




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
ILOWorkingPaper121
July/2024
、BufferorBottleneck?EmploymentExposuretoGenerativeAIandtheDigitalDivideinLatinAmerica
Authors/Pawe?Gmyrek,HernanWinkler,SantiagoGarganta
Copyright?InternationalLabourOrganizationandtheWorldBank2024
ThisisanopenaccessworkdistributedundertheCreativeCommonsAttribution3.0IGOLicense(
/licenses/by/3.0/igo
).Userscanreuse,share,adaptandbuildupontheoriginalwork,asdetailedintheLicense.TheILOandTheWorldBankmustbeclearlycreditedastheownersoftheoriginalwork.TheuseoftheemblemoftheILOandTheWorldBankisnotpermittedinconnectionwithusers’work.
Attribution–Theworkmustbecitedasfollows:Gmyrek,P.,Winkler,H.,Garganta,S.BufferorBottleneck?EmploymentExposuretoGenerativeAIandtheDigitalDivideinLatinAmerica.ILOWorkingPaper121.Geneva:InternationalLabourOfficeandTheWorldBank,2024.
Translations–Incaseofatranslationofthiswork,thefollowingdisclaimermustbeaddedalongwiththeattribution:ThistranslationwasnotcreatedbytheInternationalLabourOrganization(ILO)orTheWorldBankandshouldnotbeconsideredanofficialILOorWorldBanktranslation.TheILOandTheWorldBankarenotresponsibleforthecontentoraccuracyofthistranslation.
Adaptations–Incaseofanadaptationofthiswork,thefollowingdisclaimermustbeaddedalongwiththeattribution:ThisisanadaptationofanoriginalworkbytheInternationalLabourOrganization(ILO)andTheWorldBank.ResponsibilityfortheviewsandopinionsexpressedintheadaptationrestssolelywiththeauthororauthorsoftheadaptationandarenotendorsedbytheILOorTheWorldBank.
ThisCClicensedoesnotapplytonon-ILOorWorldBankcopyrightmaterialsincludedinthispublication.Ifthematerialisattributedtoathirdparty,theuserofsuchmaterialissolelyresponsibleforclearingtherightswiththerightholder.
AnydisputearisingunderthislicensethatcannotbesettledamicablyshallbereferredtoarbitrationinaccordancewiththeArbitrationRulesoftheUnitedNationsCommissiononInternationalTradeLaw(UNCITRAL).Thepartiesshallbeboundbyanyarbitrationawardrenderedasaresultofsucharbitrationasthefinaladjudicationofsuchadispute.
Licensing),1211Geneva22,Switzerland,orbyemailto
rights@
.
AllqueriesonrightsandlicensingshouldbeaddressedtotheILOPublishingUnit(Rightsand
ISBN9789220410028(print),ISBN9789220410035(webPDF),ISBN9789220410042(epub),ISBN9789220410066(mobi),ISBN9789220410059(html).ISSN2708-3438(print),ISSN2708-3446(digital)
/10.54394/TFZY7681
ThedesignationsemployedinILOandWorldBankpublicationsandthepresentationofmaterialthereindonotimplytheexpressionofanyopinionwhatsoeveronthepartoftheILOandTheWorldBankconcerningthelegalstatusofanycountry,areaorterritoryorofitsauthorities,orconcerningthedelimitationofitsfrontiersorboundaries.Detailsat
/disclaimer
ThisarticleisaproductofthestaffoftheWorldBankandtheILO.IthasbeenreleasedbothinTheWorldBankPolicyResearchWorkingPaperSeriesandtheILOWorkingPaperSeries.Theresponsibilityforopinionsexpressedinsignedarticles,studiesandothercontributionsrestssolelywiththeirauthors,andpublicationdoesnotconstituteanendorsementbytheILOorTheWorldBankoftheopinionsexpressedinthem.
Referencetonamesoffirmsandcommercialproductsandprocessesdoesnotimplytheiren-
dorsementbytheILOorTheWorldBank,andanyfailuretomentionaparticularfirm,commercialproductorprocessisnotasignofdisapproval.
InformationonILOpublicationsanddigitalproductscanbefoundat:
/
research-and-publications
ILOWorkingPaperssummarizetheresultsofILOresearchinprogress,andseekto
stimulatediscussionofarangeofissuesrelatedtotheworldofwork.CommentsonthisILO
WorkingPaperarewelcomeandcanbesentto
gmyrek@
.
Authorizationforpublication:RichardSamans,Director,ResearchDepartment
ILOWorkingPaperscanbefoundat:
/research-and-publications#working
-papers
Suggestedcitation:
Gmyrek,P.,Winkler,H.,Garganta,S.2024.BufferorBottleneck?EmploymentExposure
toGenerativeAIandtheDigitalDivideinLatinAmerica,ILOWorkingPaper121(Geneva,
ILOandTheWorldBank,2024).
/10.54394/TFZY7681
01ILOWorkingPaper121
Abstract
Empiricalevidenceonthepotentialimpactsofgenerativeartificialintelligence(GenAI)ismostlyfocusedonhigh-incomecountries.Incontrast,littleisknownabouttheroleofthistechnologyonthefutureeconomicpathwaysofdevelopingeconomies.ThispapercontributestofillthisgapbyestimatingtheexposureoftheLatinAmericanlabourmarkettoGenAI.ItprovidesdetailedstatisticsofGenAIexposurebetweenandwithincountriesbyleveragingarichsetofharmonizedhouseholdandlabourforcesurveys.Toaccountfortheslowerpaceoftechnologyadoptionindevelopingeconomies,itadjuststhemeasuresofexposuretoGenAIbyusingthelikelihoodofaccessingdigitaltechnologiesatwork.ThisisthenusedtoassesstheextenttowhichthedigitaldivideacrossandwithincountrieswillbeabarriertomaximizetheproductivitygainsamongoccupationsthatcouldotherwisebeaugmentedbyGenAItools.Thefindingsshowthatcertaincharacteristicsareconsistentlycorrelatedwithhigherexposure.Specifically,urban-basedjobsthatrequirehighereducation,aresituatedintheformalsector,andareheldbyindividualswithhigherincomesaremorelikelytocomeintointeractionwiththistechnology.Moreover,thereisapronouncedtilttowardyoungerworkersfacinggreaterexposure,includingtheriskofjobau-tomation,particularlyinthefinance,insurance,andpublicadministrationsectors.Whenadjust-ingforaccesstodigitaltechnologies,thefindingsshowthatthedigitaldivideisamajorbarriertorealizingthepositiveeffectsofGenAIonjobsintheregion.Inparticular,nearlyhalfofthepo-sitionsthatcouldpotentiallybenefitfromaugmentationarehamperedbylackofuseofdigitaltechnologies.Thisnegativeeffectofthedigitaldivideismorepronouncedinpoorercountries.
Abouttheauthors
Pawe?GmyrekisaSeniorResearcherattheResearchDepartmentoftheILO.
HernanWinklerisaSeniorEconomistattheWorldBankPovertyandEquityGlobalPracticeforLatinAmericaandtheCaribbean.
SantiagoGargantaisaSeniorResearcherattheCenterforDistributive,LaborandSocialStudies(CEDLAS)oftheNationalUniversityofLaPlata(UNLP).
02ILOWorkingPaper121
Tableofcontents
Abstract
Abouttheauthors
Acronyms
01
01
05
、
Introduction
06
、
1
LACregionandthetheoreticaleffectsofGenAI
08
、
2
Methods
OccupationalexposuretoGenAI
Useofacomputeratwork
15
15
19
、
3
Findings
Cross-countrycomparisonsofthelevelsofexposure
Impactofdigitalinfrastructureonthepotentialoftransformation
Within-countrypatterns
Whichoccupationsdrivetheeffects?
Differentialexposureacrossearningslevels
22
22
26
29
30
32
、
Finaldiscussion
35
Appendix38
References45
Acknowledgements50
03ILOWorkingPaper121
ListofFigures
Figure1.GDPpercapita,populationandincomestatusofLACcountriesinthesample08
Figure2.Automationandaugmentationpotential:LACvsotherregions09
Figure3.Internetcoveragevspercapitaincome:globalandLAC11
Figure4.OccupationsintheLACregion,byISCO1-digitandgender13
Figure5.CoverageofISCO-084-digitmicrodatainSEDLAC(WB)andILOharmonizedmicro-
datacollection17
Figure6.HierarchicalclusteringbasedonISCO2-digitshares,GDP(PPP)andtotalpopulation18
Figure7.TotalexposuretoGenAIbycountry23
Figure8.Automationpotential-detailedbreakdownofsocio-economiccharacteristics24
Figure9.Augmentationpotential-detailedbreakdownofsocio-economiccharacteristics25
Figure10.Jobswithaugmentationpotentialandaccesstocomputeratwork,basedon
PIAACdata27
Figure11.Exposurebycountry,exposuretypeandaccesstodigitalinfrastructure28
Figure12.Exposurebycountry,typeanddetailedcountry-levelcharacteristics30
Figure13.ISCO2-digitoccupationsbytypeofexposureandcountry(shareofexposure>25%)31
Figure14.EarningsofoccupationsexposedtoGenAI,byemploymentstatus(exposure
above25%)33
FigureA1.ComparisonofTechXposurescoresvsGBBscores(meanbyoccupation,z-scores)38
FigureA2.ComparisonofFeltenetal.(2023)MLscoresvsGBBscores(z-scores)38
FigureA3.LabourmarketdistributioninLACcountriesbyISCO-082-digitoccupationsandsex39
FigureA4.RankingofcountriesbythetypeofGenAIexposure40
FigureA5.ComparisonofresultsoncomputerusebetweenPIAAC(atwork)andSEDLAC(at
home)-augmentationcategory40
FigureA6.Jobsinaugmentationcategorythatdonotuseacomputedatwork:totalsby
country40
04ILOWorkingPaper121
ListofTables
Table1.DistributionofAIExposurebyDemographicandSocioeconomicCategoriesin
SEDLACData19
TableA1.IndividualSEDLACobservationsbycountryandyear41
TableA2.EstimatedcoefficientsofcomputeruseatworkfromPIAAC41
TableA3.ResultsofthepooledOLSwithallindividualobservations,withcountry-levelnor-
malizedpopulationweights43
05ILOWorkingPaper121
Acronyms
EMEmergingMarkets
GDPGrossDomesticProduct
GBBGmyrek,BergandBescond(asusedinyourstudyforcitation)
GenAIGenerativeAI
GPT-4GenerativePre-trainedTransformer4
HICHighIncomeCountries
ILOInternationalLabourOrganization
IMFInternationalMonetaryFund
ISCOInternationalstandardClassificationofOccupations
ISCO-08InternationalStandardClassificationofOccupations,2008version
LACLatinAmericaandtheCaribbean
LLMLargeLanguageModels
OECDOrganizationforEconomicCooperationandDevelopment
PIAACProgrammefortheInternationalAssessmentofAdultCompetencies
PPPPurchasingPowerParity
SEDLACSocio-EconomicDatabaseforLatinAmericaandtheCaribbean
TFPTotalFactorProductivity
USUnitedStates
WBWorldBank
WEFWorldEconomicForum
06ILOWorkingPaper121
、Introduction
PublicattentiontoGenerativeAI(GenAI)hasbeenontherisesincetheintroductionoftheconversationalmodels,suchasChatGPT,BardorGemini.TheimpressiveabilitiesoftheLargeLanguageModels(LLM),followedbyotherneuralnetwork-basedAIsystemscapableofgener-atingimageandevenvideofromsimpletextpromptshaveraisedarangeofimportantethi-calandsecurityquestionsfornationalpolicymakersandinternationalcooperationstructures.However,thetopicthatcapturesmostdailyattentionofregularcitizensisthepotentialimpactofthesequicklyadvancingtoolsonjobs.
IntheUnitedStates(US),overhalfofalladultsaremoreworriedthanexcitedaboutAIindailylife,citingthe“l(fā)ossofhumanjobs”astheirmostimportantconcern(FaverioandTyson,2022;PewResearchCenter,2023;Rutgers,2024).InSwitzerland,a2023surveyfocusedspecificallyonGenAIrevealedthatof1,000respondentsalreadyworkingwithacomputer,almosthalf(43%)wereconcernedaboutlosingtheirjobinthenextfiveyears,withthosefrequentlyusingGenAIatworkbeingdisproportionately(69%)moreconcerned(Gramppetal.,2023).ThissuggestsarapiddeparturefrommorepositiveassessmentsofAIinsurveyscollectedbyOECDpriortothearrivalofpubliclyaccessiblechatbotsinlate2022(Laneetal.,2023;OECD,2023).1
Notsurprisingly,thepotentialtransformationthatmightresultfromtheinteractionofGenAIwithlabourmarketshasalsoattractedgrowingattentionamongscholars.Mainresearchques-tionshavecanteredaroundtheimpactonemployment,emergingoccupations,productivityandjobquality.2ArecentpaperfromtheIMFprovidesacomprehensiveoverviewofthisliterature,atthesametimehighlightingthescarcityofstudiesthatgobeyondhigh-incomecountries(HICs)(ComunaleandManera,2024).
Bridgingthisresearchgap,ourstudyprovidesnewevidenceonthepotentialimpactsofGenAIacrosslabourmarketsintheLatinAmericaandtheCaribbean(LAC)region.Buildingontheap-proachdevelopedbyGmyrek,BergandBescond(2023)–GBBhereafter–weprovidenewevidenceonAIexposurebetweenandwithincountriesbyleveragingharmonizedhouseholdandlabourforcesurveysforLACfromtheWorldBank(WB)andtheInternationalLabourOrganization(ILO).Bybuildingonthecomparativestrengthsofthedatasetsfrombothinstitutions,wedevelopacompleteregionaloverview,accompaniedbycountry-levelestimatesofthepotentialoccupationalexposure,withfurtherbreakdownsbydetaileddemographicandlabourmarketcharacteristics.
Animportantcontributionofthisstudyistoprovideafirstattemptatadaptingmeasuresofjobs’exposuretoGenAItothecontextofdevelopingcountries,whereevenworkersinoccupa-tionsthataregenerallyexpectedtobenefitfromGenAImaynotbeabletoreapitsbenefitsduetopooraccesstodigitalinfrastructure.WeimplementthisadjustmentbyestimatingmeasuresofcomputeruseatworkacrossISCO2-digitoccupations,workersandcountry-levelcharacter-isticsbasedonPIAACdataandbysubsequentlyimputingthemintoindividualobservationsincountry-levelsurveysincludedintheSEDLACdatabase.WethenusethismeasuretocreatetwocategoriesamongworkerswhoareexpectedtobenefitfromGenAIusebecauseofthena-tureoftheiroccupations:thosewhohaveaccesstodigitaltechnologies,andthosewhodonot.Thesizeofthelatterisanindicatorofthenumberofworkerswhowillnotbeabletoenjoythe
1InOECD’ssurveyofworkers“fourinfiveworkerssaidthatAIhadimprovedtheirperformanceatworkandthreeinfivesaidithadincreasedtheirenjoymentofwork”(…)“WorkerswerealsopositiveabouttheimpactofAIontheirphysicalandmentalhealth,aswellasitsusefulnessindecisionmaking”(OECD,2023).
2E.g.,seeBrynjolfssonetal.,2023;Huietal.,2023,Berajaetal.,2023,Adams-Prassletal.,2023.
07ILOWorkingPaper121
productivitybenefitsofGenAIeventhoughtheirjobscouldtheoreticallybenefitfromthetrans-formation.Wealsodiscussthedetaileddemographicsofthegroupsthataremostlikelytobenegativelyaffectedbytheseinfrastructurelimitations.
Ourfindingsindicatethatbetween30and40percentofemploymentintheLACisexposedinsomewaytoGenAI.Thisexposureislinkedwiththeeconomicstatusofcountries,suggestingthatincomelevelsareastrongcorrelateofGenAI’simpactonlabourmarkets.Thistotallevelofexposureincludesthreecategories:exposedtoautomation,augmentation,and“thebigun-known”.Thelatterincludesoccupations,which–dependingontheprogressoftechnologyandtheuseofadjacenttechnologicalapplications,suchasLLM-basedagents–couldfallclosertoautomationoraugmentation.
CertaincharacteristicsconsistentlycorrelatewithhigheroverallGenAIexposure.Specifically,ur-ban-basedjobsthatrequirehighereducation,aresituatedintheformalsector,andareheldbyindividualswithhigherrelativeincomesaremorelikelytocomeintointeractionwiththistech-nology.Theshareofjobsexposedtoautomationisrelativelysmallbutnontrivialatabout2to5percentoftotalemployment.Youngerandfemaleworkerstendtofacegreaterautomationexposure,particularlyinthefinance,insurance,andpublicadministrationsectors.Atthesametime,thesharesofjobsthatcouldbenefitfromaproductivetransformationwithGenAIarecon-sistentlyhigherthanthosewithautomationrisksacrossallLACcountries,rangingbetween8and12percentofemploymentacrosscountries.Thisisparticularlythecaseforthejobsineducation,healthandpersonalservices.Inaddition,thesectorsorientedtowardscustomerservice(retail,trade,hotels,restaurants,etc.)faceanelevatedexposureto"thebigunknown".Thiscategoryencompassesthelargest(14-21percent)shareofemploymentinourestimates,demonstratingthat,whiletheconceptofoccupationalexposureiseasiertoestablish,thepreciseeffectsonhowmanyoccupationsmightevolvearehardertopredictforalargeshareoftoday’slabourmarkets.
Finally,wefindthataccesstodigitaltechnologiesisacriticaldeterminantoftheextenttowhichworkerscanharnessthepotentialbenefitsofGenAI.Nearlyhalfofthepositionsthatcouldpo-tentiallybenefitfromaugmentationarehamperedbydigitalshortcomingsthatwillpreventthemfromrealizingthatpotential.Specifically,6.24percentofjobsheldbywomenand6.22percentofthoseheldbymenareaffectedduetothesegaps.Similarlimitationsapplytothejobsinthe“bigunknown”category:eventhoughsomeofthemcouldpotentiallypivottowardsaugmenta-tionthroughincreasingcomplementaritybetweenGenAIandthehumanworkerintheseoccu-pations,thedigitalgapswillpreventlargesharesofthesejobsfromsuchascenario.
Therestofthisstudyisstructuredasfollows:section2providesageneraloverviewoftheLACregionandelaboratesonthetheoreticaleffectsonecouldexpectfromtheinteractionofGenAIwithitslabourmarkets,section3discussesthedataandmethodsappliedtoouranalysis,section4providesadetailedbreakdownofourfindings,withthefinaldiscussionpresentedinsection5.
08ILOWorkingPaper121
、1LACregionandthetheoreticaleffectsofGenAI
ThedefinitionoftheregionofLatinAmericaandtheCaribbean(LAC)canhaveavaryingscopeacrossdifferentinstitutions.Inthecaseofourstudy,werelyonaheuristicapproachofinclud-ingthemaximumnumberofcountriesforwhichwecanfinddataofsufficientqualityintheda-tabasesoftheWB,ILOandanyotherrelevantsources.Thefinalsampleincludes22countries,showninFigure1accordingtotheirincome-basedgroupingusedbytheWBin2022,andtotalpopulation.Theregionisveryheterogeneous,fromverysmallislandsintheCaribbeanwithfew-erthanhalfamillioninhabitants,tocountrieswithlargepopulationssuchasBrazilandMexico.Accordingly,itrangesfromhigh-incomecountriessuchasUruguayandPanamatolower-incomecountriessuchasNicaraguaandHonduras.
、Figure1.GDPpercapita,populationandincomestatusofLACcountriesinthesample
WhilethereisalargebodyofliteratureanalysingtheimpactsoftechnologicalchangeonthelabourmarketoutcomesofLAC(forexample,seeDutzetal.2018),theexpectedincidenceofGenAIislikelytobedifferentfromthatofprevioustechnologicalbreakthroughs.Autor(2024)claimsthatthetransformationalimpactofnewtechnologiesonlabouristhroughthereshapingofhumanexpertise,andheillustratesthishypothesiswithtwoexamples:theadoptionofmassproductioninthe18thand19thcenturies,andtheadoptionofdigitaltechnologiessincethe1960s.Theemergenceofmassproductionchangedthecomplexworkofartisansintoself-con-tainedandsimpletaskscarriedoutbyproductionworkers,usingnewmachinery,andoverseen
09ILOWorkingPaper121
byotherswithhigherlevelsofeducation.Theincreaseddemandforthis“massexpertise”wasaccompaniedbyanincreasingnumberofhigh-schoolgraduates,leadingtotheriseofanewmiddleclass.Later,digitaltechnologiesallowedtocarryoutroutinetasksbyencodingthemindeterministicrules.Non-routinetaskscouldnotbereplacedbythistechnologybecausetheyarenotattainedbylearningrules,butthroughlearningbydoing.Asaresult,digitaltechnologiesgaverisetoanewformofexpertisebyallowingprofessionalstoobtainandprocessinforma-tionmoreefficiently,andtherebyhavingmoretimetointerpretandapplyit.Theroutinejobsreplacedbythistechnologytendedtobeinthemiddleoftheearningsdistribution,whilethenon-routinejobscomplementedbydigitalizationtendedtobeatthetop,leadingtoapolariza-tionofthelabourmarket.AI,incontrast,canperformnon-routinetasksthatoftenrequiretacitknowledge.Forexample,itcanallownon-eliteworkers(suchasnurses)toengageincomplexdecision-making,anditcanautomatesomeofthetaskscarriedoutbyhigh-skillworkerssuchasdoctors,softwareengineersandlawyers.However,asdescribedbelow,thefinalimpactsonjobswilldependonotherfactorsaswell.Forexample,thedirectautomationimpactsofGenAIonjobsmaybeoffsetbypositiveimpactsonproductivity,whichwouldstrengthenlabourdemand.
WhilenopreviousgranularassessmentsofoccupationalexposuretoGenAIexistfortheLACregion,therehavebeencomparisonstootherregionsmadeinbroaderstudies.Forexample,GBB(2023)placeLACsomewhereinthemiddleoftheregionalrankingofpotentialautomationexposure,with2.5percentoftotalemploymentfallingintothiscategory(Figure2).Intermsofaugmentationpotential,thesamestudyrankedLACasthethirdfromthebottom(12.8percentofemployment).Similarly,whiletheWEF(2023)globalstudydidnotprovideaspecificregionalranking,itprojecteda5-yearstructurallabourchurninLACat22percent,slightlybelowtheglobalaverage(23percent).Inotherwords,theLACregioncanbecharacterizedashavingeconomieswithanaveragelevelofexposuretoGenAIthatislessthanthatofthemostindustrializednations,yethigherthanthatfoundinlow-incomeregions,makingitarelevantintermediatebenchmark.
、Figure2.Automationandaugmentationpotential:LACvsotherregions
Intheory,theriseofGenAIanditspotentialpositiveimpactsonlabourproductivitycouldposeasignificantopportunityfordevelopingcountries.Somerecentprivatesectorstudiesevensug-gestthataggregateimpactofwidespreadAIadoptioncouldaddbetween0.1and1.5ppofan-nualproductivitygrowthinHICs,withslightlylowerfiguresestimatedforEmergingMarkets(EM)(GoldmanSachs,2023;McKinsey,2023).SuchprojectionsmightbeparticularlyenticingfortheLACregion,whichhaslonggrappledwithapersistentproductivitygapincomparisontootherareasoftheworld.WhilethedevelopingnationsinAsiaandEuropemanagedtonarrowtheirproductivitygapwiththeUnitedStatesbetween1990and2019,suchgapincreasedfortheLACregionduringthesameperiod(IMF,2022).Recenttrendsalsoraiseconcerns,since,despitesome
10ILOWorkingPaper121
countryvariation(Erumbanetal.,2024),theoverallproductivitygrowthhasbeenalmostzeroinLACeversincethestartoftheglobalproductivityslowdownofthelast10years(Dieppe,2021).Comparedtootherregions,barrierstoinnovationandtechnologyadoptionhavebeenparticu-larlysalientfactorslimitingproductivitygrowthinLAC.
CouldGenAIhelpunlockthisproductivityimpasse?RecentempiricalstudiesfocusedontheuseofGenAIinparticularoccupationalsettingssuggestthatthepositiveimpactsonproductivitycanbelarge.Forexample,Pengetal.(2023)implementedacontrolledexperimentamongprofes-sionalprogrammersandfoundthataccesstoaGenAIassistantreducedthetimetocompleteprogrammingtasksby56percent.Brynjolfssonetal.(2023)findthataccesstoGenAIincreasesproductivityamongcustomersupportworkersintermsofissuesresolvedperhour,whichisdriv-enmostlybytheboostofperformanceamongthenoviceandlow-skillworkers.Similarly,NoyandZhang(2023)findthathavingaccesstoChatGPThelpsimprovetheproductivityofwritingprofessionals,byincreasingthequality
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 代理英文合同范本
- 加快老舊農(nóng)機(jī)更新?lián)Q代的實(shí)施方案
- 代寫招標(biāo)文件合同范例
- 合同范本買賣協(xié)議書
- 雙方合作店鋪合同范本
- 咨詢顧問合同范本 英文縮寫
- 保安兼職合同范本
- 倉(cāng)庫(kù)代發(fā)服務(wù)合同范本
- 合作融資合同范本范本
- 保修合同范本6
- 湖南省2023年普通高等學(xué)校對(duì)口招生考試英語試卷
- 中國(guó)大米等糧食項(xiàng)目投資可行性研究報(bào)告
- 2025語文新教材三下全冊(cè)8個(gè)單元教材解讀分析匯編
- java安全編碼規(guī)范
- 美麗的春天課件
- 2025年山東青島自貿(mào)發(fā)展有限公司招聘筆試參考題庫(kù)含答案解析
- 液化氣罐的使用和安全防范
- 2025年中考物理總復(fù)習(xí)《內(nèi)能》專項(xiàng)測(cè)試卷含有答案
- 會(huì)計(jì)法律法規(guī)答題答案
- 2024年無錫工藝職業(yè)技術(shù)學(xué)院高職單招語文歷年參考題庫(kù)含答案解析
- 獸醫(yī)檢驗(yàn)測(cè)試題(附參考答案)
評(píng)論
0/150
提交評(píng)論