版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2022-2023學(xué)年高三上數(shù)學(xué)期末模擬試卷注意事項(xiàng)1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.設(shè)雙曲線的一條漸近線為,且一個(gè)焦點(diǎn)與拋物線的焦點(diǎn)相同,則此雙曲線的方程為()A. B. C. D.2.若非零實(shí)數(shù)、滿足,則下列式子一定正確的是()A. B.C. D.3.函數(shù)的圖象大致是()A. B.C. D.4.劉徽是我國魏晉時(shí)期偉大的數(shù)學(xué)家,他在《九章算術(shù)》中對勾股定理的證明如圖所示.“勾自乘為朱方,股自乘為青方,令出入相補(bǔ),各從其類,因就其余不移動也.合成弦方之冪,開方除之,即弦也”.已知圖中網(wǎng)格紙上小正方形的邊長為1,其中“正方形為朱方,正方形為青方”,則在五邊形內(nèi)隨機(jī)取一個(gè)點(diǎn),此點(diǎn)取自朱方的概率為()A. B. C. D.5.《周易》是我國古代典籍,用“卦”描述了天地世間萬象變化.如圖是一個(gè)八卦圖,包含乾、坤、震、巽、坎、離、艮、兌八卦(每一卦由三個(gè)爻組成,其中“”表示一個(gè)陽爻,“”表示一個(gè)陰爻).若從含有兩個(gè)及以上陽爻的卦中任取兩卦,這兩卦的六個(gè)爻中都恰有兩個(gè)陽爻的概率為()A. B. C. D.6.已知向量,,設(shè)函數(shù),則下列關(guān)于函數(shù)的性質(zhì)的描述正確的是A.關(guān)于直線對稱 B.關(guān)于點(diǎn)對稱C.周期為 D.在上是增函數(shù)7.已知平面向量,滿足,,且,則()A.3 B. C. D.58.某學(xué)校為了調(diào)查學(xué)生在課外讀物方面的支出情況,抽取了一個(gè)容量為的樣本,其頻率分布直方圖如圖所示,其中支出在(單位:元)的同學(xué)有34人,則的值為()A.100 B.1000 C.90 D.909.設(shè)集合,集合,則=()A. B. C. D.R10.設(shè)等差數(shù)列的前項(xiàng)和為,若,則()A.23 B.25 C.28 D.2911.設(shè)為非零實(shí)數(shù),且,則()A. B. C. D.12.下列與函數(shù)定義域和單調(diào)性都相同的函數(shù)是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知點(diǎn)為雙曲線的右焦點(diǎn),兩點(diǎn)在雙曲線上,且關(guān)于原點(diǎn)對稱,若,設(shè),且,則該雙曲線的焦距的取值范圍是________.14.已知函數(shù)的最大值為3,的圖象與y軸的交點(diǎn)坐標(biāo)為,其相鄰兩條對稱軸間的距離為2,則15.已知,那么______.16.雙曲線的左右頂點(diǎn)為,以為直徑作圓,為雙曲線右支上不同于頂點(diǎn)的任一點(diǎn),連接交圓于點(diǎn),設(shè)直線的斜率分別為,若,則_____.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知數(shù)列的前項(xiàng)和為,且滿足().(1)求數(shù)列的通項(xiàng)公式;(2)設(shè)(),數(shù)列的前項(xiàng)和.若對恒成立,求實(shí)數(shù),的值.18.(12分)已知數(shù)列的前n項(xiàng)和,是等差數(shù)列,且.(Ⅰ)求數(shù)列的通項(xiàng)公式;(Ⅱ)令.求數(shù)列的前n項(xiàng)和.19.(12分)已知函數(shù)()的圖象在處的切線為(為自然對數(shù)的底數(shù))(1)求的值;(2)若,且對任意恒成立,求的最大值.20.(12分)橢圓的右焦點(diǎn),過點(diǎn)且與軸垂直的直線被橢圓截得的弦長為.(1)求橢圓的方程;(2)過點(diǎn)且斜率不為0的直線與橢圓交于,兩點(diǎn).為坐標(biāo)原點(diǎn),為橢圓的右頂點(diǎn),求四邊形面積的最大值.21.(12分)已知函數(shù)(1)當(dāng)時(shí),證明,在恒成立;(2)若在處取得極大值,求的取值范圍.22.(10分)在四棱椎中,四邊形為菱形,,,,,,分別為,中點(diǎn)..(1)求證:;(2)求平面與平面所成銳二面角的余弦值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】
求得拋物線的焦點(diǎn)坐標(biāo),可得雙曲線方程的漸近線方程為,由題意可得,又,即,解得,,即可得到所求雙曲線的方程.【詳解】解:拋物線的焦點(diǎn)為可得雙曲線即為的漸近線方程為由題意可得,即又,即解得,.即雙曲線的方程為.故選:C【點(diǎn)睛】本題主要考查了求雙曲線的方程,屬于中檔題.2、C【解析】
令,則,,將指數(shù)式化成對數(shù)式得、后,然后取絕對值作差比較可得.【詳解】令,則,,,,,因此,.故選:C.【點(diǎn)睛】本題考查了利用作差法比較大小,同時(shí)也考查了指數(shù)式與對數(shù)式的轉(zhuǎn)化,考查推理能力,屬于中等題.3、B【解析】
根據(jù)函數(shù)表達(dá)式,把分母設(shè)為新函數(shù),首先計(jì)算函數(shù)定義域,然后求導(dǎo),根據(jù)導(dǎo)函數(shù)的正負(fù)判斷函數(shù)單調(diào)性,對應(yīng)函數(shù)圖像得到答案.【詳解】設(shè),,則的定義域?yàn)?,當(dāng),,單增,當(dāng),,單減,則.則在上單增,上單減,.選B.【點(diǎn)睛】本題考查了函數(shù)圖像的判斷,用到了換元的思想,簡化了運(yùn)算,同學(xué)們還可以用特殊值法等方法進(jìn)行判斷.4、C【解析】
首先明確這是一個(gè)幾何概型面積類型,然后求得總事件的面積和所研究事件的面積,代入概率公式求解.【詳解】因?yàn)檎叫螢橹旆?,其面積為9,五邊形的面積為,所以此點(diǎn)取自朱方的概率為.故選:C【點(diǎn)睛】本題主要考查了幾何概型的概率求法,還考查了數(shù)形結(jié)合的思想和運(yùn)算求解的能力,屬于基礎(chǔ)題.5、B【解析】
基本事件總數(shù)為個(gè),都恰有兩個(gè)陽爻包含的基本事件個(gè)數(shù)為個(gè),由此求出概率.【詳解】解:由圖可知,含有兩個(gè)及以上陽爻的卦有巽、離、兌、乾四卦,取出兩卦的基本事件有(巽,離),(巽,兌),(巽,乾),(離,兌),(離,乾),(兌,乾)共個(gè),其中符合條件的基本事件有(巽,離),(巽,兌),(離,兌)共個(gè),所以,所求的概率.故選:B.【點(diǎn)睛】本題滲透傳統(tǒng)文化,考查概率、計(jì)數(shù)原理等基本知識,考查抽象概括能力和應(yīng)用意識,屬于基礎(chǔ)題.6、D【解析】
當(dāng)時(shí),,∴f(x)不關(guān)于直線對稱;當(dāng)時(shí),,∴f(x)關(guān)于點(diǎn)對稱;f(x)得周期,當(dāng)時(shí),,∴f(x)在上是增函數(shù).本題選擇D選項(xiàng).7、B【解析】
先求出,再利用求出,再求.【詳解】解:由,所以,,,故選:B【點(diǎn)睛】考查向量的數(shù)量積及向量模的運(yùn)算,是基礎(chǔ)題.8、A【解析】
利用頻率分布直方圖得到支出在的同學(xué)的頻率,再結(jié)合支出在(單位:元)的同學(xué)有34人,即得解【詳解】由題意,支出在(單位:元)的同學(xué)有34人由頻率分布直方圖可知,支出在的同學(xué)的頻率為.故選:A【點(diǎn)睛】本題考查了頻率分布直方圖的應(yīng)用,考查了學(xué)生概念理解,數(shù)據(jù)處理,數(shù)學(xué)運(yùn)算的能力,屬于基礎(chǔ)題.9、D【解析】試題分析:由題,,,選D考點(diǎn):集合的運(yùn)算10、D【解析】
由可求,再求公差,再求解即可.【詳解】解:是等差數(shù)列,又,公差為,,故選:D【點(diǎn)睛】考查等差數(shù)列的有關(guān)性質(zhì)、運(yùn)算求解能力和推理論證能力,是基礎(chǔ)題.11、C【解析】
取,計(jì)算知錯(cuò)誤,根據(jù)不等式性質(zhì)知正確,得到答案.【詳解】,故,,故正確;取,計(jì)算知錯(cuò)誤;故選:.【點(diǎn)睛】本題考查了不等式性質(zhì),意在考查學(xué)生對于不等式性質(zhì)的靈活運(yùn)用.12、C【解析】
分析函數(shù)的定義域和單調(diào)性,然后對選項(xiàng)逐一分析函數(shù)的定義域、單調(diào)性,由此確定正確選項(xiàng).【詳解】函數(shù)的定義域?yàn)?,在上為減函數(shù).A選項(xiàng),的定義域?yàn)椋谏蠟樵龊瘮?shù),不符合.B選項(xiàng),的定義域?yàn)?,不符?C選項(xiàng),的定義域?yàn)椋谏蠟闇p函數(shù),符合.D選項(xiàng),的定義域?yàn)?,不符?故選:C【點(diǎn)睛】本小題主要考查函數(shù)的定義域和單調(diào)性,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
設(shè)雙曲線的左焦點(diǎn)為,連接,由于.所以四邊形為矩形,故,由雙曲線定義可得,再求的值域即可.【詳解】如圖,設(shè)雙曲線的左焦點(diǎn)為,連接,由于.所以四邊形為矩形,故.在中,由雙曲線的定義可得,.故答案為:【點(diǎn)睛】本題考查雙曲線定義及其性質(zhì),涉及到求余弦型函數(shù)的值域,考查學(xué)生的運(yùn)算能力,是一道中檔題.14、【解析】,由題意,得,解得,則的周期為4,且,所以.考點(diǎn):三角函數(shù)的圖像與性質(zhì).15、【解析】
由已知利用誘導(dǎo)公式可求,進(jìn)而根據(jù)同角三角函數(shù)基本關(guān)系即可求解.【詳解】∵,∴,,∴.故答案為:.【點(diǎn)睛】本小題主要考查誘導(dǎo)公式、同角三角函數(shù)的基本關(guān)系式,屬于基礎(chǔ)題.16、【解析】
根據(jù)雙曲線上的點(diǎn)的坐標(biāo)關(guān)系得,交圓于點(diǎn),所以,建立等式,兩式作商即可得解.【詳解】設(shè),交圓于點(diǎn),所以易知:即.故答案為:【點(diǎn)睛】此題考查根據(jù)雙曲線上的點(diǎn)的坐標(biāo)關(guān)系求解斜率關(guān)系,涉及雙曲線中的部分定值結(jié)論,若能熟記常見二級結(jié)論,此題可以簡化計(jì)算.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2),.【解析】
(1)根據(jù)數(shù)列的通項(xiàng)與前n項(xiàng)和的關(guān)系式,即求解數(shù)列的通項(xiàng)公式;(2)由(1)可得,利用等比數(shù)列的前n項(xiàng)和公式和裂項(xiàng)法,求得,結(jié)合題意,即可求解.【詳解】(1)由題意,當(dāng)時(shí),由,解得;當(dāng)時(shí),可得,即,顯然當(dāng)時(shí)上式也適合,所以數(shù)列的通項(xiàng)公式為.(2)由(1)可得,所以.因?yàn)閷愠闪?,所以?【點(diǎn)睛】本題主要考查了數(shù)列的通項(xiàng)公式的求解,等差數(shù)列的前n項(xiàng)和公式,以及裂項(xiàng)法求和的應(yīng)用,其中解答中熟記等差、等比數(shù)列的通項(xiàng)公式和前n項(xiàng)和公式,以及合理利用“裂項(xiàng)法”求和是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于中檔試題.18、(Ⅰ);(Ⅱ)【解析】試題分析:(1)先由公式求出數(shù)列的通項(xiàng)公式;進(jìn)而列方程組求數(shù)列的首項(xiàng)與公差,得數(shù)列的通項(xiàng)公式;(2)由(1)可得,再利用“錯(cuò)位相減法”求數(shù)列的前項(xiàng)和.試題解析:(1)由題意知當(dāng)時(shí),,當(dāng)時(shí),,所以.設(shè)數(shù)列的公差為,由,即,可解得,所以.(2)由(1)知,又,得,,兩式作差,得所以.考點(diǎn)1、待定系數(shù)法求等差數(shù)列的通項(xiàng)公式;2、利用“錯(cuò)位相減法”求數(shù)列的前項(xiàng)和.【易錯(cuò)點(diǎn)晴】本題主要考查待定系數(shù)法求等差數(shù)列的通項(xiàng)公式、利用“錯(cuò)位相減法”求數(shù)列的前項(xiàng)和,屬于難題.“錯(cuò)位相減法”求數(shù)列的前項(xiàng)和是重點(diǎn)也是難點(diǎn),利用“錯(cuò)位相減法”求數(shù)列的和應(yīng)注意以下幾點(diǎn):①掌握運(yùn)用“錯(cuò)位相減法”求數(shù)列的和的條件(一個(gè)等差數(shù)列與一個(gè)等比數(shù)列的積);②相減時(shí)注意最后一項(xiàng)的符號;③求和時(shí)注意項(xiàng)數(shù)別出錯(cuò);④最后結(jié)果一定不能忘記等式兩邊同時(shí)除以.19、(1)a=-1,b=1;(2)-1.【解析】(1)對求導(dǎo)得,根據(jù)函數(shù)的圖象在處的切線為,列出方程組,即可求出的值;(2)由(1)可得,根據(jù)對任意恒成立,等價(jià)于對任意恒成立,構(gòu)造,求出的單調(diào)性,由,,,,可得存在唯一的零點(diǎn),使得,利用單調(diào)性可求出,即可求出的最大值.(1),.由題意知.(2)由(1)知:,∴對任意恒成立對任意恒成立對任意恒成立.令,則.由于,所以在上單調(diào)遞增.又,,,,所以存在唯一的,使得,且當(dāng)時(shí),,時(shí),.即在單調(diào)遞減,在上單調(diào)遞增.所以.又,即,∴.∴.∵,∴.又因?yàn)閷θ我夂愠闪?,又,?點(diǎn)睛:利用導(dǎo)數(shù)研究不等式恒成立或存在型問題,首先要構(gòu)造函數(shù),利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,求出最值,進(jìn)而得出相應(yīng)的含參不等式,從而求出參數(shù)的取值范圍;也可分離變量,構(gòu)造函數(shù),直接把問題轉(zhuǎn)化為函數(shù)的最值問題.20、(1)(2)最大值.【解析】
(1)根據(jù)通徑和即可求(2)設(shè)直線方程為,聯(lián)立橢圓,利用,用含的式子表示出,用換元,可得,最后用均值不等式求解.【詳解】解:(1)依題意有,,,所以橢圓的方程為.(2)設(shè)直線的方程為,聯(lián)立,得.所以,.所以.令,則,所以,因,則,所以,當(dāng)且僅當(dāng),即時(shí)取得等號,即四邊形面積的最大值.【點(diǎn)睛】考查橢圓方程的求法和橢圓中四邊形面積最大值的求法,是難題.21、(1)證明見解析(2)【解析】
(1)根據(jù),求導(dǎo),令,用導(dǎo)數(shù)法求其最小值.設(shè)研究在處左正右負(fù),求導(dǎo),分,,三種情況討論求解.【詳解】(1)因?yàn)?,所以,令,則,所以是的增函數(shù),故,即.因?yàn)樗?,①?dāng)時(shí),,所以函數(shù)在上單調(diào)遞增.若,則若,則所以函數(shù)的單調(diào)遞增區(qū)間是,單調(diào)遞減區(qū)間是,所以在處取得極小值,不符合題意,②當(dāng)時(shí),所以函數(shù)在上單調(diào)遞減.若,則若,則所以的單調(diào)遞減區(qū)間是,單調(diào)遞增區(qū)間是,所以在處取得極大值,符合題意.③當(dāng)時(shí),,使得,即,但當(dāng)時(shí),即所以函數(shù)在上單調(diào)遞減,所以,即函數(shù))在上單調(diào)遞減,不符合題意綜上所述,的取值范圍是【點(diǎn)睛】本題主要考查導(dǎo)數(shù)與函數(shù)的單調(diào)性和極值,還考查了轉(zhuǎn)化化歸的思想和運(yùn)算求解的能力,屬于難題.22、(1)證明見解析;(2).【解析】
(1)證明,得到平面,得到證明.(2)以點(diǎn)為坐標(biāo)原點(diǎn),建立如圖所示的空間
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 《媒體經(jīng)營管理》課件
- 2024年遼寧省錦州市公開招聘警務(wù)輔助人員輔警筆試自考題2卷含答案
- 2022年云南省昆明市公開招聘警務(wù)輔助人員輔警筆試自考題1卷含答案
- 2021年廣西壯族自治區(qū)玉林市公開招聘警務(wù)輔助人員輔警筆試自考題1卷含答案
- 2023年河南省平頂山市公開招聘警務(wù)輔助人員輔警筆試自考題1卷含答案
- 2022年貴州省六盤水市公開招聘警務(wù)輔助人員輔警筆試自考題1卷含答案
- 2024年HWREP刷適性改進(jìn)劑項(xiàng)目資金申請報(bào)告代可行性研究報(bào)告
- 江西省景德鎮(zhèn)市(2024年-2025年小學(xué)六年級語文)統(tǒng)編版課后作業(yè)(上學(xué)期)試卷及答案
- 2024版外墻清洗專用高空吊籃租賃合同
- 2024無償汽車租賃協(xié)議
- 四人合伙投資協(xié)議書范本
- 成都市農(nóng)貿(mào)市場建設(shè)技術(shù)要求(2019年版)(完整版)
- 2024-2030年版中國IPVPN服務(wù)行業(yè)發(fā)展現(xiàn)狀及投資商業(yè)模式分析報(bào)告
- 【7歷期末】安徽省蕪湖市弋江區(qū)2023~2024學(xué)年七年級上學(xué)期期末考試歷史試卷(含解析)
- 北京市海淀區(qū)2021-2022學(xué)年第一學(xué)期四年級期末考試語文試卷(含答案)
- 2024-2030年中國企業(yè)大學(xué)行業(yè)運(yùn)作模式發(fā)展規(guī)劃分析報(bào)告
- 房地產(chǎn)激勵培訓(xùn)
- 山東省濟(jì)南市2023-2024學(xué)年高二上學(xué)期期末考試地理試題 附答案
- 期末復(fù)習(xí)試題1(試題)-2024-2025學(xué)年二年級上冊數(shù)學(xué)北師大版
- 【MOOC】微型計(jì)算機(jī)原理與接口技術(shù)-南京郵電大學(xué) 中國大學(xué)慕課MOOC答案
- 違章建筑舉報(bào)范文
評論
0/150
提交評論