方成頂點式即可得;
(3)由t=2得出點A、B、C、D及對角線交點P的坐標,由直線GH平分矩形的面積知直線GH必過點P,根據AB∥CD知線段OD平移后得到的線段是GH,由線段OD的中點Q平移后的對應點是P
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 專業(yè)水穩(wěn)料供應商合同
- 鋁型材購銷合同書范本
- 花崗巖選購合同樣本
- 項目咨詢服務合同評估全文
- 電氣安裝工程分包協(xié)議樣本
- 購房補充協(xié)議的作用和意義
- 商務秘書社交媒體營銷合同
- 酒店應急預案服務合同
- 英文版購銷合同交流
- 房屋買賣定金合同判決書案例借鑒
- 加油站安全檢查表分析(SCL)及評價記錄
- 豐田車系卡羅拉(雙擎)轎車用戶使用手冊【含書簽】
- 幼兒園突發(fā)安全事件事故處置措施
- 現(xiàn)代藥物制劑與新藥研發(fā)智慧樹知到答案章節(jié)測試2023年蘇州大學
- 肺結核的學習課件
- 心肺復蘇術最新版
- 2023-2024學年貴州省貴陽市小學數(shù)學六年級上冊期末自測提分卷
- GB/T 9115.2-2000凹凸面對焊鋼制管法蘭
- 永久避難硐室安裝施工組織措施
- 元旦節(jié)前安全教育培訓-教學課件
- 芯片工藝流程課件1
評論
0/150
提交評論