2023-2024學(xué)年湖北省孝感市孝南區(qū)重點達(dá)標(biāo)名校中考數(shù)學(xué)考前最后一卷含解析_第1頁
2023-2024學(xué)年湖北省孝感市孝南區(qū)重點達(dá)標(biāo)名校中考數(shù)學(xué)考前最后一卷含解析_第2頁
2023-2024學(xué)年湖北省孝感市孝南區(qū)重點達(dá)標(biāo)名校中考數(shù)學(xué)考前最后一卷含解析_第3頁
2023-2024學(xué)年湖北省孝感市孝南區(qū)重點達(dá)標(biāo)名校中考數(shù)學(xué)考前最后一卷含解析_第4頁
2023-2024學(xué)年湖北省孝感市孝南區(qū)重點達(dá)標(biāo)名校中考數(shù)學(xué)考前最后一卷含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2023-2024學(xué)年湖北省孝感市孝南區(qū)重點達(dá)標(biāo)名校中考數(shù)學(xué)考前最后一卷注意事項1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.PM2.5是指大氣中直徑小于或等于2.5μm(0.0000025m)的顆粒物,含有大量有毒、有害物質(zhì),也稱為可入肺顆粒物,將25微米用科學(xué)記數(shù)法可表示為()米.A.25×10﹣7B.2.5×10﹣6C.0.25×10﹣5D.2.5×10﹣52.下列實數(shù)中,結(jié)果最大的是()A.|﹣3| B.﹣(﹣π) C. D.33.下列計算正確的是()A.a(chǎn)4+a5=a9B.(2a2b3)2=4a4b6C.﹣2a(a+3)=﹣2a2+6aD.(2a﹣b)2=4a2﹣b24.如圖,四邊形ABCD內(nèi)接于⊙O,F(xiàn)是上一點,且,連接CF并延長交AD的延長線于點E,連接AC.若∠ABC=105°,∠BAC=25°,則∠E的度數(shù)為()A.45° B.50° C.55° D.60°5.如圖,四邊形ABCD是菱形,∠A=60°,AB=2,扇形BEF的半徑為2,圓心角為60°,則圖中陰影部分的面積是()A. B. C. D.6.在半徑等于5cm的圓內(nèi)有長為cm的弦,則此弦所對的圓周角為A.60° B.120° C.60°或120° D.30°或120°7.下列計算正確的是()A. B. C. D.8.用教材中的計算器依次按鍵如下,顯示的結(jié)果在數(shù)軸上對應(yīng)點的位置介于()之間.A.B與C B.C與D C.E與F D.A與B9.某市6月份日平均氣溫統(tǒng)計如圖所示,那么在日平均氣溫這組數(shù)據(jù)中,中位數(shù)是()A.8 B.10 C.21 D.2210.-4的絕對值是()A.4 B. C.-4 D.二、填空題(共7小題,每小題3分,滿分21分)11.在□ABCD中,按以下步驟作圖:①以點B為圓心,以BA長為半徑作弧,交BC于點E;②分別以A,E為圓心,大于AE的長為半徑作弧,兩弧交于點F;③連接BF,延長線交AD于點G.若∠AGB=30°,則∠C=_______°.12.如圖,點E在正方形ABCD的外部,∠DCE=∠DEC,連接AE交CD于點F,∠CDE的平分線交EF于點G,AE=2DG.若BC=8,則AF=_____.13.不等式1﹣2x<6的負(fù)整數(shù)解是___________.14.在數(shù)學(xué)課上,老師提出如下問題:尺規(guī)作圖:確定圖1中所在圓的圓心.已知:.求作:所在圓的圓心.曈曈的作法如下:如圖2,(1)在上任意取一點,分別連接,;(2)分別作弦,的垂直平分線,兩條垂直平分線交于點.點就是所在圓的圓心.老師說:“曈曈的作法正確.”請你回答:曈曈的作圖依據(jù)是_____.15.將直尺和直角三角尺按如圖方式擺放.若,,則________.16.從三角形(非等腰三角形)一個頂點引出一條射線與對邊相交,該頂點與該交點間的線段把這個三角形分割成兩個小三角形,如果其中一個小三角形是等腰三角形,另一個與原三角形相似,那么我們把這條線段叫做這個三角形的完美分割線,如圖,在△ABC中,DB=1,BC=2,CD是△ABC的完美分割線,且△ACD是以CD為底邊的等腰三角形,則CD的長為_____.17.二次函數(shù)y=ax2+bx+c(a≠0)的部分對應(yīng)值如下表:x…﹣3﹣20135…y…70﹣8﹣9﹣57…則二次函數(shù)y=ax2+bx+c在x=2時,y=______.三、解答題(共7小題,滿分69分)18.(10分)如圖,在△ABC中,AB=AC,∠BAC=120°,EF為AB的垂直平分線,交BC于點F,交AB于點E.求證:FC=2BF.19.(5分)已知:二次函數(shù)滿足下列條件:①拋物線y=ax2+bx與直線y=x只有一個交點;②對于任意實數(shù)x,a(-x+5)2+b(-x+5)=a(x-3)2+b(x-3)都成立.(1)求二次函數(shù)y=ax2+bx的解析式;(2)若當(dāng)-2≤x≤r(r≠0)時,恰有t≤y≤1.5r成立,求t和r的值.20.(8分)如圖,在△ABC中,∠ACB=90°,∠ABC=10°,△CDE是等邊三角形,點D在邊AB上.(1)如圖1,當(dāng)點E在邊BC上時,求證DE=EB;(2)如圖2,當(dāng)點E在△ABC內(nèi)部時,猜想ED和EB數(shù)量關(guān)系,并加以證明;(1)如圖1,當(dāng)點E在△ABC外部時,EH⊥AB于點H,過點E作GE∥AB,交線段AC的延長線于點G,AG=5CG,BH=1.求CG的長.21.(10分)已知:如圖,四邊形ABCD中,AD∥BC,AD=CD,E是對角線BD上一點,且EA=EC.(1)求證:四邊形ABCD是菱形;(2)如果∠BDC=30°,DE=2,EC=3,求CD的長.22.(10分)小華想復(fù)習(xí)分式方程,由于印刷問題,有一個數(shù)“?”看不清楚:.她把這個數(shù)“?”猜成5,請你幫小華解這個分式方程;小華的媽媽說:“我看到標(biāo)準(zhǔn)答案是:方程的增根是,原分式方程無解”,請你求出原分式方程中“?”代表的數(shù)是多少?23.(12分)進(jìn)入冬季,某商家根據(jù)市民健康需要,代理銷售一種防塵口罩,進(jìn)貨價為20元/包,經(jīng)市場銷售發(fā)現(xiàn):銷售單價為30元/包時,每周可售出200包,每漲價1元,就少售出5包.若供貨廠家規(guī)定市場價不得低于30元/包.試確定周銷售量y(包)與售價x(元/包)之間的函數(shù)關(guān)系式;試確定商場每周銷售這種防塵口罩所獲得的利潤w(元)與售價x(元/包)之間的函數(shù)關(guān)系式,并直接寫出售價x的范圍;當(dāng)售價x(元/包)定為多少元時,商場每周銷售這種防塵口罩所獲得的利潤w(元)最大?最大利潤是多少?24.(14分)()如圖①已知四邊形中,,BC=b,,求:①對角線長度的最大值;②四邊形的最大面積;(用含,的代數(shù)式表示)()如圖②,四邊形是某市規(guī)劃用地的示意圖,經(jīng)測量得到如下數(shù)據(jù):,,,,請你利用所學(xué)知識探索它的最大面積(結(jié)果保留根號)

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、B【解析】

由科學(xué)計數(shù)法的概念表示出0.0000025即可.【詳解】0.0000025=2.5×10﹣6.故選B.【點睛】本題主要考查科學(xué)計數(shù)法,熟記相關(guān)概念是解題關(guān)鍵.2、B【解析】

正實數(shù)都大于0,負(fù)實數(shù)都小于0,正實數(shù)大于一切負(fù)實數(shù),兩個負(fù)實數(shù)絕對值大的反而小,據(jù)此判斷即可.【詳解】根據(jù)實數(shù)比較大小的方法,可得<|-3|=3<-(-π),所以最大的數(shù)是:-(-π).故選B.【點睛】此題主要考查了實數(shù)大小比較的方法,及判斷無理數(shù)的范圍,要熟練掌握,解答此題的關(guān)鍵是要明確:正實數(shù)>0>負(fù)實數(shù),兩個負(fù)實數(shù)絕對值大的反而?。?、B【解析】分析:根據(jù)合并同類項、冪的乘方與積的乘方、單項式乘多項式法則以及完全平方公式進(jìn)行計算.詳解:A、a4與a5不是同類項,不能合并,故本選項錯誤;B、(2a2b3)2=4a4b6,故本選項正確;C、-2a(a+3)=-2a2-6a,故本選項錯誤;D、(2a-b)2=4a2-4ab+b2,故本選項錯誤;故選:B.點睛:本題主要考查了合并同類項的法則、冪的乘方與積的乘方、單項式乘多項式法則以及完全平方公式,熟練掌握運算法則是解題的關(guān)鍵.4、B【解析】

先根據(jù)圓內(nèi)接四邊形的性質(zhì)求出∠ADC的度數(shù),再由圓周角定理得出∠DCE的度數(shù),根據(jù)三角形外角的性質(zhì)即可得出結(jié)論.【詳解】∵四邊形ABCD內(nèi)接于⊙O,∠ABC=105°,∴∠ADC=180°﹣∠ABC=180°﹣105°=75°.∵,∠BAC=25°,∴∠DCE=∠BAC=25°,∴∠E=∠ADC﹣∠DCE=75°﹣25°=50°.【點睛】本題考查圓內(nèi)接四邊形的性質(zhì),圓周角定理.圓內(nèi)接四邊形對角互補.在同圓或等圓中,同弧或等弧所對的圓心角相等,而同弧所對的圓周角等于圓心角的一半,所以在同圓或等圓中,同弧或等弧所對的圓周角相等.5、B【解析】

根據(jù)菱形的性質(zhì)得出△DAB是等邊三角形,進(jìn)而利用全等三角形的判定得出△ABG≌△DBH,得出四邊形GBHD的面積等于△ABD的面積,進(jìn)而求出即可.【詳解】連接BD,∵四邊形ABCD是菱形,∠A=60°,∴∠ADC=120°,∴∠1=∠2=60°,∴△DAB是等邊三角形,∵AB=2,∴△ABD的高為,∵扇形BEF的半徑為2,圓心角為60°,∴∠4+∠5=60°,∠3+∠5=60°,∴∠3=∠4,設(shè)AD、BE相交于點G,設(shè)BF、DC相交于點H,在△ABG和△DBH中,,∴△ABG≌△DBH(ASA),∴四邊形GBHD的面積等于△ABD的面積,∴圖中陰影部分的面積是:S扇形EBF-S△ABD==.故選B.6、C【解析】

根據(jù)題意畫出相應(yīng)的圖形,由OD⊥AB,利用垂徑定理得到D為AB的中點,由AB的長求出AD與BD的長,且得出OD為角平分線,在Rt△AOD中,利用銳角三角函數(shù)定義及特殊角的三角函數(shù)值求出∠AOD的度數(shù),進(jìn)而確定出∠AOB的度數(shù),利用同弧所對的圓心角等于所對圓周角的2倍,即可求出弦AB所對圓周角的度數(shù).【詳解】如圖所示,∵OD⊥AB,∴D為AB的中點,即AD=BD=,在Rt△AOD中,OA=5,AD=,∴sin∠AOD=,又∵∠AOD為銳角,∴∠AOD=60°,∴∠AOB=120°,∴∠ACB=∠AOB=60°,又∵圓內(nèi)接四邊形AEBC對角互補,∴∠AEB=120°,則此弦所對的圓周角為60°或120°.故選C.【點睛】此題考查了垂徑定理,圓周角定理,特殊角的三角函數(shù)值,以及銳角三角函數(shù)定義,熟練掌握垂徑定理是解本題的關(guān)鍵.7、A【解析】

原式各項計算得到結(jié)果,即可做出判斷.【詳解】A、原式=,正確;

B、原式不能合并,錯誤;

C、原式=,錯誤;

D、原式=2,錯誤.

故選A.【點睛】此題考查了實數(shù)的運算,熟練掌握運算法則是解本題的關(guān)鍵.8、A【解析】試題分析:在計算器上依次按鍵轉(zhuǎn)化為算式為﹣=-1.414…;計算可得結(jié)果介于﹣2與﹣1之間.故選A.考點:1、計算器—數(shù)的開方;2、實數(shù)與數(shù)軸9、D【解析】分析:根據(jù)條形統(tǒng)計圖得到各數(shù)據(jù)的權(quán),然后根據(jù)中位數(shù)的定義求解.詳解:一共30個數(shù)據(jù),第15個數(shù)和第16個數(shù)都是22,所以中位數(shù)是22.故選D.點睛:考查中位數(shù)的定義,看懂條形統(tǒng)計圖是解題的關(guān)鍵.10、A【解析】

根據(jù)絕對值的概念計算即可.(絕對值是指一個數(shù)在坐標(biāo)軸上所對應(yīng)點到原點的距離叫做這個數(shù)的絕對值.)【詳解】根據(jù)絕對值的概念可得-4的絕對值為4.【點睛】錯因分析:容易題.選錯的原因是對實數(shù)的相關(guān)概念沒有掌握,與倒數(shù)、相反數(shù)的概念混淆.二、填空題(共7小題,每小題3分,滿分21分)11、120【解析】

首先證明∠ABG=∠GBE=∠AGB=30°,可得∠ABC=60°,再利用平行四邊形的鄰角互補即可解決問題.【詳解】由題意得:∠GBA=∠GBE,∵AD∥BC,∴∠AGB=∠GBE=30°,∴∠ABC=60°,∵AB∥CD,∴∠C=180°-∠ABC=120°,故答案為:120.【點睛】本題考查基本作圖、平行四邊形的性質(zhì)等知識,解題的關(guān)鍵是熟練掌握基本知識12、【解析】

如圖作DH⊥AE于H,連接CG.設(shè)DG=x,∵∠DCE=∠DEC,∴DC=DE,∵四邊形ABCD是正方形,∴AD=DC,∠ADF=90°,∴DA=DE,∵DH⊥AE,∴AH=HE=DG,在△GDC與△GDE中,,∴△GDC≌△GDE(SAS),∴GC=GE,∠DEG=∠DCG=∠DAF,∵∠AFD=∠CFG,∴∠ADF=∠CGF=90°,∴2∠GDE+2∠DEG=90°,∴∠GDE+∠DEG=45°,∴∠DGH=45°,在Rt△ADH中,AD=8,AH=x,DH=x,∴82=x2+(x)2,解得:x=,∵△ADH∽△AFD,∴,∴AF==4.故答案為4.13、﹣2,﹣1【解析】試題分析:根據(jù)不等式的性質(zhì)求出不等式的解集,找出不等式的整數(shù)解即可.解:1﹣2x<6,移項得:﹣2x<6﹣1,合并同類項得:﹣2x<5,不等式的兩邊都除以﹣2得:x>﹣,∴不等式的負(fù)整數(shù)解是﹣2,﹣1,故答案為:﹣2,﹣1.點評:本題主要考查對解一元一次不等式,一元一次不等式的整數(shù)解,不等式的性質(zhì)等知識點的理解和掌握,能根據(jù)不等式的性質(zhì)求出不等式的解集是解此題的關(guān)鍵.14、①線段垂直平分線上的點到線段兩端點的距離相等②圓的定義(到定點的距離等于定長的點的軌跡是圓)【解析】

(1)在上任意取一點,分別連接,;(2)分別作弦,的垂直平分線,兩條垂直平分線交于點.點就是所在圓的圓心.【詳解】解:根據(jù)線段的垂直平分線的性質(zhì)定理可知:,所以點是所在圓的圓心(理由①線段垂直平分線上的點到線段兩端點的距離相等②圓的定義(到定點的距離等于定長的點的軌跡是圓):)故答案為①線段垂直平分線上的點到線段兩端點的距離相等②圓的定義(到定點的距離等于定長的點的軌跡是圓)【點睛】本題考查作圖﹣復(fù)雜作圖、線段的垂直平分線的性質(zhì)等知識,解題的關(guān)鍵是靈活運用所學(xué)知識解決問題,屬于中考??碱}型.15、80°.【解析】

由于直尺外形是矩形,根據(jù)矩形的性質(zhì)可知對邊平行,所以∠4=∠3,再根據(jù)外角的性質(zhì)即可求出結(jié)果.【詳解】解:如圖所示,依題意得:∠4=∠3,∵∠4=∠2+∠1=80°∴∠3=80°.故答案為80°.【點睛】本題考查了平行線的性質(zhì)和三角形外角的性質(zhì),掌握三角形外角的性質(zhì)是解題的關(guān)鍵.16、【解析】

設(shè)AB=x,利用△BCD∽△BAC,得=,列出方程即可解決問題.【詳解】∵△BCD∽△BAC,∴=,設(shè)AB=x,∴22=x,∵x>0,∴x=4,∴AC=AD=4-1=3,∵△BCD∽△BAC,∴==,∴CD=.故答案為【點睛】本題考查相似三角形的判定和性質(zhì)、等腰三角形的性質(zhì)等知識,解題的關(guān)鍵是利用△BCD∽△BAC解答.17、﹣1【解析】試題分析:觀察表中的對應(yīng)值得到x=﹣3和x=5時,函數(shù)值都是7,則根據(jù)拋物線的對稱性得到對稱軸為直線x=1,所以x=0和x=2時的函數(shù)值相等,解:∵x=﹣3時,y=7;x=5時,y=7,∴二次函數(shù)圖象的對稱軸為直線x=1,∴x=0和x=2時的函數(shù)值相等,∴x=2時,y=﹣1.故答案為﹣1.三、解答題(共7小題,滿分69分)18、見解析【解析】

連接AF,結(jié)合條件可得到∠B=∠C=30°,∠AFC=60°,再利用含30°直角三角形的性質(zhì)可得到AF=BF=CF,可證得結(jié)論.【詳解】證明:連接AF,∵EF為AB的垂直平分線,∴AF=BF,又AB=AC,∠BAC=120°,∴∠B=∠C=∠BAF=30°,∴∠FAC=90°,∴AF=FC,∴FC=2BF.【點睛】本題主要考查垂直平分線的性質(zhì)及等腰三角形的性質(zhì),掌握線段垂直平分線上的點到線段兩端點的距離相等是解題的關(guān)鍵.19、(1)y=x2+x;(2)t=-4,r=-1.【解析】

(1)由①聯(lián)立方程組,根據(jù)拋物線y=ax2+bx與直線y=x只有一個交點可以求出b的值,由②可得對稱軸為x=1,從而得a的值,進(jìn)而得出結(jié)論;(2)進(jìn)行分類討論,分別求出t和r的值.【詳解】(1)y=ax2+bx和y=x聯(lián)立得:ax2+(b+1)x=0,Δ=0得:(b-1)2=0,得b=1,∵對稱軸為=1,∴=1,∴a=,∴y=x2+x.(2)因為y=x2+x=(x-1)2+,所以頂點(1,)當(dāng)-2<r<1,且r≠0時,當(dāng)x=r時,y最大=r2+r=1.5r,得r=-1,當(dāng)x=-2時,y最小=-4,所以,這時t=-4,r=-1.當(dāng)r≥1時,y最大=,所以1.5r=,所以r=,不合題意,舍去,綜上可得,t=-4,r=-1.【點睛】本題考查二次函數(shù)綜合題,解題的關(guān)鍵是理解題意,利用二次函數(shù)的性質(zhì)解決問題.20、(1)證明見解析;(2)ED=EB,證明見解析;(1)CG=2.【解析】

(1)、根據(jù)等邊三角形的性質(zhì)得出∠CED=60°,從而得出∠EDB=10°,從而得出DE=BE;(2)、取AB的中點O,連接CO、EO,根據(jù)△ACO和△CDE為等邊三角形,從而得出△ACD和△OCE全等,然后得出△COE和△BOE全等,從而得出答案;(1)、取AB的中點O,連接CO、EO、EB,根據(jù)題意得出△COE和△BOE全等,然后得出△CEG和△DCO全等,設(shè)CG=a,則AG=5a,OD=a,根據(jù)題意列出一元一次方程求出a的值得出答案.【詳解】(1)∵△CDE是等邊三角形,∴∠CED=60°,∴∠EDB=60°﹣∠B=10°,∴∠EDB=∠B,∴DE=EB;(2)ED=EB,理由如下:取AB的中點O,連接CO、EO,∵∠ACB=90°,∠ABC=10°,∴∠A=60°,OC=OA,∴△ACO為等邊三角形,∴CA=CO,∵△CDE是等邊三角形,∴∠ACD=∠OCE,∴△ACD≌△OCE,∴∠COE=∠A=60°,∴∠BOE=60°,∴△COE≌△BOE,∴EC=EB,∴ED=EB;(1)、取AB的中點O,連接CO、EO、EB,由(2)得△ACD≌△OCE,∴∠COE=∠A=60°,∴∠BOE=60°,△COE≌△BOE,∴EC=EB,∴ED=EB,∵EH⊥AB,∴DH=BH=1,∵GE∥AB,∴∠G=180°﹣∠A=120°,∴△CEG≌△DCO,∴CG=OD,設(shè)CG=a,則AG=5a,OD=a,∴AC=OC=4a,∵OC=OB,∴4a=a+1+1,解得,a=2,即CG=2.21、(1)證明見解析;(2)CD的長為2.【解析】

(1)首先證得△ADE≌△CDE,由全等三角形的性質(zhì)可得∠ADE=∠CDE,由AD∥BC可得∠ADE=∠CBD,易得∠CDB=∠CBD,可得BC=CD,易得AD=BC,利用平行線的判定定理可得四邊形ABCD為平行四邊形,由AD=CD可得四邊形ABCD是菱形;(2)作EF⊥CD于F,在Rt△DEF中,根據(jù)30°的性質(zhì)和勾股定理可求出EF和DF的長,在Rt△CEF中,根據(jù)勾股定理可求出CF的長,從而可求CD的長.【詳解】證明:(1)在△ADE與△CDE中,,∴△ADE≌△CDE(SSS),∴∠ADE=∠CDE,∵AD∥BC,∴∠ADE=∠CBD,∴∠CDE=∠CBD,∴BC=CD,∵AD=CD,∴BC=AD,∴四邊形ABCD為平行四邊形,∵AD=CD,∴四邊形ABCD是菱形;(2)作EF⊥CD于F.∵∠BDC=30°,DE=2,∴EF=1,DF=,∵CE=3,∴CF=2,∴CD=2+..【點睛】本題考查了全等三角形的判定與性質(zhì),平行線的性質(zhì),菱形的判定,含30°的直角三角形的性質(zhì),勾股定理.證明AD=BC是解(1)的關(guān)鍵,作EF⊥CD于F,構(gòu)造直角三角形是解(2)的關(guān)鍵.22、(1);(2)原分式方程中“?”代表的數(shù)是-1.【解析】

(1)“?”當(dāng)成5,解分式方程即可,(2)方程有增根是去分母時產(chǎn)生的,故先去分母,再將x=2代入即可解答.【詳解】(1)方程兩邊同時乘以得解得經(jīng)檢驗,是原分式方程的解.(2)設(shè)?為,方程兩邊同時乘以得由于是原分式方程的增根,所以把代入上面的等式得所以,原分式方程中“?”代表的數(shù)是-1.【點睛】本題考查了分式方程解法和增根的定義及應(yīng)用.增根是分式方程化為整式方程后產(chǎn)生的使分式方程的分母為0的根.增根確定后可按如下步驟進(jìn)行:

①化分式方程為整式方程;

②把增根代入整式方程即可求得相關(guān)字母的值.23、(1)y=﹣5x+350;(2)w=﹣5x2+450x﹣7000(30≤x≤40);(3)當(dāng)售價定為45元時,商場每周銷售這種防塵口罩所獲得的利潤w(元)最大,最大利潤是1元.【解析】試題分析:(1)根據(jù)題意可以直接寫出y與x之間的函數(shù)關(guān)系式;(2)根據(jù)題意可以直接寫出w與x之間的函數(shù)關(guān)系式,由供貨廠家規(guī)定市場價不得低于30元/包,且商場每周完成不少于150包的銷售任務(wù)可以確定x的取值范圍;(3)根據(jù)第(2)問中的函數(shù)解析式和x的取值范圍,可以解答本題.試題解析:解:(1)由題意可得:y=200﹣(x﹣30)×5=﹣5x+350即周銷售量y(包)與售價x(元/包)之間的函數(shù)關(guān)系式是:y=﹣5x+350;(2)由題意可得,w=(x﹣20)×(﹣5x+350)=﹣5x2+450x﹣7000(30≤x≤70),即商場每周銷售這種防塵口罩所獲得的利潤w(元)與售價x(元/包)之間的函數(shù)關(guān)系式是:w=﹣5x2+450x﹣7000(30≤x≤40);(3)∵w=﹣5x2+450x﹣7000=﹣5(x﹣45)2+1∵二次項系數(shù)﹣5<0,∴x=45時,w取得最大值,最大值為1.答:當(dāng)售價定為45元時,商場每周銷售這種防塵口罩所獲得的利潤最大,最大利潤是1元.點睛:本題考查了二次函數(shù)的應(yīng)用,解題的關(guān)鍵是明確題意,可以寫出相應(yīng)的函數(shù)解析式,并確定自變量的取值范圍以及可以求出函數(shù)的最值.24、(1)①;②;(

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論