2023屆云南省澄江一中數(shù)學(xué)高三上期末學(xué)業(yè)質(zhì)量監(jiān)測試題含解析_第1頁
2023屆云南省澄江一中數(shù)學(xué)高三上期末學(xué)業(yè)質(zhì)量監(jiān)測試題含解析_第2頁
2023屆云南省澄江一中數(shù)學(xué)高三上期末學(xué)業(yè)質(zhì)量監(jiān)測試題含解析_第3頁
2023屆云南省澄江一中數(shù)學(xué)高三上期末學(xué)業(yè)質(zhì)量監(jiān)測試題含解析_第4頁
2023屆云南省澄江一中數(shù)學(xué)高三上期末學(xué)業(yè)質(zhì)量監(jiān)測試題含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2022-2023學(xué)年高三上數(shù)學(xué)期末模擬試卷注意事項(xiàng)1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知函數(shù),若恒成立,則滿足條件的的個數(shù)為()A.0 B.1 C.2 D.32.存在點(diǎn)在橢圓上,且點(diǎn)M在第一象限,使得過點(diǎn)M且與橢圓在此點(diǎn)的切線垂直的直線經(jīng)過點(diǎn),則橢圓離心率的取值范圍是()A. B. C. D.3.若復(fù)數(shù),,其中是虛數(shù)單位,則的最大值為()A. B. C. D.4.是恒成立的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件5.已知函數(shù),為的零點(diǎn),為圖象的對稱軸,且在區(qū)間上單調(diào),則的最大值是()A. B. C. D.6.展開式中x2的系數(shù)為()A.-1280 B.4864 C.-4864 D.12807.已知實(shí)數(shù)集,集合,集合,則()A. B. C. D.8.《九章算術(shù)》中記載,塹堵是底面為直角三角形的直三棱柱,陽馬指底面為矩形,一側(cè)棱垂直于底面的四棱錐.如圖,在塹堵中,,,當(dāng)陽馬體積的最大值為時,塹堵的外接球的體積為()A. B. C. D.9.復(fù)數(shù)的共軛復(fù)數(shù)為()A. B. C. D.10.波羅尼斯(古希臘數(shù)學(xué)家,的公元前262-190年)的著作《圓錐曲線論》是古代世界光輝的科學(xué)成果,它將圓錐曲線的性質(zhì)網(wǎng)羅殆盡,幾乎使后人沒有插足的余地.他證明過這樣一個命題:平面內(nèi)與兩定點(diǎn)距離的比為常數(shù)k(k>0,且k≠1)的點(diǎn)的軌跡是圓,后人將這個圓稱為阿波羅尼斯圓.現(xiàn)有橢圓=1(a>b>0),A,B為橢圓的長軸端點(diǎn),C,D為橢圓的短軸端點(diǎn),動點(diǎn)M滿足=2,△MAB面積的最大值為8,△MCD面積的最小值為1,則橢圓的離心率為()A. B. C. D.11.?dāng)?shù)學(xué)中有許多形狀優(yōu)美、寓意美好的曲線,例如:四葉草曲線就是其中一種,其方程為.給出下列四個結(jié)論:①曲線有四條對稱軸;②曲線上的點(diǎn)到原點(diǎn)的最大距離為;③曲線第一象限上任意一點(diǎn)作兩坐標(biāo)軸的垂線與兩坐標(biāo)軸圍成的矩形面積最大值為;④四葉草面積小于.其中,所有正確結(jié)論的序號是()A.①② B.①③ C.①③④ D.①②④12.復(fù)數(shù)的共軛復(fù)數(shù)在復(fù)平面內(nèi)所對應(yīng)的點(diǎn)位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限二、填空題:本題共4小題,每小題5分,共20分。13.設(shè),分別是定義在上的奇函數(shù)和偶函數(shù),且,則_________14.點(diǎn)P是△ABC所在平面內(nèi)一點(diǎn)且在△ABC內(nèi)任取一點(diǎn),則此點(diǎn)取自△PBC內(nèi)的概率是____15.在棱長為6的正方體中,是的中點(diǎn),點(diǎn)是面,所在平面內(nèi)的動點(diǎn),且滿足,則三棱錐的體積的最大值是__________.16.已知,且,則__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在△ABC中,角A,B,C的對邊分別為a,b,c,已知a=4,.(1)求A的余弦值;(2)求△ABC面積的最大值.18.(12分)在中,角的對邊分別為,且,.(1)求的值;(2)若求的面積.19.(12分)已知函數(shù).(1)當(dāng)時,求函數(shù)的值域.(2)設(shè)函數(shù),若,且的最小值為,求實(shí)數(shù)的取值范圍.20.(12分)已知多面體中,、均垂直于平面,,,,是的中點(diǎn).(1)求證:平面;(2)求直線與平面所成角的正弦值.21.(12分)已知,,動點(diǎn)滿足直線與直線的斜率之積為,設(shè)點(diǎn)的軌跡為曲線.(1)求曲線的方程;(2)若過點(diǎn)的直線與曲線交于,兩點(diǎn),過點(diǎn)且與直線垂直的直線與相交于點(diǎn),求的最小值及此時直線的方程.22.(10分)等差數(shù)列中,.(1)求的通項(xiàng)公式;(2)設(shè),記為數(shù)列前項(xiàng)的和,若,求.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】

由不等式恒成立問題分類討論:①當(dāng),②當(dāng),③當(dāng),考查方程的解的個數(shù),綜合①②③得解.【詳解】①當(dāng)時,,滿足題意,②當(dāng)時,,,,,故不恒成立,③當(dāng)時,設(shè),,令,得,,得,下面考查方程的解的個數(shù),設(shè)(a),則(a)由導(dǎo)數(shù)的應(yīng)用可得:(a)在為減函數(shù),在,為增函數(shù),則(a),即有一解,又,均為增函數(shù),所以存在1個使得成立,綜合①②③得:滿足條件的的個數(shù)是2個,故選:.【點(diǎn)睛】本題考查了不等式恒成立問題及利用導(dǎo)數(shù)研究函數(shù)的解得個數(shù),重點(diǎn)考查了分類討論的數(shù)學(xué)思想方法,屬難度較大的題型.2、D【解析】

根據(jù)題意利用垂直直線斜率間的關(guān)系建立不等式再求解即可.【詳解】因?yàn)檫^點(diǎn)M橢圓的切線方程為,所以切線的斜率為,由,解得,即,所以,所以.故選:D【點(diǎn)睛】本題主要考查了建立不等式求解橢圓離心率的問題,屬于基礎(chǔ)題.3、C【解析】

由復(fù)數(shù)的幾何意義可得表示復(fù)數(shù),對應(yīng)的兩點(diǎn)間的距離,由兩點(diǎn)間距離公式即可求解.【詳解】由復(fù)數(shù)的幾何意義可得,復(fù)數(shù)對應(yīng)的點(diǎn)為,復(fù)數(shù)對應(yīng)的點(diǎn)為,所以,其中,故選C【點(diǎn)睛】本題主要考查復(fù)數(shù)的幾何意義,由復(fù)數(shù)的幾何意義,將轉(zhuǎn)化為兩復(fù)數(shù)所對應(yīng)點(diǎn)的距離求值即可,屬于基礎(chǔ)題型.4、A【解析】

設(shè)成立;反之,滿足,但,故選A.5、B【解析】

由題意可得,且,故有①,再根據(jù),求得②,由①②可得的最大值,檢驗(yàn)的這個值滿足條件.【詳解】解:函數(shù),,為的零點(diǎn),為圖象的對稱軸,,且,、,,即為奇數(shù)①.在,單調(diào),,②.由①②可得的最大值為1.當(dāng)時,由為圖象的對稱軸,可得,,故有,,滿足為的零點(diǎn),同時也滿足滿足在上單調(diào),故為的最大值,故選:B.【點(diǎn)睛】本題主要考查正弦函數(shù)的圖象的特征,正弦函數(shù)的周期性以及它的圖象的對稱性,屬于中檔題.6、A【解析】

根據(jù)二項(xiàng)式展開式的公式得到具體為:化簡求值即可.【詳解】根據(jù)二項(xiàng)式的展開式得到可以第一個括號里出項(xiàng),第二個括號里出項(xiàng),或者第一個括號里出,第二個括號里出,具體為:化簡得到-1280x2故得到答案為:A.【點(diǎn)睛】求二項(xiàng)展開式有關(guān)問題的常見類型及解題策略:(1)求展開式中的特定項(xiàng).可依據(jù)條件寫出第項(xiàng),再由特定項(xiàng)的特點(diǎn)求出值即可.(2)已知展開式的某項(xiàng),求特定項(xiàng)的系數(shù).可由某項(xiàng)得出參數(shù)項(xiàng),再由通項(xiàng)寫出第項(xiàng),由特定項(xiàng)得出值,最后求出其參數(shù).7、A【解析】

可得集合,求出補(bǔ)集,再求出即可.【詳解】由,得,即,所以,所以.故選:A【點(diǎn)睛】本題考查了集合的補(bǔ)集和交集的混合運(yùn)算,屬于基礎(chǔ)題.8、B【解析】

利用均值不等式可得,即可求得,進(jìn)而求得外接球的半徑,即可求解.【詳解】由題意易得平面,所以,當(dāng)且僅當(dāng)時等號成立,又陽馬體積的最大值為,所以,所以塹堵的外接球的半徑,所以外接球的體積,故選:B【點(diǎn)睛】本題以中國傳統(tǒng)文化為背景,考查四棱錐的體積、直三棱柱的外接球的體積、基本不等式的應(yīng)用,體現(xiàn)了數(shù)學(xué)運(yùn)算、直觀想象等核心素養(yǎng).9、D【解析】

直接相乘,得,由共軛復(fù)數(shù)的性質(zhì)即可得結(jié)果【詳解】∵∴其共軛復(fù)數(shù)為.故選:D【點(diǎn)睛】熟悉復(fù)數(shù)的四則運(yùn)算以及共軛復(fù)數(shù)的性質(zhì).10、D【解析】

求得定點(diǎn)M的軌跡方程可得,解得a,b即可.【詳解】設(shè)A(-a,0),B(a,0),M(x,y).∵動點(diǎn)M滿足=2,則=2,化簡得.∵△MAB面積的最大值為8,△MCD面積的最小值為1,∴,解得,∴橢圓的離心率為.故選D.【點(diǎn)睛】本題考查了橢圓離心率,動點(diǎn)軌跡,屬于中檔題.11、C【解析】

①利用之間的代換判斷出對稱軸的條數(shù);②利用基本不等式求解出到原點(diǎn)的距離最大值;③將面積轉(zhuǎn)化為的關(guān)系式,然后根據(jù)基本不等式求解出最大值;④根據(jù)滿足的不等式判斷出四葉草與對應(yīng)圓的關(guān)系,從而判斷出面積是否小于.【詳解】①:當(dāng)變?yōu)闀r,不變,所以四葉草圖象關(guān)于軸對稱;當(dāng)變?yōu)闀r,不變,所以四葉草圖象關(guān)于軸對稱;當(dāng)變?yōu)闀r,不變,所以四葉草圖象關(guān)于軸對稱;當(dāng)變?yōu)闀r,不變,所以四葉草圖象關(guān)于軸對稱;綜上可知:有四條對稱軸,故正確;②:因?yàn)?,所以,所以,所以,取等號時,所以最大距離為,故錯誤;③:設(shè)任意一點(diǎn),所以圍成的矩形面積為,因?yàn)?,所以,所以,取等號時,所以圍成矩形面積的最大值為,故正確;④:由②可知,所以四葉草包含在圓的內(nèi)部,因?yàn)閳A的面積為:,所以四葉草的面積小于,故正確.故選:C.【點(diǎn)睛】本題考查曲線與方程的綜合運(yùn)用,其中涉及到曲線的對稱性分析以及基本不等式的運(yùn)用,難度較難.分析方程所表示曲線的對稱性,可通過替換方程中去分析證明.12、D【解析】

由復(fù)數(shù)除法運(yùn)算求出,再寫出其共軛復(fù)數(shù),得共軛復(fù)數(shù)對應(yīng)點(diǎn)的坐標(biāo).得結(jié)論.【詳解】,,對應(yīng)點(diǎn)為,在第四象限.故選:D.【點(diǎn)睛】本題考查復(fù)數(shù)的除法運(yùn)算,考查共軛復(fù)數(shù)的概念,考查復(fù)數(shù)的幾何意義.掌握復(fù)數(shù)的運(yùn)算法則是解題關(guān)鍵.二、填空題:本題共4小題,每小題5分,共20分。13、1【解析】

令,結(jié)合函數(shù)的奇偶性,求得,即可求解的值,得到答案.【詳解】由題意,函數(shù)分別是上的奇函數(shù)和偶函數(shù),且,令,可得,所以.故答案為:1.【點(diǎn)睛】本題主要考查了函數(shù)奇偶性的應(yīng)用,其中解答中熟記函數(shù)的奇偶性,合理賦值求解是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.14、【解析】

設(shè)是中點(diǎn),根據(jù)已知條件判斷出三點(diǎn)共線且是線段靠近的三等分點(diǎn),由此求得,結(jié)合幾何概型求得點(diǎn)取自三角形的概率.【詳解】設(shè)是中點(diǎn),因?yàn)椋?,所以三點(diǎn)共線且點(diǎn)是線段靠近的三等分點(diǎn),故,所以此點(diǎn)取自內(nèi)的概率是.故答案為:【點(diǎn)睛】本小題主要考查三點(diǎn)共線的向量表示,考查幾何概型概率計(jì)算,屬于基礎(chǔ)題.15、【解析】

根據(jù)與相似,,過作于,利用體積公式求解OP最值,根據(jù)勾股定理得出,,利用函數(shù)單調(diào)性判斷求解即可.【詳解】∵在棱長為6的正方體中,是的中點(diǎn),點(diǎn)是面所在平面內(nèi)的動點(diǎn),且滿足,又,∴與相似∴,即,過作于,設(shè),,∴,化簡得:,,根據(jù)函數(shù)單調(diào)性判斷,時,取得最大值36,,在正方體中平面.三棱錐體積的最大值為【點(diǎn)睛】本題考查三角形相似,幾何體體積以及函數(shù)單調(diào)性的綜合應(yīng)用,難度一般.16、【解析】試題分析:因,故,所以,,應(yīng)填.考點(diǎn):三角變換及運(yùn)用.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)【解析】

(1)根據(jù)正弦定理化簡得到,故,得到答案.(2)計(jì)算,再利用面積公式計(jì)算得到答案.【詳解】(1),則,即,故,,故.(2),故,故.當(dāng)時等號成立.,故,,故△ABC面積的最大值為.【點(diǎn)睛】本題考查了正弦定理,面積公式,均值不等式,意在考查學(xué)生的綜合應(yīng)用能力.18、(1)3(2)78【解析】試題分析:(1)由兩角和差公式得到,由三角形中的數(shù)值關(guān)系得到,進(jìn)而求得數(shù)值;(2)由三角形的三個角的關(guān)系得到,再由正弦定理得到b=15,故面積公式為.解析:(1)在中,由,得為銳角,所以,所以,所以.(2)在三角形中,由,所以,由,由正弦定理,得,所以的面積.19、(1);(2).【解析】

(1)令,求出的范圍,再由指數(shù)函數(shù)的單調(diào)性,即可求出結(jié)論;(2)對分類討論,分別求出以及的最小值或范圍,與的最小值建立方程關(guān)系,求出的值,進(jìn)而求出的取值關(guān)系.【詳解】(1)當(dāng)時,,令,∵∴,而是增函數(shù),∴,∴函數(shù)的值域是.(2)當(dāng)時,則在上單調(diào)遞減,在上單調(diào)遞增,所以的最小值為,在上單調(diào)遞增,最小值為,而的最小值為,所以這種情況不可能.當(dāng)時,則在上單調(diào)遞減且沒有最小值,在上單調(diào)遞增最小值為,所以的最小值為,解得(滿足題意),所以,解得.所以實(shí)數(shù)的取值范圍是.【點(diǎn)睛】本題考查復(fù)合函數(shù)的值域與分段函數(shù)的最值,熟練掌握二次函數(shù)圖像和性質(zhì)是解題的關(guān)鍵,屬于中檔題.20、(1)見解析;(2).【解析】

(1)取的中點(diǎn),連接、,推導(dǎo)出四邊形為平行四邊形,可得出,由此能證明平面;(2)由,得平面,則點(diǎn)到平面的距離等于點(diǎn)到平面的距離,在平面內(nèi)過點(diǎn)作于點(diǎn),就是到平面的距離,也就是點(diǎn)到平面的距離,由此能求出直線與平面所成角的正弦值.【詳解】(1)取的中點(diǎn),連接、,、分別為、的中點(diǎn),則且,、均垂直于平面,且,則,且,所以,四邊形為平行四邊形,則,平面,平面,因此,平面;(2)由,平面,平面,平面,點(diǎn)到平面的距離等于點(diǎn)到平面的距離,在平面內(nèi)過點(diǎn)作于點(diǎn),平面,平面,,,,平面,即就是到平面的距離,也就是點(diǎn)到平面的距離,設(shè),則到平面的距離,,因此,直線與平面所成角的正弦值為.【點(diǎn)睛】本題考查線面平行的證明,考查線面角的正弦值的求法,考查空間中線線、線面、面面間的位置關(guān)系等基礎(chǔ)知識,考查運(yùn)算求解能力,考查數(shù)形結(jié)合思想,是中檔題.21、(1)(2)的最小值為1,此時直線:【解析】

(1)用直接法求軌跡方程,即設(shè)動點(diǎn)為,把已知用坐標(biāo)表示并整理即得.注意取值范圍;(2)設(shè):,將其與曲線的方程聯(lián)立,消元并整理得,設(shè),,則可得,,由求出,將直線方程與聯(lián)立,得,求得,計(jì)算,設(shè).顯然,構(gòu)造,由導(dǎo)數(shù)的知識求得其最小值,同時可得直線的方程.【詳解】(1)設(shè),則,即整理得(2)設(shè):,將其與曲線的方程聯(lián)立,得即設(shè),,則,將直線:與聯(lián)立,得∴∴設(shè).顯然構(gòu)造在上恒成立所以在上單調(diào)遞增所以,當(dāng)且僅當(dāng),即時取“=”即的最小值為1,此時直線:.(注:1.如果按函數(shù)的性質(zhì)求最值可以不扣分;2.若直線方程按斜率是否存在討論,則可以根據(jù)步驟相應(yīng)給分.)【點(diǎn)睛】本題考查

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論