2021-2022學年河北省唐山市灤南縣高考仿真卷數(shù)學試卷含解析_第1頁
2021-2022學年河北省唐山市灤南縣高考仿真卷數(shù)學試卷含解析_第2頁
2021-2022學年河北省唐山市灤南縣高考仿真卷數(shù)學試卷含解析_第3頁
2021-2022學年河北省唐山市灤南縣高考仿真卷數(shù)學試卷含解析_第4頁
2021-2022學年河北省唐山市灤南縣高考仿真卷數(shù)學試卷含解析_第5頁
已閱讀5頁,還剩12頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2021-2022高考數(shù)學模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知方程表示的曲線為的圖象,對于函數(shù)有如下結論:①在上單調遞減;②函數(shù)至少存在一個零點;③的最大值為;④若函數(shù)和圖象關于原點對稱,則由方程所確定;則正確命題序號為()A.①③ B.②③ C.①④ D.②④2.將函數(shù)的圖像向左平移個單位得到函數(shù)的圖像,則的最小值為()A. B. C. D.3.設全集集合,則()A. B. C. D.4.已知函數(shù),若曲線在點處的切線方程為,則實數(shù)的取值為()A.-2 B.-1 C.1 D.25.已知、,,則下列是等式成立的必要不充分條件的是()A. B.C. D.6.若雙曲線的離心率,則該雙曲線的焦點到其漸近線的距離為()A. B.2 C. D.17.地球上的風能取之不盡,用之不竭.風能是淸潔能源,也是可再生能源.世界各國致力于發(fā)展風力發(fā)電,近10年來,全球風力發(fā)電累計裝機容量連年攀升,中國更是發(fā)展迅猛,2014年累計裝機容量就突破了,達到,中國的風力發(fā)電技術也日臻成熟,在全球范圍的能源升級換代行動中體現(xiàn)出大國的擔當與決心.以下是近10年全球風力發(fā)電累計裝機容量與中國新增裝機容量圖.根據(jù)所給信息,正確的統(tǒng)計結論是()A.截止到2015年中國累計裝機容量達到峰值B.10年來全球新增裝機容量連年攀升C.10年來中國新增裝機容量平均超過D.截止到2015年中國累計裝機容量在全球累計裝機容量中占比超過8.已知函數(shù)(),若函數(shù)在上有唯一零點,則的值為()A.1 B.或0 C.1或0 D.2或09.已知與分別為函數(shù)與函數(shù)的圖象上一點,則線段的最小值為()A. B. C. D.610.函數(shù)f(x)=lnA. B. C. D.11.如圖,這是某校高三年級甲、乙兩班在上學期的5次數(shù)學測試的班級平均分的莖葉圖,則下列說法不正確的是()A.甲班的數(shù)學成績平均分的平均水平高于乙班B.甲班的數(shù)學成績的平均分比乙班穩(wěn)定C.甲班的數(shù)學成績平均分的中位數(shù)高于乙班D.甲、乙兩班這5次數(shù)學測試的總平均分是10312.若某幾何體的三視圖如圖所示,則該幾何體的表面積為()A.240 B.264 C.274 D.282二、填空題:本題共4小題,每小題5分,共20分。13.若,則________,________.14.已知平面向量,,滿足||=1,||=2,,的夾角等于,且()?()=0,則||的取值范圍是_____.15.設定義域為的函數(shù)滿足,則不等式的解集為__________.16.已知函數(shù)的部分圖象如圖所示,則的值為____________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在中,角,,所對的邊分別為,,,已知,,角為銳角,的面積為.(1)求角的大?。唬?)求的值.18.(12分)為了檢測某種零件的一條生產(chǎn)線的生產(chǎn)過程,從生產(chǎn)線上隨機抽取一批零件,根據(jù)其尺寸的數(shù)據(jù)得到如圖所示的頻率分布直方圖,若尺寸落在區(qū)間之外,則認為該零件屬“不合格”的零件,其中,s分別為樣本平均數(shù)和樣本標準差,計算可得(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表).(1)求樣本平均數(shù)的大?。唬?)若一個零件的尺寸是100cm,試判斷該零件是否屬于“不合格”的零件.19.(12分)在極坐標系中,已知曲線,.(1)求曲線、的直角坐標方程,并判斷兩曲線的形狀;(2)若曲線、交于、兩點,求兩交點間的距離.20.(12分)在中,角的對邊分別為,已知.(1)求角的大小;(2)若,求的面積.21.(12分)在平面直角坐標系xOy中,曲線C的參數(shù)方程為(m為參數(shù)),以坐標點O為極點,x軸的非負半軸為極軸建立極坐標系,直線l的極坐標方程為ρcos(θ+)=1.(1)求直線l的直角坐標方程和曲線C的普通方程;(2)已知點M(2,0),若直線l與曲線C相交于P、Q兩點,求的值.22.(10分)已知數(shù)列滿足,且.(1)求證:數(shù)列是等差數(shù)列,并求出數(shù)列的通項公式;(2)求數(shù)列的前項和.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.C【解析】

分四類情況進行討論,然后畫出相對應的圖象,由圖象可以判斷所給命題的真假性.【詳解】(1)當時,,此時不存在圖象;(2)當時,,此時為實軸為軸的雙曲線一部分;(3)當時,,此時為實軸為軸的雙曲線一部分;(4)當時,,此時為圓心在原點,半徑為1的圓的一部分;畫出的圖象,由圖象可得:對于①,在上單調遞減,所以①正確;對于②,函數(shù)與的圖象沒有交點,即沒有零點,所以②錯誤;對于③,由函數(shù)圖象的對稱性可知③錯誤;對于④,函數(shù)和圖象關于原點對稱,則中用代替,用代替,可得,所以④正確.故選:C【點睛】本題主要考查了雙曲線的簡單幾何性質,函數(shù)的圖象與性質,函數(shù)的零點概念,考查了數(shù)形結合的數(shù)學思想.2.B【解析】

根據(jù)三角函數(shù)的平移求出函數(shù)的解析式,結合三角函數(shù)的性質進行求解即可.【詳解】將函數(shù)的圖象向左平移個單位,得到,此時與函數(shù)的圖象重合,則,即,,當時,取得最小值為,故選:.【點睛】本題主要考查三角函數(shù)的圖象和性質,利用三角函數(shù)的平移關系求出解析式是解決本題的關鍵.3.A【解析】

先求出,再與集合N求交集.【詳解】由已知,,又,所以.故選:A.【點睛】本題考查集合的基本運算,涉及到補集、交集運算,是一道容易題.4.B【解析】

求出函數(shù)的導數(shù),利用切線方程通過f′(0),求解即可;【詳解】f(x)的定義域為(﹣1,+∞),因為f′(x)a,曲線y=f(x)在點(0,f(0))處的切線方程為y=2x,可得1﹣a=2,解得a=﹣1,故選:B.【點睛】本題考查函數(shù)的導數(shù)的幾何意義,切線方程的求法,考查計算能力.5.D【解析】

構造函數(shù),,利用導數(shù)分析出這兩個函數(shù)在區(qū)間上均為減函數(shù),由得出,分、、三種情況討論,利用放縮法結合函數(shù)的單調性推導出或,再利用余弦函數(shù)的單調性可得出結論.【詳解】構造函數(shù),,則,,所以,函數(shù)、在區(qū)間上均為減函數(shù),當時,則,;當時,,.由得.①若,則,即,不合乎題意;②若,則,則,此時,,由于函數(shù)在區(qū)間上單調遞增,函數(shù)在區(qū)間上單調遞增,則,;③若,則,則,此時,由于函數(shù)在區(qū)間上單調遞減,函數(shù)在區(qū)間上單調遞增,則,.綜上所述,.故選:D.【點睛】本題考查函數(shù)單調性的應用,構造新函數(shù)是解本題的關鍵,解題時要注意對的取值范圍進行分類討論,考查推理能力,屬于中等題.6.C【解析】

根據(jù)雙曲線的解析式及離心率,可求得的值;得漸近線方程后,由點到直線距離公式即可求解.【詳解】雙曲線的離心率,則,,解得,所以焦點坐標為,所以,則雙曲線漸近線方程為,即,不妨取右焦點,則由點到直線距離公式可得,故選:C.【點睛】本題考查了雙曲線的幾何性質及簡單應用,漸近線方程的求法,點到直線距離公式的簡單應用,屬于基礎題.7.D【解析】

先列表分析近10年全球風力發(fā)電新增裝機容量,再結合數(shù)據(jù)研究單調性、平均值以及占比,即可作出選擇.【詳解】年份2009201020112012201320142015201620172018累計裝機容量158.1197.2237.8282.9318.7370.5434.3489.2542.7594.1新增裝機容量39.140.645.135.851.863.854.953.551.4中國累計裝機裝機容量逐年遞增,A錯誤;全球新增裝機容量在2015年之后呈現(xiàn)下降趨勢,B錯誤;經(jīng)計算,10年來中國新增裝機容量平均每年為,選項C錯誤;截止到2015年中國累計裝機容量,全球累計裝機容量,占比為,選項D正確.故選:D【點睛】本題考查條形圖,考查基本分析求解能力,屬基礎題.8.C【解析】

求出函數(shù)的導函數(shù),當時,只需,即,令,利用導數(shù)求其單調區(qū)間,即可求出參數(shù)的值,當時,根據(jù)函數(shù)的單調性及零點存在性定理可判斷;【詳解】解:∵(),∴,∴當時,由得,則在上單調遞減,在上單調遞增,所以是極小值,∴只需,即.令,則,∴函數(shù)在上單調遞增.∵,∴;當時,,函數(shù)在上單調遞減,∵,,函數(shù)在上有且只有一個零點,∴的值是1或0.故選:C【點睛】本題考查利用導數(shù)研究函數(shù)的零點問題,零點存在性定理的應用,屬于中檔題.9.C【解析】

利用導數(shù)法和兩直線平行性質,將線段的最小值轉化成切點到直線距離.【詳解】已知與分別為函數(shù)與函數(shù)的圖象上一點,可知拋物線存在某條切線與直線平行,則,設拋物線的切點為,則由可得,,所以切點為,則切點到直線的距離為線段的最小值,則.故選:C.【點睛】本題考查導數(shù)的幾何意義的應用,以及點到直線的距離公式的應用,考查轉化思想和計算能力.10.C【解析】因為fx=lnx2-4x+4x-23=11.D【解析】

計算兩班的平均值,中位數(shù),方差得到正確,兩班人數(shù)不知道,所以兩班的總平均分無法計算,錯誤,得到答案.【詳解】由題意可得甲班的平均分是104,中位數(shù)是103,方差是26.4;乙班的平均分是102,中位數(shù)是101,方差是37.6,則A,B,C正確.因為甲、乙兩班的人數(shù)不知道,所以兩班的總平均分無法計算,故D錯誤.故選:.【點睛】本題考查了莖葉圖,平均值,中位數(shù),方差,意在考查學生的計算能力和應用能力.12.B【解析】

將三視圖還原成幾何體,然后分別求出各個面的面積,得到答案.【詳解】由三視圖可得,該幾何體的直觀圖如圖所示,延長交于點,其中,,,所以表面積.故選B項.【點睛】本題考查三視圖還原幾何體,求組合體的表面積,屬于中檔題二、填空題:本題共4小題,每小題5分,共20分。13.【解析】

根據(jù)誘導公式和二倍角公式計算得到答案.【詳解】,故.故答案為:;.【點睛】本題考查了誘導公式和二倍角公式,屬于簡單題.14.【解析】

計算得到||,||cosα﹣1,解得cosα,根據(jù)三角函數(shù)的有界性計算范圍得到答案.【詳解】由()?()=0可得()?||?||cosα﹣1×2cos||?||cosα﹣1,α為與的夾角.再由2?1+4+2×1×2cos7可得||,∴||cosα﹣1,解得cosα.∵0≤α≤π,∴﹣1≤cosα≤1,∴1,即||+1≤0,解得||,故答案為.【點睛】本題考查了向量模的范圍,意在考查學生的計算能力,利用三角函數(shù)的有界性是解題的關鍵.15.【解析】

根據(jù)條件構造函數(shù)F(x),求函數(shù)的導數(shù),利用函數(shù)的單調性即可得到結論.【詳解】設F(x),則F′(x),∵,∴F′(x)>0,即函數(shù)F(x)在定義域上單調遞增.∵∴,即F(x)<F(2x)∴,即x>1∴不等式的解為故答案為:【點睛】本題主要考查函數(shù)單調性的判斷和應用,根據(jù)條件構造函數(shù)是解決本題的關鍵.16.【解析】

由圖可得的周期、振幅,即可得,再將代入可解得,進一步求得解析式及.【詳解】由圖可得,,所以,即,又,即,,又,故,所以,.故答案為:【點睛】本題考查由圖象求解析式及函數(shù)值,考查學生識圖、計算等能力,是一道中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1);(2)7.【解析】分析:(1)由三角形面積公式和已知條件求得sinA的值,進而求得A;(2)利用余弦定理公式和(1)中求得的A求得a.詳解:(1)∵,∴,∵為銳角,∴;(2)由余弦定理得:.點睛:本題主要考查正弦定理邊角互化及余弦定理的應用與特殊角的三角函數(shù),屬于簡單題.對余弦定理一定要熟記兩種形式:(1);(2),同時還要熟練掌握運用兩種形式的條件.另外,在解與三角形、三角函數(shù)有關的問題時,還需要記住等特殊角的三角函數(shù)值,以便在解題中直接應用.18.(1)66.5(2)屬于【解析】

(1)利用頻率分布直方圖的平均數(shù)公式求解;(2)求出,即可判斷得解.【詳解】(1)(2)所以該零件屬于“不合格”的零件【點睛】本題主要考查頻率分布圖中平均數(shù)的計算和應用,意在考查學生對這些知識的理解掌握水平.19.(1)表示一條直線,是圓心為,半徑為的圓;(2).【解析】

(1)直接利用極坐標方程與直角坐標方程之間的轉換關系可將曲線的方程化為直角坐標方程,進而可判斷出曲線的形狀,在曲線的方程兩邊同時乘以得,由可將曲線的方程化為直角坐標方程,由此可判斷出曲線的形狀;(2)由直線過圓的圓心,可得出為圓的一條直徑,進而可得出.【詳解】(1),則曲線的普通方程為,曲線表示一條直線;由,得,則曲線的直角坐標方程為,即.所以,曲線是圓心為,半徑為的圓;(2)由(1)知,點在直線上,直線過圓的圓心.因此,是圓的直徑,.【點睛】本題考查曲線的極坐標方程與直角坐標方程之間的轉化,同時也考查了直線截圓所得弦長的計算,考查計算能力,屬于基礎題.20.(1);(2)【解析】

(1)利用正弦定理邊化角,再利用二倍角的正弦公式與正弦的和角公式化簡求解即可.(2)由(1)有,根據(jù)正弦定理可得,進而求得的值,再根據(jù)三角形的面積公式求解即可.【詳解

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論