版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2021-2022高考數(shù)學(xué)模擬試卷注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)?;卮鸱沁x擇題時(shí),將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.下列函數(shù)中,既是奇函數(shù),又在上是增函數(shù)的是().A. B.C. D.2.如圖,已知三棱錐中,平面平面,記二面角的平面角為,直線與平面所成角為,直線與平面所成角為,則()A. B. C. D.3.3本不同的語文書,2本不同的數(shù)學(xué)書,從中任意取出2本,取出的書恰好都是數(shù)學(xué)書的概率是()A. B. C. D.4.已知四棱錐的底面為矩形,底面,點(diǎn)在線段上,以為直徑的圓過點(diǎn).若,則的面積的最小值為()A.9 B.7 C. D.5.關(guān)于的不等式的解集是,則關(guān)于的不等式的解集是()A. B.C. D.6.已知橢圓的左、右焦點(diǎn)分別為、,過的直線交橢圓于A,B兩點(diǎn),交y軸于點(diǎn)M,若、M是線段AB的三等分點(diǎn),則橢圓的離心率為()A. B. C. D.7.要得到函數(shù)的圖象,只需將函數(shù)的圖象()A.向右平移個(gè)單位 B.向右平移個(gè)單位C.向左平移個(gè)單位 D.向左平移個(gè)單位8.秦九韶是我國南寧時(shí)期的數(shù)學(xué)家,普州(現(xiàn)四川省安岳縣)人,他在所著的《數(shù)書九章》中提出的多項(xiàng)式求值的秦九韶算法,至今仍是比較先進(jìn)的算法.如圖所示的程序框圖給出了利用秦九韶算法求某多項(xiàng)式值的一個(gè)實(shí)例.若輸入、的值分別為、,則輸出的值為()A. B. C. D.9.設(shè)集合,,則()A. B.C. D.10.已知復(fù)數(shù),為的共軛復(fù)數(shù),則()A. B. C. D.11.已知△ABC中,.點(diǎn)P為BC邊上的動(dòng)點(diǎn),則的最小值為()A.2 B. C. D.12.某設(shè)備使用年限x(年)與所支出的維修費(fèi)用y(萬元)的統(tǒng)計(jì)數(shù)據(jù)分別為,,,,由最小二乘法得到回歸直線方程為,若計(jì)劃維修費(fèi)用超過15萬元將該設(shè)備報(bào)廢,則該設(shè)備的使用年限為()A.8年 B.9年 C.10年 D.11年二、填空題:本題共4小題,每小題5分,共20分。13.等差數(shù)列(公差不為0),其中,,成等比數(shù)列,則這個(gè)等比數(shù)列的公比為_____.14.已知邊長為的菱形中,,現(xiàn)沿對角線折起,使得二面角為,此時(shí)點(diǎn),,,在同一個(gè)球面上,則該球的表面積為________.15.驗(yàn)證碼就是將一串隨機(jī)產(chǎn)生的數(shù)字或符號(hào),生成一幅圖片,圖片里加上一些干擾象素(防止),由用戶肉眼識(shí)別其中的驗(yàn)證碼信息,輸入表單提交網(wǎng)站驗(yàn)證,驗(yàn)證成功后才能使用某項(xiàng)功能.很多網(wǎng)站利用驗(yàn)證碼技術(shù)來防止惡意登錄,以提升網(wǎng)絡(luò)安全.在抗疫期間,某居民小區(qū)電子出入證的登錄驗(yàn)證碼由0,1,2,…,9中的五個(gè)數(shù)字隨機(jī)組成.將中間數(shù)字最大,然后向兩邊對稱遞減的驗(yàn)證碼稱為“鐘型驗(yàn)證碼”(例如:如14532,12543),已知某人收到了一個(gè)“鐘型驗(yàn)證碼”,則該驗(yàn)證碼的中間數(shù)字是7的概率為__________.16.在中,,是的角平分線,設(shè),則實(shí)數(shù)的取值范圍是__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù),),點(diǎn).以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.(1)求曲線的直角坐標(biāo)方程,并指出其形狀;(2)曲線與曲線交于,兩點(diǎn),若,求的值.18.(12分)已知均為正實(shí)數(shù),函數(shù)的最小值為.證明:(1);(2).19.(12分)橢圓:的離心率為,點(diǎn)為橢圓上的一點(diǎn).(1)求橢圓的標(biāo)準(zhǔn)方程;(2)若斜率為的直線過點(diǎn),且與橢圓交于兩點(diǎn),為橢圓的下頂點(diǎn),求證:對于任意的實(shí)數(shù),直線的斜率之積為定值.20.(12分)已知橢圓,點(diǎn)為半圓上一動(dòng)點(diǎn),若過作橢圓的兩切線分別交軸于、兩點(diǎn).(1)求證:;(2)當(dāng)時(shí),求的取值范圍.21.(12分)已知函數(shù)()在定義域內(nèi)有兩個(gè)不同的極值點(diǎn).(1)求實(shí)數(shù)的取值范圍;(2)若有兩個(gè)不同的極值點(diǎn),,且,若不等式恒成立.求正實(shí)數(shù)的取值范圍.22.(10分)已知函數(shù)(其中是自然對數(shù)的底數(shù))(1)若在R上單調(diào)遞增,求正數(shù)a的取值范圍;(2)若f(x)在處導(dǎo)數(shù)相等,證明:;(3)當(dāng)時(shí),證明:對于任意,若,則直線與曲線有唯一公共點(diǎn)(注:當(dāng)時(shí),直線與曲線的交點(diǎn)在y軸兩側(cè)).
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.B【解析】
奇函數(shù)滿足定義域關(guān)于原點(diǎn)對稱且,在上即可.【詳解】A:因?yàn)槎x域?yàn)?,所以不可能時(shí)奇函數(shù),錯(cuò)誤;B:定義域關(guān)于原點(diǎn)對稱,且滿足奇函數(shù),又,所以在上,正確;C:定義域關(guān)于原點(diǎn)對稱,且滿足奇函數(shù),,在上,因?yàn)?,所以在上不是增函?shù),錯(cuò)誤;D:定義域關(guān)于原點(diǎn)對稱,且,滿足奇函數(shù),在上很明顯存在變號(hào)零點(diǎn),所以在上不是增函數(shù),錯(cuò)誤;故選:B【點(diǎn)睛】此題考查判斷函數(shù)奇偶性和單調(diào)性,注意奇偶性的前提定義域關(guān)于原點(diǎn)對稱,屬于簡單題目.2.A【解析】
作于,于,分析可得,,再根據(jù)正弦的大小關(guān)系判斷分析得,再根據(jù)線面角的最小性判定即可.【詳解】作于,于.因?yàn)槠矫嫫矫?平面.故,故平面.故二面角為.又直線與平面所成角為,因?yàn)?故.故,當(dāng)且僅當(dāng)重合時(shí)取等號(hào).又直線與平面所成角為,且為直線與平面內(nèi)的直線所成角,故,當(dāng)且僅當(dāng)平面時(shí)取等號(hào).故.故選:A【點(diǎn)睛】本題主要考查了線面角與線線角的大小判斷,需要根據(jù)題意確定角度的正弦的關(guān)系,同時(shí)運(yùn)用線面角的最小性進(jìn)行判定.屬于中檔題.3.D【解析】
把5本書編號(hào),然后用列舉法列出所有基本事件.計(jì)數(shù)后可求得概率.【詳解】3本不同的語文書編號(hào)為,2本不同的數(shù)學(xué)書編號(hào)為,從中任意取出2本,所有的可能為:共10個(gè),恰好都是數(shù)學(xué)書的只有一種,∴所求概率為.故選:D.【點(diǎn)睛】本題考查古典概型,解題方法是列舉法,用列舉法寫出所有的基本事件,然后計(jì)數(shù)計(jì)算概率.4.C【解析】
根據(jù)線面垂直的性質(zhì)以及線面垂直的判定,根據(jù)勾股定理,得到之間的等量關(guān)系,再用表示出的面積,利用均值不等式即可容易求得.【詳解】設(shè),,則.因?yàn)槠矫?,平面,所?又,,所以平面,則.易知,.在中,,即,化簡得.在中,,.所以.因?yàn)?,?dāng)且僅當(dāng),時(shí)等號(hào)成立,所以.故選:C.【點(diǎn)睛】本題考查空間幾何體的線面位置關(guān)系及基本不等式的應(yīng)用,考查空間想象能力以及數(shù)形結(jié)合思想,涉及線面垂直的判定和性質(zhì),屬中檔題.5.A【解析】
由的解集,可知及,進(jìn)而可求出方程的解,從而可求出的解集.【詳解】由的解集為,可知且,令,解得,,因?yàn)?,所以的解集為,故選:A.【點(diǎn)睛】本題考查一元一次不等式、一元二次不等式的解集,考查學(xué)生的計(jì)算求解能力與推理能力,屬于基礎(chǔ)題.6.D【解析】
根據(jù)題意,求得的坐標(biāo),根據(jù)點(diǎn)在橢圓上,點(diǎn)的坐標(biāo)滿足橢圓方程,即可求得結(jié)果.【詳解】由已知可知,點(diǎn)為中點(diǎn),為中點(diǎn),故可得,故可得;代入橢圓方程可得,解得,不妨取,故可得點(diǎn)的坐標(biāo)為,則,易知點(diǎn)坐標(biāo),將點(diǎn)坐標(biāo)代入橢圓方程得,所以離心率為,故選:D.【點(diǎn)睛】本題考查橢圓離心率的求解,難點(diǎn)在于根據(jù)題意求得點(diǎn)的坐標(biāo),屬中檔題.7.D【解析】
直接根據(jù)三角函數(shù)的圖象平移規(guī)則得出正確的結(jié)論即可;【詳解】解:函數(shù),要得到函數(shù)的圖象,只需將函數(shù)的圖象向左平移個(gè)單位.故選:D.【點(diǎn)睛】本題考查三角函數(shù)圖象平移的應(yīng)用問題,屬于基礎(chǔ)題.8.B【解析】
列出循環(huán)的每一步,由此可得出輸出的值.【詳解】由題意可得:輸入,,,;第一次循環(huán),,,,繼續(xù)循環(huán);第二次循環(huán),,,,繼續(xù)循環(huán);第三次循環(huán),,,,跳出循環(huán);輸出.故選:B.【點(diǎn)睛】本題考查根據(jù)算法框圖計(jì)算輸出值,一般要列舉出算法的每一步,考查計(jì)算能力,屬于基礎(chǔ)題.9.D【解析】
利用一元二次不等式的解法和集合的交運(yùn)算求解即可.【詳解】由題意知,集合,,由集合的交運(yùn)算可得,.故選:D【點(diǎn)睛】本題考查一元二次不等式的解法和集合的交運(yùn)算;考查運(yùn)算求解能力;屬于基礎(chǔ)題.10.C【解析】
求出,直接由復(fù)數(shù)的代數(shù)形式的乘除運(yùn)算化簡復(fù)數(shù).【詳解】.故選:C【點(diǎn)睛】本題考查復(fù)數(shù)的代數(shù)形式的四則運(yùn)算,共軛復(fù)數(shù),屬于基礎(chǔ)題.11.D【解析】
以BC的中點(diǎn)為坐標(biāo)原點(diǎn),建立直角坐標(biāo)系,可得,設(shè),運(yùn)用向量的坐標(biāo)表示,求得點(diǎn)A的軌跡,進(jìn)而得到關(guān)于a的二次函數(shù),可得最小值.【詳解】以BC的中點(diǎn)為坐標(biāo)原點(diǎn),建立如圖的直角坐標(biāo)系,可得,設(shè),由,可得,即,則,當(dāng)時(shí),的最小值為.故選D.【點(diǎn)睛】本題考查向量數(shù)量積的坐標(biāo)表示,考查轉(zhuǎn)化思想和二次函數(shù)的值域解法,考查運(yùn)算能力,屬于中檔題.12.D【解析】
根據(jù)樣本中心點(diǎn)在回歸直線上,求出,求解,即可求出答案.【詳解】依題意在回歸直線上,,由,估計(jì)第年維修費(fèi)用超過15萬元.故選:D.【點(diǎn)睛】本題考查回歸直線過樣本中心點(diǎn)、以及回歸方程的應(yīng)用,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13.4【解析】
根據(jù)等差數(shù)列關(guān)系,用首項(xiàng)和公差表示出,解出首項(xiàng)和公差的關(guān)系,即可得解.【詳解】設(shè)等差數(shù)列的公差為,由題意得:,則整理得,,所以故答案為:4【點(diǎn)睛】此題考查等差數(shù)列基本量的計(jì)算,涉及等比中項(xiàng),考查基本計(jì)算能力.14.【解析】
分別取,的中點(diǎn),,連接,由圖形的對稱性可知球心必在的延長線上,設(shè)球心為,半徑為,,由勾股定理可得、,再根據(jù)球的面積公式計(jì)算可得;【詳解】如圖,分別取,的中點(diǎn),,連接,則易得,,,,由圖形的對稱性可知球心必在的延長線上,設(shè)球心為,半徑為,,可得,解得,.故該球的表面積為.故答案為:【點(diǎn)睛】本題考查多面體的外接球的計(jì)算,屬于中檔題.15.【解析】
首先判斷出中間號(hào)碼的所有可能取值,由此求得基本事件的總數(shù)以及中間數(shù)字是的事件數(shù),根據(jù)古典概型概率計(jì)算公式計(jì)算出所求概率.【詳解】根據(jù)“鐘型驗(yàn)證碼”中間數(shù)字最大,然后向兩邊對稱遞減,所以中間的數(shù)字可能是.當(dāng)中間是時(shí),其它個(gè)數(shù)字可以是,選其中兩個(gè)排在左邊(排法唯一),另外兩個(gè)排在右邊(排法唯一),所以方法數(shù)有種.當(dāng)中間是時(shí),其它個(gè)數(shù)字可以是,選其中兩個(gè)排在左邊(排法唯一),另外兩個(gè)排在右邊(排法唯一),所以方法數(shù)有種.當(dāng)中間是時(shí),其它個(gè)數(shù)字可以是,選其中兩個(gè)排在左邊(排法唯一),另外兩個(gè)排在右邊(排法唯一),所以方法數(shù)有種.當(dāng)中間是時(shí),其它個(gè)數(shù)字可以是,選其中兩個(gè)排在左邊(排法唯一),另外兩個(gè)排在右邊(排法唯一),所以方法數(shù)有種.當(dāng)中間是時(shí),其它個(gè)數(shù)字可以是,選其中兩個(gè)排在左邊(排法唯一),另外兩個(gè)排在右邊(排法唯一),所以方法數(shù)有種.當(dāng)中間是時(shí),其它個(gè)數(shù)字可以是,選其中兩個(gè)排在左邊(排法唯一),另外兩個(gè)排在右邊(排法唯一),所以方法數(shù)有種.所以該驗(yàn)證碼的中間數(shù)字是7的概率為.故答案為:【點(diǎn)睛】本小題主要考查古典概型概率計(jì)算,考查分類加法計(jì)數(shù)原理、分類乘法計(jì)數(shù)原理的應(yīng)用,考查運(yùn)算求解能力,屬于中檔題.16.【解析】
設(shè),,,由,用面積公式表示面積可得到,利用,即得解.【詳解】設(shè),,,由得:,化簡得,由于,故.故答案為:【點(diǎn)睛】本題考查了解三角形綜合,考查了學(xué)生轉(zhuǎn)化劃歸,綜合分析,數(shù)學(xué)運(yùn)算能力,屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1),以為圓心,為半徑的圓;(2)【解析】
(1)根據(jù)極坐標(biāo)與直角坐標(biāo)的互化公式,直接得到的直角坐標(biāo)方程并判斷形狀;(2)聯(lián)立直線參數(shù)方程與的直角坐標(biāo)方程,根據(jù)直線參數(shù)方程中的幾何意義結(jié)合求解出的值.【詳解】解:(1)由,得,所以,即,.所以曲線是以為圓心,為半徑的圓.(2)將代入,整理得.設(shè)點(diǎn),所對應(yīng)的參數(shù)分別為,,則,.,解得,則.【點(diǎn)睛】本題考查極坐標(biāo)與直角坐標(biāo)的互化以及根據(jù)直線參數(shù)方程中的幾何意義求值,難度一般.(1)極坐標(biāo)與直角坐標(biāo)的互化公式:;(2)若要使用直線參數(shù)方程中的幾何意義,要注意將直線的標(biāo)準(zhǔn)參數(shù)方程代入到對應(yīng)曲線的直角坐標(biāo)方程中,構(gòu)成關(guān)于的一元二次方程并結(jié)合韋達(dá)定理形式進(jìn)行分析求解.18.(1)證明見解析(2)證明見解析【解析】
(1)運(yùn)用絕對值不等式的性質(zhì),注意等號(hào)成立的條件,即可求得最小值,再運(yùn)用柯西不等式,即可得到最小值.(2)利用基本不等式即可得到結(jié)論,注意等號(hào)成立的條件.【詳解】(1)由題意,則函數(shù),又函數(shù)的最小值為,即,由柯西不等式得,當(dāng)且僅當(dāng)時(shí)取“=”.故.(2)由題意,利用基本不等式可得,,,(以上三式當(dāng)且僅當(dāng)時(shí)同時(shí)取“=”)由(1)知,,所以,將以上三式相加得即.【點(diǎn)睛】本題主要考查絕對值不等式、柯西不等式等基礎(chǔ)知識(shí),考查運(yùn)算能力,屬于中檔題.19.(1);(2)證明見解析【解析】
(1)運(yùn)用離心率公式和點(diǎn)滿足橢圓方程,解得,,進(jìn)而得到橢圓方程;(2)設(shè)直線,代入橢圓方程,運(yùn)用韋達(dá)定理和直線的斜率公式,以及點(diǎn)在直線上滿足直線方程,化簡整理,即可得到定值.【詳解】(1)因?yàn)?,所以,①又橢圓過點(diǎn),所以②由①②,解得所以橢圓的標(biāo)準(zhǔn)方程為.(2)證明設(shè)直線:,聯(lián)立得,設(shè),則易知故所以對于任意的,直線的斜率之積為定值.【點(diǎn)睛】本題考查橢圓的方程的求法,注意運(yùn)用離心率公式和點(diǎn)滿足橢圓方程,考查直線方程和橢圓方程聯(lián)立,運(yùn)用韋達(dá)定理和直線的斜率公式,化簡整理,考查運(yùn)算能力,屬于中檔題.20.(1)見解析;(2).【解析】
(1)分兩種情況討論:①兩切線、中有一條切線斜率不存在時(shí),求出兩切線的方程,驗(yàn)證結(jié)論成立;②兩切線、的斜率都存在,可設(shè)切線的方程為,將該直線的方程與橢圓的方程聯(lián)立,由可得出關(guān)于的二次方程,利用韋達(dá)定理得出兩切線的斜率之積為,進(jìn)而可得出結(jié)論;(2)求出點(diǎn)、的坐標(biāo),利用兩點(diǎn)間的距離公式結(jié)合韋達(dá)定理得出,換元,可得出,利用二次函數(shù)的基本性質(zhì)可求得的取值范圍.【詳解】(1)由于點(diǎn)在半圓上,則.①當(dāng)兩切線、中有一條切線斜率不存在時(shí),可求得兩切線方程為,或,,此時(shí);②當(dāng)兩切線、的斜率都存在時(shí),設(shè)切線的方程為(、的斜率分別為、),,,,.綜上所述,;(2)根據(jù)題意得、,,令,則,所以,當(dāng)時(shí),,當(dāng)時(shí),.因此,的取值范圍是.【點(diǎn)睛】本題考查橢圓兩切線垂直的證明,同時(shí)也考查了弦長的取值范圍
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 泵站維保備案合同
- 《防電弧織物》規(guī)范
- 貴州省黔東南州榕江縣寨蒿中學(xué)2024-2025學(xué)年度七年級(jí)上學(xué)期期中質(zhì)量監(jiān)測語文試卷
- 2024年秋鳳凰縣皇倉中學(xué)七年級(jí)期中質(zhì)量監(jiān)測語文試題卷
- 水果及堅(jiān)果相關(guān)行業(yè)投資方案范本
- 餐飲行業(yè)食品安全手冊
- 刮板輸送機(jī)相關(guān)行業(yè)投資方案范本
- 稅務(wù)大數(shù)據(jù)相關(guān)項(xiàng)目投資計(jì)劃書
- 青少年聽故事配插畫活動(dòng)
- 秋季流行病預(yù)防
- 最新種植新病歷
- 水聯(lián)動(dòng)試車方案(共33頁)
- 高效電池片(TOPCon)生產(chǎn)項(xiàng)目可行性研究報(bào)告模板-提供甲乙丙資質(zhì)資信
- INPLAN操作培訓(xùn)PPT課件
- VB和Oracle的鏈接
- 代理報(bào)關(guān)委托書
- 小學(xué)美術(shù)四年級(jí)質(zhì)量檢測試卷(共3頁)
- 青少年科學(xué)調(diào)查體驗(yàn)活動(dòng)分析報(bào)告
- 大班科學(xué)四季的變化ppt課件
- 建設(shè)部211文件
- 16種多環(huán)芳烴簡介
評論
0/150
提交評論