版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
專題1-1基本不等式歸類目錄TOC\o"1-1"\h\u題型01公式基礎(chǔ) 1題型02基礎(chǔ)模型:倒數(shù)型 3題型03常數(shù)代換型 6.題型04積與和型 8題型05積與和互化解不等式型 9題型06構(gòu)造分母和定型 10題型07湊配系數(shù)構(gòu)造分母和定型 12題型08換元構(gòu)造分母和定型 14題型09分子與分母互消型 16題型10“1”代換綜合型 18題型11分子消去型 20題型12消元型 21題型13齊次化構(gòu)造型 23題型14三角換元構(gòu)造型 25題型15因式分解雙換元型 27題型16配方型 28高考練場 30題型01公式基礎(chǔ)【解題攻略】利用基本不等式求最值時,要注意其必須滿足的三個條件:(1)“一正”就是各項必須為正數(shù);(2)“二定”就是要求和的最小值,必須把構(gòu)成和的二項之積轉(zhuǎn)化成定值;要求積的最大值,則必須把構(gòu)成積的因式的和轉(zhuǎn)化成定值;(3)“三相等”是利用基本不等式求最值時,必須驗證等號成立的條件,若不能取等號則這個定值就不是所求的最值,這也是最容易發(fā)生錯誤的地方.【典例1-1】(2020·廣東·普寧市第二中學(xué)高三階段練習(xí))下列不等式一定成立的是(
)A.SKIPIF1<0SKIPIF1<0 B.SKIPIF1<0SKIPIF1<0C.SKIPIF1<0SKIPIF1<0 D.SKIPIF1<0SKIPIF1<0【答案】C【分析】應(yīng)用特殊值法,即可判斷A、B、D的正誤,作差法有SKIPIF1<0,即可確定C的正誤.【詳解】A:當(dāng)SKIPIF1<0時,有SKIPIF1<0,故不等式不一定成立,故A錯誤;B:當(dāng)SKIPIF1<0,即SKIPIF1<0時,有SKIPIF1<0,故不等式不一定成立,故B錯誤;C:SKIPIF1<0恒成立,故C正確;D:當(dāng)SKIPIF1<0時,有SKIPIF1<0,故不等式不一定成立,故D錯誤;故選:C【典例1-2】(2021秋·山東日照·高三山東省日照實驗高級中學(xué)??茧A段練習(xí))對于任意a,b∈R,下列不等式一定成立的是(
)A.SKIPIF1<0SKIPIF1<0SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0SKIPIF1<02【答案】D【分析】當(dāng)SKIPIF1<0時,可判斷A;當(dāng)SKIPIF1<0時,可判斷B;當(dāng)SKIPIF1<0時,可判斷C;利用均值不等式,可判斷D.【詳解】選項A:當(dāng)SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0SKIPIF1<0,不成立,故A錯誤;選項B:當(dāng)SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0,不成立,故B錯誤;選項C:當(dāng)SKIPIF1<0時,SKIPIF1<0,不成立,故C錯誤;選項D:由SKIPIF1<0有意義,故SKIPIF1<0,因此SKIPIF1<0由均值不等式,SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0時等號成立故D正確故選:D【變式1-1】(2021·高三階段測試)下列說法不正確的是(
)A.x+SKIPIF1<0(x>0)的最小值是2 B.SKIPIF1<0的最小值是2C.SKIPIF1<0的最小值是SKIPIF1<0 D.若x>0,則2-3x-SKIPIF1<0的最大值是2-4SKIPIF1<0【答案】B【解析】由二次根式的性質(zhì)及基本不等式成立的條件逐項判斷即可得解.【詳解】對于A,當(dāng)SKIPIF1<0時,SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時,等號成立,故A正確;對于B,SKIPIF1<0,但SKIPIF1<0,所以等號不成立,所以SKIPIF1<0,故B錯誤;對于C,SKIPIF1<0,當(dāng)SKIPIF1<0時,等號成立,故C正確;對于D,SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時,等號成立,故D正確.故選:B.【變式1-2】(2023·全國·高三專題練習(xí))下列不等式證明過程正確的是(
)A.若SKIPIF1<0,則SKIPIF1<0B.若x>0,y>0,則SKIPIF1<0C.若x<0,則SKIPIF1<0SKIPIF1<0D.若x<0,則SKIPIF1<0【答案】D【分析】利用基本不等式成立的條件及特值法,逐一判斷即可.【詳解】∵SKIPIF1<0可能為負數(shù),如SKIPIF1<0時,SKIPIF1<0,∴A錯誤;∵SKIPIF1<0可能為負數(shù),如SKIPIF1<0時,SKIPIF1<0,∴B錯誤;∵SKIPIF1<0,如SKIPIF1<0時,SKIPIF1<0,∴C錯誤;∵SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0等號成立,∴D正確.故選:D.【變式1-3】(2022秋·廣東·高三深圳市寶安中學(xué)(集團)??迹┰谙铝泻瘮?shù)中,最小值是SKIPIF1<0的是(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】根據(jù)基本不等式,對選項中依次進行求解判斷,特別要注意基本不等式成立的條件“一正、二定、三相等”.【詳解】對于選項A,SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,即最小值不是SKIPIF1<0,故選項A不符合題意;對于選項B,SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時取等號,即最小值是2,故選項B不符合題意;對于選項C,SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,當(dāng)SKIPIF1<0時,最小值為SKIPIF1<0,故選項C不符合題意;對于選項D,SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時取等號,即最小值是SKIPIF1<0,故選項D符合題意;故選:D..題型02基礎(chǔ)模型:倒數(shù)型【解題攻略】倒數(shù)型:SKIPIF1<0,或者SKIPIF1<0容易出問題的地方,在于能否“取等”,如SKIPIF1<0,SKIPIF1<0【典例1-1】(2022·浙江杭州·杭州高級中學(xué)??寄M預(yù)測)已知SKIPIF1<0且SKIPIF1<0,則SKIPIF1<0的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】首先求得SKIPIF1<0及SKIPIF1<0的取值范圍,再把SKIPIF1<0轉(zhuǎn)化為關(guān)于SKIPIF1<0的代數(shù)式SKIPIF1<0,利用函數(shù)SKIPIF1<0的單調(diào)性去求SKIPIF1<0的取值范圍即可解決【詳解】由SKIPIF1<0,可得SKIPIF1<0,SKIPIF1<0則SKIPIF1<0,則SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0SKIPIF1<0,SKIPIF1<0又SKIPIF1<0在SKIPIF1<0單調(diào)遞增,在SKIPIF1<0單調(diào)遞減SKIPIF1<0,SKIPIF1<0,SKIPIF1<0則SKIPIF1<0,即SKIPIF1<0故選:C【典例1-2】(2020下·浙江衢州·高三統(tǒng)考)已知SKIPIF1<0的面積為SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0的最小值為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【分析】將原式分離常數(shù),然后利用正弦定理進行邊角互化,化簡為對勾函數(shù),利用不等式求最值即可.【詳解】解:SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0SKIPIF1<0=SKIPIF1<0=SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時,等號成立.故選:B.【變式1-1】(2021上·全國·高三校聯(lián)考階段練習(xí))已知SKIPIF1<0,則SKIPIF1<0的取值范圍是(
).A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】由SKIPIF1<0,根據(jù)基本不等式得SKIPIF1<0,根據(jù)SKIPIF1<0,SKIPIF1<0,構(gòu)造對勾函數(shù),然后利用對勾函數(shù)的單調(diào)性判斷最值.【詳解】因為SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時取等號,因為SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,令SKIPIF1<0,根據(jù)對勾函數(shù)的單調(diào)性可知,當(dāng)SKIPIF1<0時,函數(shù)取得最小值SKIPIF1<0,當(dāng)SKIPIF1<0或SKIPIF1<0時,函數(shù)取得最大值SKIPIF1<0,故SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,同理SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0.故選:C.【變式1-2】(2020上·河南·高三校聯(lián)考階段練習(xí))函數(shù)SKIPIF1<0的最小值為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【解析】先化簡函數(shù)為SKIPIF1<0,再進行換元SKIPIF1<0,結(jié)合t的范圍,根據(jù)對勾函數(shù)的單調(diào)性求SKIPIF1<0的最小值即得結(jié)果.【詳解】因為SKIPIF1<0,定義域為SKIPIF1<0.令SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,驗證可知利用基本不等式求最值時等號不成立.故根據(jù)對勾函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,可知SKIPIF1<0在SKIPIF1<0上遞減,所以SKIPIF1<0時,SKIPIF1<0,此時SKIPIF1<0,故函數(shù)SKIPIF1<0的最小值為SKIPIF1<0.故選:C.【變式1-3】(2022上·上海徐匯·高三上海市第二中學(xué)??茧A段練習(xí))若SKIPIF1<0(x,SKIPIF1<0)最大值記為SKIPIF1<0,則SKIPIF1<0的最小值為A.0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【解析】設(shè)SKIPIF1<0,設(shè)SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,由對勾函數(shù)可得SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,則SKIPIF1<0,討論SKIPIF1<0與SKIPIF1<0的大小關(guān)系,進而求解即可【詳解】設(shè)SKIPIF1<0,因為SKIPIF1<0,所以SKIPIF1<0,設(shè)SKIPIF1<0,SKIPIF1<0,由對勾函數(shù)的性質(zhì)可知SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,所以SKIPIF1<0,即SKIPIF1<0,因為SKIPIF1<0(x,SKIPIF1<0)最大值記為SKIPIF1<0,所以當(dāng)SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0;當(dāng)SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0的最小值為SKIPIF1<0故選:D.題型03常數(shù)代換型【解題攻略】利用常數(shù)SKIPIF1<0代換法,可以代通過“分子分母相約和相乘”,相約去或者構(gòu)造出“倒數(shù)”關(guān)系。多稱之為“1”的代換條件和結(jié)論有“分子分母”特征;(2)可以乘積出現(xiàn)對構(gòu)型,再用均值不等式。注意取等條件結(jié)構(gòu)形式:(1)SKIPIF1<0求SKIPIF1<0(2)SKIPIF1<0求SKIPIF1<0【典例1-1】(2023·江西·校聯(lián)考一模)已知SKIPIF1<0,SKIPIF1<0,SKIPIF1<0是正實數(shù),且SKIPIF1<0,則SKIPIF1<0最小值為.【答案】SKIPIF1<0【分析】由于SKIPIF1<0,SKIPIF1<0,SKIPIF1<0是正實數(shù),且SKIPIF1<0,所以先結(jié)合基本不等式“1”的代換求SKIPIF1<0的最小值,得SKIPIF1<0,則SKIPIF1<0,再根據(jù)基本不等式湊項法求SKIPIF1<0的最小值,即可求得SKIPIF1<0的最小值.【詳解】解:SKIPIF1<0,由于SKIPIF1<0,SKIPIF1<0,SKIPIF1<0是正實數(shù),且SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0時等號成立,則SKIPIF1<0的最小值為SKIPIF1<0,所以SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0時等號成立,則SKIPIF1<0最小值為SKIPIF1<0.故答案為:SKIPIF1<0.【典例1-2】(2019上·山東濰坊·壽光現(xiàn)代中學(xué)??茧A段練習(xí))已知正實數(shù)SKIPIF1<0滿足SKIPIF1<0,則SKIPIF1<0的最小值為(
)A.10 B.11 C.13 D.21【答案】B【分析】利用“乘1法”與基本不等式的性質(zhì)即可得出.【詳解】解:正實數(shù)SKIPIF1<0滿足SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0SKIPIF1<0,即:SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0且SKIPIF1<0,即SKIPIF1<0時取等號,所以SKIPIF1<0的最小值為11.故選:B.【變式1-1】(2023上·上海徐匯·高三上海市第二中學(xué)??计谥校┮阎猄KIPIF1<0,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0的最小值為.【答案】SKIPIF1<0【分析】將SKIPIF1<0化為SKIPIF1<0后與SKIPIF1<0相乘,化簡后再利用基本不等式求解.【詳解】由題意得:SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以得:SKIPIF1<0,所以:SKIPIF1<0當(dāng)且僅當(dāng)SKIPIF1<0時,即SKIPIF1<0時取等號.故最小值為:SKIPIF1<0.故答案為:SKIPIF1<0.【變式1-2】(2023下·湖南株洲·統(tǒng)考)設(shè)正實數(shù)SKIPIF1<0滿足SKIPIF1<0,則SKIPIF1<0的最小值為.【答案】SKIPIF1<0/SKIPIF1<0【分析】由題知SKIPIF1<0,再根據(jù)基本不等式“1”的用法求解即可.【詳解】因為正數(shù)SKIPIF1<0滿足SKIPIF1<0,所以,SKIPIF1<0,所以,SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0時等號成立,所以,SKIPIF1<0的最小值為SKIPIF1<0.故答案為:SKIPIF1<0【變式1-3】(2023上·上海松江·高三校考)已知SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0取得最小值時SKIPIF1<0的值是.【答案】SKIPIF1<0/SKIPIF1<0【分析】變換SKIPIF1<0,展開利用均值不等式計算得到答案.【詳解】SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0時等號成立.故答案為:SKIPIF1<0題型04積與和型【解題攻略】積與和型,如果滿足有和有積無常數(shù),則可以轉(zhuǎn)化為常數(shù)代換型。形如SKIPIF1<0,可以通過同除ab,化為SKIPIF1<0構(gòu)造“1”的代換求解【典例1-1】(2021·全國·高三測試)已知SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0,則當(dāng)SKIPIF1<0取得最小值時,SKIPIF1<0(
)A.16 B.6 C.18 D.12【答案】B【分析】根據(jù)已知條件可得SKIPIF1<0,將SKIPIF1<0展開利用基本不等式即可求解.【詳解】因為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0所以SKIPIF1<0所以SKIPIF1<0.當(dāng)且僅當(dāng)SKIPIF1<0即SKIPIF1<0時取等號,所以當(dāng)SKIPIF1<0取得最小值時,SKIPIF1<0故選:B.【典例1-2】(2021·湖南岳陽·高三聯(lián)考)已知SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0的最小值是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】由已知條件變形可得SKIPIF1<0,將代數(shù)式SKIPIF1<0與SKIPIF1<0相乘,展開后利用基本不等式可求得SKIPIF1<0的最小值.【詳解】因為SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0,可得SKIPIF1<0,所以,SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時,等號成立,故SKIPIF1<0的最小值是SKIPIF1<0.故選:C.【變式1-1】(2020·重慶市暨華中學(xué)校高三階段)已知SKIPIF1<0,SKIPIF1<0且SKIPIF1<0,則SKIPIF1<0的最小值為()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】將已知等式變形為SKIPIF1<0,將SKIPIF1<0與SKIPIF1<0相乘,展開后利用基本不等式可求得SKIPIF1<0的最小值.【詳解】因為SKIPIF1<0,SKIPIF1<0且SKIPIF1<0,則SKIPIF1<0,可得SKIPIF1<0,所以,SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時,等號成立,因此,SKIPIF1<0的最小值為SKIPIF1<0.故選:C.【變式1-2】(2021·山東威?!じ呷?迹┤鬝KIPIF1<0,且SKIPIF1<0,則SKIPIF1<0的最小值為(
)A.18 B.15 C.20 D.13【答案】A【分析】變形條件為SKIPIF1<0,利用“1”的技巧變形待求式,運用均值不等式即可求解.【詳解】由題意可得SKIPIF1<0,則SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,且SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0時,等號成立,所以SKIPIF1<0的最小值為SKIPIF1<0,故選:A【變式1-3】(2022·全國·高三一專題練習(xí))已知SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0的最小值為(
)A.2 B.3 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【詳解】根據(jù)題意,SKIPIF1<0,∴SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0且SKIPIF1<0時等號成立,∴SKIPIF1<0的最小值為SKIPIF1<0,故選:D.題型05積與和互化解不等式型【解題攻略】積與和型,如果滿足有和有積有常數(shù),則可以轉(zhuǎn)化為解不等式型。形形如SKIPIF1<0求SKIPIF1<0型,可以對“積pxy”部分用均值,再解不等式,注意湊配對應(yīng)的“和”的系數(shù)系數(shù),如下:SKIPIF1<0【典例1-1】(2022秋·云南·校聯(lián)考階段練習(xí))已知正數(shù)SKIPIF1<0、SKIPIF1<0滿足SKIPIF1<0,則SKIPIF1<0的最大值為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】利用基本不等式可得出關(guān)于SKIPIF1<0的不等式,即可解得SKIPIF1<0的最大值.【詳解】由題意得SKIPIF1<0,得SKIPIF1<0,即SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時,等號成立.因此,SKIPIF1<0的最大值為為SKIPIF1<0.故選:C.【典例1-2】(2023春·貴州·高三校聯(lián)考階段練習(xí))已知SKIPIF1<0,則SKIPIF1<0的最大值為(
)A.1 B.2 C.SKIPIF1<0 D.4【答案】D【分析】先化簡把SKIPIF1<0單獨放在一側(cè),再應(yīng)用重要不等式把未知數(shù)都轉(zhuǎn)化為SKIPIF1<0,計算求解即可.【詳解】SKIPIF1<0可變形為SKIPIF1<0,因為SKIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時,SKIPIF1<0取到最大值4.故選:D.【變式1-1】(2022秋·廣東深圳·高三深圳外國語學(xué)校??计谀┮阎€SKIPIF1<0,則SKIPIF1<0的最大值為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【分析】利用SKIPIF1<0,可求SKIPIF1<0的最大值.【詳解】SKIPIF1<0曲線SKIPIF1<0,SKIPIF1<0,又SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時取等號,SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0的最大值為SKIPIF1<0.故選:SKIPIF1<0.【變式1-2】(2021·重慶市實驗中學(xué)高一階段練習(xí))設(shè)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則ab的最小值是(
)A.4 B.9 C.16 D.25【答案】D【分析】利用均值不等式,把方程轉(zhuǎn)化為不等式,解之即可.【詳解】∵SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0,∴SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時,等號成立.故選:D【變式1-3】(2021·安徽·霍邱縣第一中學(xué)高一階段練習(xí))若SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0的取值范圍(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】化簡整理式子可得SKIPIF1<0,再利用基本不等式即可求解.【詳解】由SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0,即SKIPIF1<0,由基本不等式可得SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時,等號成立,整理得SKIPIF1<0,即SKIPIF1<0,因為SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0.故選:D題型06構(gòu)造分母和定型【解題攻略】對于分數(shù)型求最值,如果復(fù)合a+b=t,求SKIPIF1<0型,則可以湊配(a+m)+(b+n)=t+m+n,再利用“1”的代換來求解。【典例1-1】(2022上·福建福州·高三福建省福州第一中學(xué)??迹┤羧齻€正數(shù)SKIPIF1<0滿足SKIPIF1<0,則SKIPIF1<0的最小值為.【答案】SKIPIF1<0/SKIPIF1<0【分析】利用基本不等式求得正確答案.【詳解】依題意SKIPIF1<0為正數(shù),SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0時等號成立.故答案為:SKIPIF1<0【典例1-2】(2023·全國·高三專題練習(xí))已知SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0,那么SKIPIF1<0的最小值為(
)A.SKIPIF1<0 B.2 C.SKIPIF1<0 D.4【答案】C【分析】由題意可得SKIPIF1<0,再由基本不等式求解即可求出答案.【詳解】因為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0SKIPIF1<0SKIPIF1<0.當(dāng)且僅當(dāng)SKIPIF1<0即SKIPIF1<0時取等.故選:C.【變式1-1】(2022秋·安徽蕪湖·高三??茧A段練習(xí))已知實數(shù)SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0的最小值是(
)A.0 B.1 C.2 D.4【答案】B【分析】根據(jù)題意,將所求式子進行整理變形,再利用基本不等式即可求解.【詳解】SKIPIF1<0,等式SKIPIF1<0恒成立,SKIPIF1<0,由于SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時,即SKIPIF1<0時取等號.SKIPIF1<0,SKIPIF1<0,故SKIPIF1<0的最小值為1.故選:SKIPIF1<0.【變式1-2】(2023·浙江·統(tǒng)考模擬預(yù)測)已知正實數(shù)SKIPIF1<0滿足SKIPIF1<0,則SKIPIF1<0的最小值為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】利用基本不等式“1”的妙用求解.【詳解】由題可得,SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0時,取得等號,故選:C.【變式1-3】(2022上·山東·高三利津縣高級中學(xué)校聯(lián)考階段練習(xí))已知正實數(shù)SKIPIF1<0,SKIPIF1<0滿足SKIPIF1<0,則SKIPIF1<0的最小值為.【答案】SKIPIF1<0【分析】由SKIPIF1<0,結(jié)合基本不等式求解即可.【詳解】因為SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,因為SKIPIF1<0為正實數(shù),所以SKIPIF1<0,所以SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時等號成立,即SKIPIF1<0時等號成立,所以SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時等號成立,所以SKIPIF1<0的最小值為SKIPIF1<0,故答案為:SKIPIF1<0.題型07湊配系數(shù)構(gòu)造分母和定型【解題攻略】對于分數(shù)型求最值,如果復(fù)合pa+qb=t,求SKIPIF1<0型,則可以湊配(a+m)+(b+n)=h,再利用“1”的代換來求解。其中結(jié)合所給與所求a、b的系數(shù),可以任意調(diào)換,來進行變換湊配?!镜淅?-1】(2023·全國·高三題練習(xí))已知SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0的最小值為.【答案】12【分析】SKIPIF1<0,展開后利用基本不等式可求.【詳解】∵SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0,∴SKIPIF1<0SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0時取等號,故SKIPIF1<0的最小值為12.故答案為:12.【典例1-2】(2023秋·全國·高三專題練習(xí))已知SKIPIF1<0且SKIPIF1<0,若SKIPIF1<0恒成立,則實數(shù)SKIPIF1<0的范圍是.【答案】SKIPIF1<0【分析】依題意得SKIPIF1<0,利用基本不等式“1”的代換求出SKIPIF1<0的最小值,即可得解.【詳解】因為SKIPIF1<0且SKIPIF1<0,若SKIPIF1<0恒成立,則SKIPIF1<0,又SKIPIF1<0SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0時等號成立,所以SKIPIF1<0,即實數(shù)SKIPIF1<0的取值范圍是SKIPIF1<0.故答案為:SKIPIF1<0.【變式1-1】(2023·全國·高三專題練習(xí))已知SKIPIF1<0,SKIPIF1<0且SKIPIF1<0,若SKIPIF1<0恒成立,則實數(shù)SKIPIF1<0的范圍是.【答案】SKIPIF1<0【分析】依題意可得SKIPIF1<0,利用乘“1”法及基本不等式求出SKIPIF1<0的最小值,即可得解.【詳解】因為SKIPIF1<0,SKIPIF1<0且SKIPIF1<0,若SKIPIF1<0恒成立,則SKIPIF1<0,又SKIPIF1<0SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0時,等號成立,SKIPIF1<0,即實數(shù)SKIPIF1<0的取值范圍是SKIPIF1<0.故答案為:SKIPIF1<0.【變式1-2】(2023·全國·高三專題練習(xí))若三個正數(shù)SKIPIF1<0滿足SKIPIF1<0,則SKIPIF1<0的最小值為.【答案】SKIPIF1<0/SKIPIF1<0【分析】利用基本不等式求得正確答案.【詳解】依題意SKIPIF1<0為正數(shù),SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0時等號成立.故答案為:SKIPIF1<0【變式1-3】(2021·三課時練習(xí))已知SKIPIF1<0,則SKIPIF1<0的最小值為.【答案】SKIPIF1<0【分析】首先利用“1”的等價變形,SKIPIF1<0,再利用基本不等式求最小值.【詳解】SKIPIF1<0,SKIPIF1<0SKIPIF1<0SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0是等號成立,所以SKIPIF1<0的最小值是SKIPIF1<0題型08換元構(gòu)造分母和定型【解題攻略】換元型構(gòu)造分母和定型:形如SKIPIF1<0型,則可以通過換元分母,再利用“1”的代換來求解?!镜淅?-1】(2023·吉林·長春十一高校聯(lián)考模擬預(yù)測)已知正實數(shù)x,y滿足SKIPIF1<0,則SKIPIF1<0的小值為.【答案】SKIPIF1<0【分析】利用待定系數(shù)法可得出SKIPIF1<0,與SKIPIF1<0相乘,展開后利用基本不等式可求得SKIPIF1<0的最小值.【詳解】設(shè)SKIPIF1<0,可得SKIPIF1<0,解得SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時,即SKIPIF1<0等號成立,則SKIPIF1<0的小值為SKIPIF1<0.故答案為:9.【典例1-2】(2023·全國·高三專題練習(xí))已知SKIPIF1<0且SKIPIF1<0,則SKIPIF1<0的最小值為.【答案】SKIPIF1<0【分析】令SKIPIF1<0,SKIPIF1<0,將已知條件簡化為SKIPIF1<0;將SKIPIF1<0用SKIPIF1<0表示,分離常數(shù),再使用“乘1法”轉(zhuǎn)化后利用基本不等式即可求得最小值.【詳解】解:令SKIPIF1<0,SKIPIF1<0,因為SKIPIF1<0,所以SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0時取“SKIPIF1<0”,所以SKIPIF1<0的最小值為SKIPIF1<0.故答案為:SKIPIF1<0.【變式1-1】(2023·全國·高三專題練習(xí))已知SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0的最小值是.【答案】SKIPIF1<0【分析】將SKIPIF1<0用SKIPIF1<0與SKIPIF1<0表示,湊配常數(shù)1,使用“1”的代換與基本不等式求解.【詳解】設(shè)SKIPIF1<0,由對應(yīng)系數(shù)相等得SKIPIF1<0,得SKIPIF1<0所以SKIPIF1<0整理得SKIPIF1<0即SKIPIF1<0所以SKIPIF1<0SKIPIF1<0.經(jīng)驗證當(dāng)SKIPIF1<0時,等號可取到.故答案為:SKIPIF1<0【變式1-2】(2023·全國·高三專題練習(xí))已知正數(shù)SKIPIF1<0滿足SKIPIF1<0,則SKIPIF1<0的最小值為.【答案】SKIPIF1<0【分析】換元SKIPIF1<0后可得SKIPIF1<0,再由SKIPIF1<0及“1”的技巧化簡,利用均值不等式求解.【詳解】令SKIPIF1<0,則SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0時,解得SKIPIF1<0時等號成立,故SKIPIF1<0的最小值為SKIPIF1<0.故答案為:SKIPIF1<0題型09分子與分母互消型【解題攻略】滿足SKIPIF1<0一般情況下可以通過“萬能K法”轉(zhuǎn)化求解設(shè)K法的三個步驟:⑴、問誰設(shè)誰:求誰,誰就是K;⑵、代入整理:整理成某個變量的一元二次方程(或不等式);⑶、確認最值:方程有解(或不等式用均值放縮),≥0確定最值【典例1-1】(2021秋·高三單元測試)已知正數(shù)SKIPIF1<0,SKIPIF1<0滿足SKIPIF1<0,則SKIPIF1<0的最小值是.【答案】SKIPIF1<0【分析】設(shè)SKIPIF1<0,則SKIPIF1<0,計算SKIPIF1<0利用基本不等式可得最小值,即可得SKIPIF1<0的最小值,解不等式可得SKIPIF1<0的最小值,即SKIPIF1<0的最小值.【詳解】因為SKIPIF1<0,SKIPIF1<0則SKIPIF1<0,設(shè)SKIPIF1<0,則SKIPIF1<0,由SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0即SKIPIF1<0時等號成立,由SKIPIF1<0即SKIPIF1<0,解得:SKIPIF1<0或SKIPIF1<0(舍)所以SKIPIF1<0,SKIPIF1<0的最小值是SKIPIF1<0,故答案為:SKIPIF1<0.【典例1-2】(2022·全國·高三專題練習(xí))已知正數(shù)SKIPIF1<0,SKIPIF1<0滿足SKIPIF1<0,則SKIPIF1<0的最大值是.【答案】SKIPIF1<0【分析】設(shè)SKIPIF1<0,則SKIPIF1<0,同時根據(jù)SKIPIF1<0均為正數(shù)確定SKIPIF1<0的取值范圍,利用基本不等式可求得SKIPIF1<0,解不等式可求得結(jié)果.【詳解】設(shè)SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0均為正數(shù),SKIPIF1<0,解得:SKIPIF1<0;則SKIPIF1<0(當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0時取等號),又SKIPIF1<0,SKIPIF1<0當(dāng)SKIPIF1<0,SKIPIF1<0時,SKIPIF1<0取得最小值SKIPIF1<0;SKIPIF1<0,即SKIPIF1<0,解得:SKIPIF1<0,滿足SKIPIF1<0,SKIPIF1<0的最大值為SKIPIF1<0.故答案為:9【變式1-1】(2023·全國·高三專題練習(xí))已知SKIPIF1<0為正數(shù),且SKIPIF1<0,則SKIPIF1<0的最大值為.【答案】SKIPIF1<0【分析】等式化為SKIPIF1<0,兩邊平方,令SKIPIF1<0,由基本不等式可得SKIPIF1<0,即可求出.【詳解】因為SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,而SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時,等號成立,所以SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0的最大值為8.故答案為:SKIPIF1<0.【變式1-2】(2023·全國·高三專題練習(xí))已知SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0的最小值是(
)A.8 B.7 C.6 D.5【答案】A【分析】設(shè)SKIPIF1<0,將SKIPIF1<0變形整理,用含k的式子表示,這樣會出現(xiàn)互為倒數(shù)的形式,再利用基本不等式即可求解.【詳解】解:設(shè)SKIPIF1<0,則SKIPIF1<0,∴SKIPIF1<0∴SKIPIF1<0整理得:SKIPIF1<0,由SKIPIF1<0得SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時取“=”.∴SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0(舍去),即當(dāng)SKIPIF1<0時,SKIPIF1<0取得最小值8,故選:A.【變式1-3】(2023·全國·高三專題練習(xí))已知正實數(shù)SKIPIF1<0,SKIPIF1<0滿足SKIPIF1<0,則SKIPIF1<0的最大值為(
)A.SKIPIF1<0 B.1 C.2 D.9【答案】D【分析】利用基本不等式以及一元二次不等式求解.【詳解】因為SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0所以SKIPIF1<0,解得SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0時等號成立,所以當(dāng)SKIPIF1<0時SKIPIF1<0有最大值為9.故選:D.題型10“1”代換綜合型【典例1-1】(2022上·遼寧大連·大連二十四中??迹┮阎猄KIPIF1<0且SKIPIF1<0,則SKIPIF1<0的最小值等于.【答案】SKIPIF1<0/SKIPIF1<0【分析】利用基本不等式中“1”的妙用即可求解.【詳解】因為SKIPIF1<0且SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0且SKIPIF1<0,即SKIPIF1<0,等號成立,故SKIPIF1<0的最小值等于SKIPIF1<0.故答案為:SKIPIF1<0.【典例1-2】(2021上·重慶沙坪壩·高三重慶市第七中學(xué)校??迹┤魧崝?shù)SKIPIF
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度創(chuàng)意園區(qū)個人租賃合同書3篇
- 2025年度農(nóng)產(chǎn)品自產(chǎn)自銷農(nóng)村電商扶貧合作合同3篇
- 2025年度汽車維修企業(yè)員工績效考核與激勵合同范本3篇
- 二零二五年度網(wǎng)絡(luò)紅人經(jīng)紀合作合同范本3篇
- 二零二五年度風(fēng)力發(fā)電工程質(zhì)保金合同規(guī)定2篇
- 2025年度公租房合同(含租戶信息保密條款)2篇
- 二零二五年度農(nóng)村墓地墓區(qū)照明系統(tǒng)設(shè)計與安裝協(xié)議
- 2025年度文化產(chǎn)業(yè)股權(quán)置換及合作協(xié)議書3篇
- 二零二五年度企業(yè)股份分割與股權(quán)激勵實施協(xié)議書2篇
- 二零二五年度消費股東合作協(xié)議及創(chuàng)新業(yè)務(wù)拓展2篇
- 城市園林綠化養(yǎng)護管理標準規(guī)范
- 腳手架工程安全管理風(fēng)險辨識及防范措施
- 廈門物業(yè)管理若干規(guī)定
- 2023年10月自考00055企業(yè)會計學(xué)真題及答案含評分標準
- 【語文】上海市三年級上冊期末復(fù)習(xí)試題(含答案)
- 遙感技術(shù)基礎(chǔ)第二版課后答案
- 八段錦操作評分標準
- 十六烷安全技術(shù)說明書(msds)
- Stevens-Johnson綜合征及中毒性表皮壞死松解癥課件
- 醫(yī)療廢物處置流程圖3個
- 通信專業(yè)實務(wù):傳輸與接入(有線)
評論
0/150
提交評論