版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2023-2024學年湖北省麻城思源實驗校中考數(shù)學考試模擬沖刺卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖所示的正方體的展開圖是()A. B. C. D.2.點A(4,3)經(jīng)過某種圖形變化后得到點B(-3,4),這種圖形變化可以是()A.關于x軸對稱 B.關于y軸對稱C.繞原點逆時針旋轉(zhuǎn) D.繞原點順時針旋轉(zhuǎn)3.已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,下列結論:①abc>0;②2a+b>0;③b2﹣4ac>0;④a﹣b+c>0,其中正確的個數(shù)是()A.1 B.2 C.3 D.44.△ABC的三條邊長分別是5,13,12,則其外接圓半徑和內(nèi)切圓半徑分別是()A.13,5 B.6.5,3 C.5,2 D.6.5,25.如圖,把一塊直角三角板的直角頂點放在直尺的一邊上,若∠1=40°,則∠2的度數(shù)為()A.50° B.40° C.30° D.25°6.已知關于x的一元二次方程x2+mx+n=0的兩個實數(shù)根分別為x1=2,x2=4,則m+n的值是()A.﹣10 B.10 C.﹣6 D.27.已知方程組,那么x+y的值()A.-1 B.1 C.0 D.58.下列運算結果正確的是()A.x2+2x2=3x4 B.(﹣2x2)3=8x6C.x2?(﹣x3)=﹣x5 D.2x2÷x2=x9.二次函數(shù)的對稱軸是A.直線 B.直線 C.y軸 D.x軸10.x=1是關于x的方程2x﹣a=0的解,則a的值是()A.﹣2 B.2 C.﹣1 D.111.能說明命題“對于任何實數(shù)a,|a|>﹣a”是假命題的一個反例可以是()A.a(chǎn)=﹣2 B.a(chǎn)= C.a(chǎn)=1 D.a(chǎn)=12.某車間20名工人日加工零件數(shù)如表所示:日加工零件數(shù)45678人數(shù)26543這些工人日加工零件數(shù)的眾數(shù)、中位數(shù)、平均數(shù)分別是()A.5、6、5 B.5、5、6 C.6、5、6 D.5、6、6二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,a∥b,∠1=110°,∠3=40°,則∠2=_____°.14.如圖,在△ABC中,AB=3+,∠B=45°,∠C=105°,點D、E、F分別在AC、BC、AB上,且四邊形ADEF為菱形,若點P是AE上一個動點,則PF+PB的最小值為_____.15.如圖,學校環(huán)保社成員想測量斜坡CD旁一棵樹AB的高度,他們先在點C處測得樹頂B的仰角為60°,然后在坡頂D測得樹頂B的仰角為30°,已知DE⊥EA,斜坡CD的長度為30m,DE的長為15m,則樹AB的高度是_____m.16.二次根式中的字母a的取值范圍是_____.17.已知,則______18.當__________時,二次函數(shù)有最小值___________.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)問題探究(1)如圖①,在矩形ABCD中,AB=3,BC=4,如果BC邊上存在點P,使△APD為等腰三角形,那么請畫出滿足條件的一個等腰三角形△APD,并求出此時BP的長;(2)如圖②,在△ABC中,∠ABC=60°,BC=12,AD是BC邊上的高,E、F分別為邊AB、AC的中點,當AD=6時,BC邊上存在一點Q,使∠EQF=90°,求此時BQ的長;問題解決(3)有一山莊,它的平面圖為如圖③的五邊形ABCDE,山莊保衛(wèi)人員想在線段CD上選一點M安裝監(jiān)控裝置,用來監(jiān)視邊AB,現(xiàn)只要使∠AMB大約為60°,就可以讓監(jiān)控裝置的效果達到最佳,已知∠A=∠E=∠D=90°,AB=270m,AE=400m,ED=285m,CD=340m,問在線段CD上是否存在點M,使∠AMB=60°?若存在,請求出符合條件的DM的長,若不存在,請說明理由.20.(6分)在學校組織的朗誦比賽中,甲、乙兩名學生以抽簽的方式從3篇不同的文章中抽取一篇參加比賽,抽簽規(guī)則是:在3個相同的標簽上分別標注字母A、B、C,各代表1篇文章,一名學生隨機抽取一個標簽后放回,另一名學生再隨機抽?。卯嫎錉顖D或列表的方法列出所有等可能的結果,并求甲、乙抽中同一篇文章的概率.21.(6分)“低碳生活,綠色出行”是我們倡導的一種生活方式,有關部門抽樣調(diào)查了某單位員工上下班的交通方式,繪制了兩幅統(tǒng)計圖:(1)樣本中的總人數(shù)為人;扇形統(tǒng)計十圖中“騎自行車”所在扇形的圓心角為度;(2)補全條形統(tǒng)計圖;(3)該單位共有1000人,積極踐行這種生活方式,越來越多的人上下班由開私家車改為騎自行車.若步行,坐公交車上下班的人數(shù)保持不變,問原來開私家車的人中至少有多少人改為騎自行車,才能使騎自行車的人數(shù)不低于開私家車的人數(shù)?22.(8分)先化簡,再求值:,其中.23.(8分)2018年春節(jié),西安市政府實施“點亮工程”,開展“西安年·最中國”活動,元宵節(jié)晚上,小明一家人到“大唐不夜城”游玩,看美景、品美食。在美食一條街上,小明買了一碗元宵,共5個,其中黑芝麻餡兩個,五仁餡兩個,桂花餡一個,當元宵端上來的時候,看著五個大小、色澤一模一樣的元宵,小明的爸爸問了小明兩個問題:(1)小明吃到第一個元宵是五仁餡的概率是多少?請你幫小明直接寫出答案。(2)小明吃的前兩個元宵是同一種餡的元宵概率是多少?請你利用你列表或樹狀圖幫小明求出概率。24.(10分)如圖,已知三角形ABC的邊AB是0的切線,切點為B.AC經(jīng)過圓心0并與圓相交于點D,C,過C作直線CE丄AB,交AB的延長線于點E,(1)求證:CB平分∠ACE;(2)若BE=3,CE=4,求O的半徑.25.(10分)如圖,AB是⊙O的直徑,弦DE交AB于點F,⊙O的切線BC與AD的延長線交于點C,連接AE.(1)試判斷∠AED與∠C的數(shù)量關系,并說明理由;(2)若AD=3,∠C=60°,點E是半圓AB的中點,則線段AE的長為.26.(12分)尺規(guī)作圖:校園有兩條路OA、OB,在交叉路口附近有兩塊宣傳牌C、D,學校準備在這里安裝一盞路燈,要求燈柱的位置P離兩塊宣傳牌一樣遠,并且到兩條路的距離也一樣遠,請你幫助畫出燈柱的位置P.(不寫畫圖過程,保留作圖痕跡)27.(12分)如圖1,已知∠DAC=90°,△ABC是等邊三角形,點P為射線AD上任意一點(點P與點A不重合),連結CP,將線段CP繞點C順時針旋轉(zhuǎn)60°得到線段CQ,連結QB并延長交直線AD于點E.(1)如圖1,猜想∠QEP=°;(2)如圖2,3,若當∠DAC是銳角或鈍角時,其它條件不變,猜想∠QEP的度數(shù),選取一種情況加以證明;(3)如圖3,若∠DAC=135°,∠ACP=15°,且AC=4,求BQ的長.
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、A【解析】
有些立體圖形是由一些平面圖形圍成的,將它們的表面適當?shù)募糸_,可以展開成平面圖形,這樣的平面圖形稱為相應立體圖形的展開圖.根據(jù)立體圖形表面的圖形相對位置可以判斷.【詳解】把各個展開圖折回立方體,根據(jù)三個特殊圖案的相對位置關系,可知只有選項A正確.故選A【點睛】本題考核知識點:長方體表面展開圖.解題關鍵點:把展開圖折回立方體再觀察.2、C【解析】分析:根據(jù)旋轉(zhuǎn)的定義得到即可.詳解:因為點A(4,3)經(jīng)過某種圖形變化后得到點B(-3,4),所以點A繞原點逆時針旋轉(zhuǎn)90°得到點B,故選C.點睛:本題考查了旋轉(zhuǎn)的性質(zhì):旋轉(zhuǎn)前后兩個圖形全等,對應點到旋轉(zhuǎn)中心的距離相等,對應點與旋轉(zhuǎn)中心的連線段的夾角等于旋轉(zhuǎn)角.3、D【解析】
由拋物線的對稱軸的位置判斷ab的符號,由拋物線與y軸的交點判斷c的符號,然后根據(jù)對稱軸及拋物線與x軸交點情況進行推理,進而對所得結論進行判斷.【詳解】①∵拋物線對稱軸是y軸的右側,∴ab<0,∵與y軸交于負半軸,∴c<0,∴abc>0,故①正確;②∵a>0,x=﹣<1,∴﹣b<2a,∴2a+b>0,故②正確;③∵拋物線與x軸有兩個交點,∴b2﹣4ac>0,故③正確;④當x=﹣1時,y>0,∴a﹣b+c>0,故④正確.故選D.【點睛】本題主要考查了圖象與二次函數(shù)系數(shù)之間的關系,二次函數(shù)y=ax2+bx+c系數(shù)符號由拋物線開口方向、對稱軸和拋物線與y軸的交點、拋物線與x軸交點的個數(shù)確定.4、D【解析】
根據(jù)邊長確定三角形為直角三角形,斜邊即為外切圓直徑,內(nèi)切圓半徑為,【詳解】解:如下圖,∵△ABC的三條邊長分別是5,13,12,且52+122=132,∴△ABC是直角三角形,其斜邊為外切圓直徑,∴外切圓半徑==6.5,內(nèi)切圓半徑==2,故選D.【點睛】本題考查了直角三角形內(nèi)切圓和外切圓的半徑,屬于簡單題,熟悉概念是解題關鍵.5、A【解析】
由兩直線平行,同位角相等,可求得∠3的度數(shù),然后求得∠2的度數(shù).【詳解】如圖,∵∠1=40°,∴∠3=∠1=40°,∴∠2=90°-40°=50°.故選A.【點睛】此題考查了平行線的性質(zhì).利用兩直線平行,同位角相等是解此題的關鍵.6、D【解析】
根據(jù)“一元二次方程x2+mx+n=0的兩個實數(shù)根分別為x1=2,x2=4”,結合根與系數(shù)的關系,分別列出關于m和n的一元一次不等式,求出m和n的值,代入m+n即可得到答案.【詳解】解:根據(jù)題意得:x1+x2=﹣m=2+4,解得:m=﹣6,x1?x2=n=2×4,解得:n=8,m+n=﹣6+8=2,故選D.【點睛】本題考查了根與系數(shù)的關系,正確掌握根與系數(shù)的關系是解決問題的關鍵.7、D【解析】
解:,①+②得:3(x+y)=15,則x+y=5,故選D8、C【解析】
直接利用整式的除法運算以及積的乘方運算法則、合并同類項法則分別化簡得出答案.【詳解】A選項:x2+2x2=3x2,故此選項錯誤;B選項:(﹣2x2)3=﹣8x6,故此選項錯誤;C選項:x2?(﹣x3)=﹣x5,故此選項正確;D選項:2x2÷x2=2,故此選項錯誤.故選C.【點睛】考查了整式的除法運算以及積的乘方運算、合并同類項,正確掌握運算法則是解題關鍵.9、C【解析】
根據(jù)頂點式y(tǒng)=a(x-h)2+k的對稱軸是直線x=h,找出h即可得出答案.【詳解】解:二次函數(shù)y=x2的對稱軸為y軸.
故選:C.【點睛】本題考查二次函數(shù)的性質(zhì),解題關鍵是頂點式y(tǒng)=a(x-h)2+k的對稱軸是直線x=h,頂點坐標為(h,k).10、B【解析】試題解析:把x=1代入方程1x-a=0得1-a=0,解得a=1.故選B.考點:一元一次方程的解.11、A【解析】
將各選項中所給a的值代入命題“對于任意實數(shù)a,”中驗證即可作出判斷.【詳解】(1)當時,,此時,∴當時,能說明命題“對于任意實數(shù)a,”是假命題,故可以選A;(2)當時,,此時,∴當時,不能說明命題“對于任意實數(shù)a,”是假命題,故不能B;(3)當時,,此時,∴當時,不能說明命題“對于任意實數(shù)a,”是假命題,故不能C;(4)當時,,此時,∴當時,不能說明命題“對于任意實數(shù)a,”是假命題,故不能D;故選A.【點睛】熟知“通過舉反例說明一個命題是假命題的方法和求一個數(shù)的絕對值及相反數(shù)的方法”是解答本題的關鍵.12、D【解析】
5出現(xiàn)了6次,出現(xiàn)的次數(shù)最多,則眾數(shù)是5;把這些數(shù)從小到大排列,中位數(shù)是第10,11個數(shù)的平均數(shù),則中位數(shù)是(6+6)÷2=6;平均數(shù)是:(4×2+5×6+6×5+7×4+8×3)÷20=6;故答案選D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、1【解析】試題解析:如圖,∵a∥b,∠3=40°,∴∠4=∠3=40°.∵∠1=∠2+∠4=110°,∴∠2=110°-∠4=110°-40°=1°.故答案為:1.14、【解析】
如圖,連接OD,BD,作DH⊥AB于H,EG⊥AB于G.由四邊形ADEF是菱形,推出F,D關于直線AE對稱,推出PF=PD,推出PF+PB=PA+PB,由PD+PB≥BD,推出PF+PB的最小值是線段BD的長.【詳解】如圖,連接OD,BD,作DH⊥AB于H,EG⊥AB于G.∵四邊形ADEF是菱形,∴F,D關于直線AE對稱,∴PF=PD,∴PF+PB=PA+PB,∵PD+PB≥BD,∴PF+PB的最小值是線段BD的長,∵∠CAB=180°-105°-45°=30°,設AF=EF=AD=x,則DH=EG=x,F(xiàn)G=x,∵∠EGB=45°,EG⊥BG,∴EG=BG=x,∴x+x+x=3+,∴x=2,∴DH=1,BH=3,∴BD==,∴PF+PB的最小值為,故答案為.【點睛】本題考查軸對稱-最短問題,菱形的性質(zhì)等知識,解題的關鍵是學會用轉(zhuǎn)化的思想思考問題,學會利用軸對稱解決最短問題.15、1【解析】
先根據(jù)CD=20米,DE=10m得出∠DCE=30°,故可得出∠DCB=90°,再由∠BDF=30°可知∠DBE=60°,由DF∥AE可得出∠BGF=∠BCA=60°,故∠GBF=30°,所以∠DBC=30°,再由銳角三角函數(shù)的定義即可得出結論.【詳解】解:作DF⊥AB于F,交BC于G.則四邊形DEAF是矩形,∴DE=AF=15m,∵DF∥AE,∴∠BGF=∠BCA=60°,∵∠BGF=∠GDB+∠GBD=60°,∠GDB=30°,∴∠GDB=∠GBD=30°,∴GD=GB,在Rt△DCE中,∵CD=2DE,∴∠DCE=30°,∴∠DCB=90°,∵∠DGC=∠BGF,∠DCG=∠BFG=90°∴△DGC≌△BGF,∴BF=DC=30m,∴AB=30+15=1(m),故答案為1.【點睛】本題考查的是解直角三角形的應用-仰角俯角問題,熟記銳角三角函數(shù)的定義是解答此題的關鍵.16、a≥﹣1.【解析】
根據(jù)二次根式的被開方數(shù)為非負數(shù),可以得出關于a的不等式,繼而求得a的取值范圍.【詳解】由分析可得,a+1≥0,解得:a≥﹣1.【點睛】熟練掌握二次根式被開方數(shù)為非負數(shù)是解答本題的關鍵.17、34【解析】∵,∴=,故答案為34.18、15【解析】二次函數(shù)配方,得:,所以,當x=1時,y有最小值5,故答案為1,5.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)1;2-;;(1)4+;(4)(200-25-40)米.【解析】
(1)由于△PAD是等腰三角形,底邊不定,需三種情況討論,運用三角形全等、矩形的性質(zhì)、勾股定理等知識即可解決問題.(1)以EF為直徑作⊙O,易證⊙O與BC相切,從而得到符合條件的點Q唯一,然后通過添加輔助線,借助于正方形、特殊角的三角函數(shù)值等知識即可求出BQ長.(4)要滿足∠AMB=40°,可構造以AB為邊的等邊三角形的外接圓,該圓與線段CD的交點就是滿足條件的點,然后借助于等邊三角形的性質(zhì)、特殊角的三角函數(shù)值等知識,就可算出符合條件的DM長.【詳解】(1)①作AD的垂直平分線交BC于點P,如圖①,則PA=PD.∴△PAD是等腰三角形.∵四邊形ABCD是矩形,∴AB=DC,∠B=∠C=90°.∵PA=PD,AB=DC,∴Rt△ABP≌Rt△DCP(HL).∴BP=CP.∵BC=2,∴BP=CP=1.②以點D為圓心,AD為半徑畫弧,交BC于點P′,如圖①,則DA=DP′.∴△P′AD是等腰三角形.∵四邊形ABCD是矩形,∴AD=BC,AB=DC,∠C=90°.∵AB=4,BC=2,∴DC=4,DP′=2.∴CP′==.∴BP′=2-.③點A為圓心,AD為半徑畫弧,交BC于點P″,如圖①,則AD=AP″.∴△P″AD是等腰三角形.同理可得:BP″=.綜上所述:在等腰三角形△ADP中,若PA=PD,則BP=1;若DP=DA,則BP=2-;若AP=AD,則BP=.(1)∵E、F分別為邊AB、AC的中點,∴EF∥BC,EF=BC.∵BC=11,∴EF=4.以EF為直徑作⊙O,過點O作OQ⊥BC,垂足為Q,連接EQ、FQ,如圖②.∵AD⊥BC,AD=4,∴EF與BC之間的距離為4.∴OQ=4∴OQ=OE=4.∴⊙O與BC相切,切點為Q.∵EF為⊙O的直徑,∴∠EQF=90°.過點E作EG⊥BC,垂足為G,如圖②.∵EG⊥BC,OQ⊥BC,∴EG∥OQ.∵EO∥GQ,EG∥OQ,∠EGQ=90°,OE=OQ,∴四邊形OEGQ是正方形.∴GQ=EO=4,EG=OQ=4.∵∠B=40°,∠EGB=90°,EG=4,∴BG=.∴BQ=GQ+BG=4+.∴當∠EQF=90°時,BQ的長為4+.(4)在線段CD上存在點M,使∠AMB=40°.理由如下:以AB為邊,在AB的右側作等邊三角形ABG,作GP⊥AB,垂足為P,作AK⊥BG,垂足為K.設GP與AK交于點O,以點O為圓心,OA為半徑作⊙O,過點O作OH⊥CD,垂足為H,如圖③.則⊙O是△ABG的外接圓,∵△ABG是等邊三角形,GP⊥AB,∴AP=PB=AB.∵AB=170,∴AP=145.∵ED=185,∴OH=185-145=6.∵△ABG是等邊三角形,AK⊥BG,∴∠BAK=∠GAK=40°.∴OP=AP?tan40°=145×=25.∴OA=1OP=90.∴OH<OA.∴⊙O與CD相交,設交點為M,連接MA、MB,如圖③.∴∠AMB=∠AGB=40°,OM=OA=90..∵OH⊥CD,OH=6,OM=90,∴HM==40.∵AE=200,OP=25,∴DH=200-25.若點M在點H的左邊,則DM=DH+HM=200-25+40.∵200-25+40>420,∴DM>CD.∴點M不在線段CD上,應舍去.若點M在點H的右邊,則DM=DH-HM=200-25-40.∵200-25-40<420,∴DM<CD.∴點M在線段CD上.綜上所述:在線段CD上存在唯一的點M,使∠AMB=40°,此時DM的長為(200-25-40)米.【點睛】本題考查了垂直平分線的性質(zhì)、矩形的性質(zhì)、等邊三角形的性質(zhì)、正方形的判定與性質(zhì)、直線與圓的位置關系、圓周角定理、三角形的中位線定理、全等三角形的判定與性質(zhì)、勾股定理、特殊角的三角函數(shù)值等知識,考查了操作、探究等能力,綜合性非常強.而構造等邊三角形及其外接圓是解決本題的關鍵.20、.【解析】試題分析:首先根據(jù)題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結果與甲、乙抽中同一篇文章,再利用概率公式求解即可求得答案.試題解析:解:如圖:所有可能的結果有9種,甲、乙抽中同一篇文章的情況有3種,概率為=.點睛:本題主要考查了用列表法或畫樹狀圖法求概率.列表法或畫樹狀圖法可以不重復不遺漏的列出所有可能的結果,列表法適合于兩步完成的事件,樹狀圖法適合兩步或兩步以上完成的事件.注意概率=所求情況數(shù)與總情況數(shù)之比.21、(1)80、72;(2)16人;(3)50人【解析】
(1)用步行人數(shù)除以其所占的百分比即可得到樣本總人數(shù):810%=80(人);用總人數(shù)乘以開私家車的所占百分比即可求出m,即m=8025%=20;用3600乘以騎自行車所占的百分比即可求出其所在扇形的圓心角:360(1-10%-25%-45%)=.(2)根據(jù)扇形統(tǒng)計圖算出騎自行車的所占百分比,再用總人數(shù)乘以該百分比即可求出騎自行車的人數(shù),補全條形圖即可.(3)依題意設原來開私家車的人中有x人改為騎自行車,用x分別表示改變出行方式后的騎自行車和開私家車的人數(shù),根據(jù)題意列出一元一次不等式,解不等式即可.【詳解】解:(1)樣本中的總人數(shù)為8÷10%=80人,∵騎自行車的百分比為1﹣(10%+25%+45%)=20%,∴扇形統(tǒng)計十圖中“騎自行車”所在扇形的圓心角為360°×20%=72°(2)騎自行車的人數(shù)為80×20%=16人,補全圖形如下:(3)設原來開私家車的人中有x人改騎自行車,由題意,得:1000×(1﹣10%﹣25%﹣45%)+x≥1000×25%﹣x,解得:x≥50,∴原來開私家車的人中至少有50人改為騎自行車,才能使騎自行車的人數(shù)不低于開私家車的人數(shù).【點睛】本題主要考查統(tǒng)計圖表和一元一次不等式的應用。22、-1,-9.【解析】
先去括號,再合并同類項;最后把x=-2代入即可.【詳解】原式=,當x=-2時,原式=-8-1=-9.【點睛】本題考查了整式的混合運算及化簡求值,關鍵是先按運算順序把整式化簡,再把對應字母的值代入求整式的值.23、(1);(2).【解析】
(1)根據(jù)概率=所求情況數(shù)與總情況數(shù)之比代入解得即可.(2)將小明吃到的前兩個元宵的所有情況列表出來即可求解.【詳解】(1)5個元宵中,五仁餡的有2個,故小明吃到的第一個元宵是五仁餡的概率是;(2)小明吃到的前兩個元宵的所有情況列表如下(記黑芝麻餡的兩個分別為、,五仁餡的兩個分別為、,桂花餡的一個為c):由圖可知,共有20種等可能的情況,其中小明吃到的前兩個元宵是同一種餡料的情況有4種,故小明吃到的前兩個元宵是同一種餡料的概率是.【點睛】本題考查的是用列表法求概率.列表法可以不重復不遺漏的列出所有可能的結果,用到的知識點為:概率=所求:情況數(shù)與總情況數(shù)之比.24、(1)證明見解析;(2).【解析】試題分析:(1)證明:如圖1,連接OB,由AB是⊙0的切線,得到OB⊥AB,由于CE丄AB,的OB∥CE,于是得到∠1=∠3,根據(jù)等腰三角形的性質(zhì)得到∠1=∠2,通過等量代換得到結果.(2)如圖2,連接BD通過△DBC∽△CBE,得到比例式,列方程可得結果.(1)證明:如圖1,連接OB,∵AB是⊙0的切線,∴OB⊥AB,∵CE丄AB,∴OB∥CE,∴∠1=∠3,∵OB=OC,∴∠1=∠2,∴∠2=∠3,∴CB平分∠ACE;(2)如圖2,連接BD,∵CE丄AB,∴∠E=90°,∴BC===5,∵CD是⊙O的直徑,∴∠DBC=90°,∴∠E=∠DBC,∴△DBC∽△CBE,∴,∴BC2=CD?CE,∴CD==,∴OC==,∴⊙O的半徑=.考點:切線的性質(zhì).25、(1)∠AED=∠C,理由見解析;(2)【解析】
(1)根據(jù)切線的性質(zhì)和圓周角定理解答即可;(2)根據(jù)勾股定理和三角函數(shù)進行解答即可.【詳解】(1)∠AED=∠C,證明如下:連接BD,可得∠ADB=90°,∴∠C+∠DBC=90°,∵CB是⊙O的切線,∴∠CBA=90°,∴∠ABD+∠DBC=90°,∴∠ABD=∠C,∵∠AEB=∠ABD,∴∠AED=∠C,(2)連接BE,∴∠AEB=90°,∵∠C=60°,∴∠CAB=30°,在Rt△DAB中,AD=3,∠ADB=90°,∴cos∠DAB=,解得:AB=2,∵E是半圓AB的中點,∴AE=BE,∵∠AEB=90°,∴∠BAE=45°,在Rt△AEB中,AB=2,∠ADB=90°,∴cos∠EAB=,解得:AE=.故答案為【點睛】此題考查了切線的性質(zhì)、直角三角形的性質(zhì)以及圓周角定理.此題難度適中,注意掌握數(shù)形結合思想的應用,注意掌握輔助線的作法.2
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年全球及中國牙科納米氧化鋯材料行業(yè)頭部企業(yè)市場占有率及排名調(diào)研報告
- 2025-2030全球釤鐵氮(SmFeN)粘結磁體行業(yè)調(diào)研及趨勢分析報告
- 2025年全球及中國家庭消費用手動工具和存儲箱行業(yè)頭部企業(yè)市場占有率及排名調(diào)研報告
- 2025年房地產(chǎn)眾籌售房房屋買賣合同3篇
- 二零二五年文化創(chuàng)意產(chǎn)業(yè)采購廉潔規(guī)范合同3篇
- 二零二五版LNG公路運輸車輛租賃承包合同2篇
- 二零二五年度企業(yè)破產(chǎn)清算與債務處理法律服務協(xié)議2篇
- 專項2024款奔馳V級商務車融資租賃合同版B版
- 二零二五年度賓館酒店客房租賃及品牌授權合同3篇
- 二零二五年度車輛買賣合同擔保及二手車置換服務范本3篇
- ISO28000:2022供應鏈安全管理體系
- 化工有限公司3萬噸水合肼及配套項目環(huán)評可研資料環(huán)境影響
- 2023年公務員多省聯(lián)考《申論》題(廣西B卷)
- 生物醫(yī)藥大數(shù)據(jù)分析平臺建設
- 滬教版小學語文古詩(1-4)年級教材
- 外科醫(yī)生年終述職總結報告
- CT設備維保服務售后服務方案
- 重癥血液凈化血管通路的建立與應用中國專家共識(2023版)
- 兒科課件:急性細菌性腦膜炎
- 柜類家具結構設計課件
- 陶瓷瓷磚企業(yè)(陶瓷廠)全套安全生產(chǎn)操作規(guī)程
評論
0/150
提交評論