




版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2021-2022高考數(shù)學(xué)模擬試卷注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫(xiě)在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)。回答非選擇題時(shí),將答案寫(xiě)在答題卡上,寫(xiě)在本試卷上無(wú)效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知函數(shù),,的零點(diǎn)分別為,,,則()A. B.C. D.2.已知命題,且是的必要不充分條件,則實(shí)數(shù)的取值范圍為()A. B. C. D.3.在中,為上異于,的任一點(diǎn),為的中點(diǎn),若,則等于()A. B. C. D.4.下圖是來(lái)自古希臘數(shù)學(xué)家希波克拉底所研究的幾何圖形,此圖由三個(gè)半圓構(gòu)成,三個(gè)半圓的直徑分別為直角三角形的斜邊、直角邊,已知以直角邊為直徑的半圓的面積之比為,記,則()A. B. C.1 D.5.設(shè)為自然對(duì)數(shù)的底數(shù),函數(shù),若,則()A. B. C. D.6.已知雙曲線的右焦點(diǎn)為,過(guò)的直線交雙曲線的漸近線于兩點(diǎn),且直線的傾斜角是漸近線傾斜角的2倍,若,則該雙曲線的離心率為()A. B. C. D.7.已知的內(nèi)角、、的對(duì)邊分別為、、,且,,為邊上的中線,若,則的面積為()A. B. C. D.8.在空間直角坐標(biāo)系中,四面體各頂點(diǎn)坐標(biāo)分別為:.假設(shè)螞蟻窩在點(diǎn),一只螞蟻從點(diǎn)出發(fā),需要在,上分別任意選擇一點(diǎn)留下信息,然后再返回點(diǎn).那么完成這個(gè)工作所需要走的最短路徑長(zhǎng)度是()A. B. C. D.9.已知函數(shù)的圖像向右平移個(gè)單位長(zhǎng)度后,得到的圖像關(guān)于軸對(duì)稱,,當(dāng)取得最小值時(shí),函數(shù)的解析式為()A. B.C. D.10.執(zhí)行如圖所示的程序框圖,則輸出的值為()A. B. C. D.11.定義在R上的偶函數(shù)f(x)滿足f(x+2)=f(x),當(dāng)x∈[﹣3,﹣2]時(shí),f(x)=﹣x﹣2,則()A. B.f(sin3)<f(cos3)C. D.f(2020)>f(2019)12.在精準(zhǔn)扶貧工作中,有6名男干部、5名女干部,從中選出2名男干部、1名女干部組成一個(gè)扶貧小組分到某村工作,則不同的選法共有()A.60種 B.70種 C.75種 D.150種二、填空題:本題共4小題,每小題5分,共20分。13.(x+y)(2x-y)5的展開(kāi)式中x3y3的系數(shù)為_(kāi)_______.14.已知實(shí)數(shù)滿足,則的最小值是______________.15.函數(shù)的圖像如圖所示,則該函數(shù)的最小正周期為_(kāi)_______.16.在三棱錐P-ABC中,,,,三個(gè)側(cè)面與底面所成的角均為,三棱錐的內(nèi)切球的表面積為_(kāi)________.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知等差數(shù)列滿足,.(l)求等差數(shù)列的通項(xiàng)公式;(2)設(shè),求數(shù)列的前項(xiàng)和.18.(12分)在直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,點(diǎn)的極坐標(biāo)為.(1)求的直角坐標(biāo)方程和的直角坐標(biāo);(2)設(shè)與交于,兩點(diǎn),線段的中點(diǎn)為,求.19.(12分)已知函數(shù).(Ⅰ)求函數(shù)的極值;(Ⅱ)若,且,求證:.20.(12分)如圖,在三棱柱中,已知四邊形為矩形,,,,的角平分線交于.(1)求證:平面平面;(2)求二面角的余弦值.21.(12分)已知曲線C的極坐標(biāo)方程是.以極點(diǎn)為平面直角坐標(biāo)系的原點(diǎn),極軸為x軸的正半軸,建立平面直角坐標(biāo)系,直線l的參數(shù)方程是:(是參數(shù)).(1)若直線l與曲線C相交于A、B兩點(diǎn),且,試求實(shí)數(shù)m值.(2)設(shè)為曲線上任意一點(diǎn),求的取值范圍.22.(10分)已知函數(shù),的最大值為.求實(shí)數(shù)b的值;當(dāng)時(shí),討論函數(shù)的單調(diào)性;當(dāng)時(shí),令,是否存在區(qū)間,,使得函數(shù)在區(qū)間上的值域?yàn)??若存在,求?shí)數(shù)k的取值范圍;若不存在,請(qǐng)說(shuō)明理由.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.C【解析】
轉(zhuǎn)化函數(shù),,的零點(diǎn)為與,,的交點(diǎn),數(shù)形結(jié)合,即得解.【詳解】函數(shù),,的零點(diǎn),即為與,,的交點(diǎn),作出與,,的圖象,如圖所示,可知故選:C【點(diǎn)睛】本題考查了數(shù)形結(jié)合法研究函數(shù)的零點(diǎn),考查了學(xué)生轉(zhuǎn)化劃歸,數(shù)形結(jié)合的能力,屬于中檔題.2.D【解析】
求出命題不等式的解為,是的必要不充分條件,得是的子集,建立不等式求解.【詳解】解:命題,即:,是的必要不充分條件,,,解得.實(shí)數(shù)的取值范圍為.故選:.【點(diǎn)睛】本題考查根據(jù)充分、必要條件求參數(shù)范圍,其思路方法:(1)解決此類問(wèn)題一般是把充分條件、必要條件或充要條件轉(zhuǎn)化為集合之間的關(guān)系,然后根據(jù)集合之間關(guān)系列出關(guān)于參數(shù)的不等式(組)求解.(2)求解參數(shù)的取值范圍時(shí),一定要注意區(qū)間端點(diǎn)值的檢驗(yàn).3.A【解析】
根據(jù)題意,用表示出與,求出的值即可.【詳解】解:根據(jù)題意,設(shè),則,又,,,故選:A.【點(diǎn)睛】本題主要考查了平面向量基本定理的應(yīng)用,關(guān)鍵是要找到一組合適的基底表示向量,是基礎(chǔ)題.4.D【解析】
根據(jù)以直角邊為直徑的半圓的面積之比求得,即的值,由此求得和的值,進(jìn)而求得所求表達(dá)式的值.【詳解】由于直角邊為直徑的半圓的面積之比為,所以,即,所以,所以.故選:D【點(diǎn)睛】本小題主要考查同角三角函數(shù)的基本關(guān)系式,考查二倍角公式,屬于基礎(chǔ)題.5.D【解析】
利用與的關(guān)系,求得的值.【詳解】依題意,所以故選:D【點(diǎn)睛】本小題主要考查函數(shù)值的計(jì)算,屬于基礎(chǔ)題.6.B【解析】
先求出直線l的方程為y(x﹣c),與y=±x聯(lián)立,可得A,B的縱坐標(biāo),利用,求出a,b的關(guān)系,即可求出該雙曲線的離心率.【詳解】雙曲線1(a>b>0)的漸近線方程為y=±x,∵直線l的傾斜角是漸近線OA傾斜角的2倍,∴kl,∴直線l的方程為y(x﹣c),與y=±x聯(lián)立,可得y或y,∵,∴2?,∴ab,∴c=2b,∴e.故選B.【點(diǎn)睛】本題考查雙曲線的簡(jiǎn)單性質(zhì),考查向量知識(shí),考查學(xué)生的計(jì)算能力,屬于中檔題.7.B【解析】
延長(zhǎng)到,使,連接,則四邊形為平行四邊形,根據(jù)余弦定理可求出,進(jìn)而可得的面積.【詳解】解:延長(zhǎng)到,使,連接,則四邊形為平行四邊形,則,,,在中,則,得,.故選:B.【點(diǎn)睛】本題考查余弦定理的應(yīng)用,考查三角形面積公式的應(yīng)用,其中根據(jù)中線作出平行四邊形是關(guān)鍵,是中檔題.8.C【解析】
將四面體沿著劈開(kāi),展開(kāi)后最短路徑就是的邊,在中,利用余弦定理即可求解.【詳解】將四面體沿著劈開(kāi),展開(kāi)后如下圖所示:最短路徑就是的邊.易求得,由,知,由余弦定理知其中,∴故選:C【點(diǎn)睛】本題考查了余弦定理解三角形,需熟記定理的內(nèi)容,考查了學(xué)生的空間想象能力,屬于中檔題.9.A【解析】
先求出平移后的函數(shù)解析式,結(jié)合圖像的對(duì)稱性和得到A和.【詳解】因?yàn)殛P(guān)于軸對(duì)稱,所以,所以,的最小值是.,則,所以.【點(diǎn)睛】本題主要考查三角函數(shù)的圖像變換及性質(zhì).平移圖像時(shí)需注意x的系數(shù)和平移量之間的關(guān)系.10.B【解析】
列出每一次循環(huán),直到計(jì)數(shù)變量滿足退出循環(huán).【詳解】第一次循環(huán):;第二次循環(huán):;第三次循環(huán):,退出循環(huán),輸出的為.故選:B.【點(diǎn)睛】本題考查由程序框圖求輸出的結(jié)果,要注意在哪一步退出循環(huán),是一道容易題.11.B【解析】
根據(jù)函數(shù)的周期性以及x∈[﹣3,﹣2]的解析式,可作出函數(shù)f(x)在定義域上的圖象,由此結(jié)合選項(xiàng)判斷即可.【詳解】由f(x+2)=f(x),得f(x)是周期函數(shù)且周期為2,先作出f(x)在x∈[﹣3,﹣2]時(shí)的圖象,然后根據(jù)周期為2依次平移,并結(jié)合f(x)是偶函數(shù)作出f(x)在R上的圖象如下,選項(xiàng)A,,所以,選項(xiàng)A錯(cuò)誤;選項(xiàng)B,因?yàn)?,所以,所以f(sin3)<f(﹣cos3),即f(sin3)<f(cos3),選項(xiàng)B正確;選項(xiàng)C,,所以,即,選項(xiàng)C錯(cuò)誤;選項(xiàng)D,,選項(xiàng)D錯(cuò)誤.故選:B.【點(diǎn)睛】本題考查函數(shù)性質(zhì)的綜合運(yùn)用,考查函數(shù)值的大小比較,考查數(shù)形結(jié)合思想,屬于中檔題.12.C【解析】
根據(jù)題意,分別計(jì)算“從6名男干部中選出2名男干部”和“從5名女干部中選出1名女干部”的取法數(shù),由分步計(jì)數(shù)原理計(jì)算可得答案.【詳解】解:根據(jù)題意,從6名男干部中選出2名男干部,有種取法,從5名女干部中選出1名女干部,有種取法,則有種不同的選法;故選:C.【點(diǎn)睛】本題考查排列組合的應(yīng)用,涉及分步計(jì)數(shù)原理問(wèn)題,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13.40【解析】
先求出的展開(kāi)式的通項(xiàng),再求出即得解.【詳解】設(shè)的展開(kāi)式的通項(xiàng)為,令r=3,則,令r=2,則,所以展開(kāi)式中含x3y3的項(xiàng)為.所以x3y3的系數(shù)為40.故答案為:40【點(diǎn)睛】本題主要考查二項(xiàng)式定理求指定項(xiàng)的系數(shù),意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平.14.【解析】
先畫(huà)出不等式組對(duì)應(yīng)的可行域,再利用數(shù)形結(jié)合分析解答得解.【詳解】畫(huà)出不等式組表示的可行域如圖陰影區(qū)域所示.由題得y=-3x+z,它表示斜率為-3,縱截距為z的直線系,平移直線,易知當(dāng)直線經(jīng)過(guò)點(diǎn)時(shí),直線的縱截距最小,目標(biāo)函數(shù)取得最小值,且.故答案為:-8【點(diǎn)睛】本題主要考查線性規(guī)劃問(wèn)題,意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平和數(shù)形結(jié)合分析能力.15.【解析】
根據(jù)圖象利用,先求出的值,結(jié)合求出,然后利用周期公式進(jìn)行求解即可.【詳解】解:由,得,,,則,,,即,則函數(shù)的最小正周期,故答案為:8【點(diǎn)睛】本題主要考查三角函數(shù)周期的求解,結(jié)合圖象求出函數(shù)的解析式是解決本題的關(guān)鍵.16.【解析】
先確定頂點(diǎn)在底面的射影,再求出三棱錐的高以及各側(cè)面三角形的高,利用各個(gè)面的面積和乘以內(nèi)切球半徑等于三棱錐的體積的三倍即可解決.【詳解】設(shè)頂點(diǎn)在底面上的射影為H,H是三角形ABC的內(nèi)心,內(nèi)切圓半徑.三個(gè)側(cè)面與底面所成的角均為,,,的高,,設(shè)內(nèi)切球的半徑為R,∴,內(nèi)切球表面積.故答案為:.【點(diǎn)睛】本題考查三棱錐內(nèi)切球的表面積問(wèn)題,考查學(xué)生空間想象能力,本題解題關(guān)鍵是找到內(nèi)切球的半徑,是一道中檔題.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(1);(2).【解析】試題分析:(1)設(shè)等差數(shù)列滿的首項(xiàng)為,公差為,代入兩等式可解。(2)由(1),代入得,所以通過(guò)裂項(xiàng)求和可求得。試題解析:(1)設(shè)等差數(shù)列的公差為,則由題意可得,解得.所以.(2)因?yàn)?,所?所以.18.(1),(2)【解析】
(1)利用互化公式把曲線C化成直角坐標(biāo)方程,把點(diǎn)P的極坐標(biāo)化成直角坐標(biāo);(2)把直線l的參數(shù)方程的標(biāo)準(zhǔn)形式代入曲線C的直角坐標(biāo)方程,根據(jù)韋達(dá)定理以及參數(shù)t的幾何意義可得.【詳解】(1)由ρ2得ρ2+ρ2sin2θ=2,將ρ2=x2+y2,y=ρsinθ代入上式并整理得曲線C的直角坐標(biāo)方程為y2=1,設(shè)點(diǎn)P的直角坐標(biāo)為(x,y),因?yàn)镻的極坐標(biāo)為(,),所以x=ρcosθcos1,y=ρsinθsin1,所以點(diǎn)P的直角坐標(biāo)為(1,1).(2)將代入y2=1,并整理得41t2+110t+25=0,因?yàn)椤鳎?102﹣4×41×25=8000>0,故可設(shè)方程的兩根為t1,t2,則t1,t2為A,B對(duì)應(yīng)的參數(shù),且t1+t2,依題意,點(diǎn)M對(duì)應(yīng)的參數(shù)為,所以|PM|=||.【點(diǎn)睛】本題考查了簡(jiǎn)單曲線的極坐標(biāo)方程,屬中檔題.19.(Ⅰ)極大值為:,無(wú)極小值;(Ⅱ)見(jiàn)解析.【解析】
(Ⅰ)求出函數(shù)的導(dǎo)數(shù),解關(guān)于導(dǎo)函數(shù)的不等式,求出函數(shù)的單調(diào)區(qū)間即可求出函數(shù)的極值;(Ⅱ)得到,根據(jù)函數(shù)的單調(diào)性問(wèn)題轉(zhuǎn)化為證明,即證,令,根據(jù)函數(shù)的單調(diào)性證明即可.【詳解】(Ⅰ)的定義域?yàn)榍伊?,得;令,得在上單調(diào)遞增,在上單調(diào)遞減函數(shù)的極大值為,無(wú)極小值(Ⅱ),,即由(Ⅰ)知在上單調(diào)遞增,在上單調(diào)遞減且,則要證,即證,即證,即證即證由于,即,即證令則恒成立在遞增在恒成立【點(diǎn)睛】本題考查了函數(shù)的單調(diào)性、最值問(wèn)題,考查導(dǎo)數(shù)的應(yīng)用以及分類討論思想,轉(zhuǎn)化思想,考查不等式的證明,考查運(yùn)算求解能力及化歸與轉(zhuǎn)化思想,關(guān)鍵是能夠構(gòu)造出合適的函數(shù),將問(wèn)題轉(zhuǎn)化為函數(shù)最值的求解問(wèn)題,屬于難題.20.(1)見(jiàn)解析;(2)【解析】
(1)過(guò)點(diǎn)作交于,連接,設(shè),連接,由角平分線的性質(zhì),正方形的性質(zhì),三角形的全等,證得,,由線面垂直的判斷定理證得平面,再由面面垂直的判斷得證.(2)平面幾何知識(shí)和線面的關(guān)系可證得平面,建立空間直角坐標(biāo)系,求得兩個(gè)平面的法向量,根據(jù)二面角的向量計(jì)算公式可求得其值.【詳解】(1)如圖,過(guò)點(diǎn)作交于,連接,設(shè),連接,,,又為的角平分線,四邊形為正方形,,又,,,,,又為的中點(diǎn),又平面,,平面,又平面,平面平面,(2)在中,,,,在中,,,又,,,,又,,平面,平面,故建立如圖空間直角坐標(biāo)系,則,,,,,,,設(shè)平面的一個(gè)法向量為,則,,令,得,設(shè)平面的一個(gè)法向量為,則,,令,得,由圖示可知二面角是銳角,故二面角的余弦值為.【點(diǎn)睛】本題考查空間的面面垂直關(guān)系的證明,二面角的計(jì)算,在證明垂直關(guān)系時(shí),注意運(yùn)用平面幾何中的等腰三角形的“三線合一”,勾股定理、菱形的對(duì)角線互相垂直,屬于基礎(chǔ)題.21.(1)或;(2).【解析】
(1)將曲線的極坐標(biāo)方程化為直角坐標(biāo)方程,在直角坐標(biāo)條件下求出曲線的圓心坐標(biāo)和半徑,將直線的參數(shù)方程化為普通方程,由勾股定理列出等式可求的值;(2)將圓化為參數(shù)方程形式,代入由三角公式化簡(jiǎn)可求其取值范圍.【詳解】(1)曲線C的極坐標(biāo)方程是化為直角坐標(biāo)方程為:直線的直角坐標(biāo)方程為:圓心到直線l的距離(弦心距)圓心到直線的距離為:或(2)曲線的方程可化為,其參數(shù)方程為:為曲線上任意一點(diǎn),的取值范圍是22.(1);(2)時(shí),在單調(diào)增;時(shí),在單調(diào)遞減,在單調(diào)遞增;時(shí),同理在單調(diào)遞減,在單調(diào)遞增;(3)不存在.【解析】分析:(1)利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,可得當(dāng)時(shí),取得極大值,也是最大值,由,可得結(jié)果;(2)求出,分三種情況討論的范圍,在定義域內(nèi),分別令求得的范圍,可得函數(shù)增區(qū)間,求得的范圍,可得函數(shù)的減區(qū)間;(3)假設(shè)存在區(qū)間,使得函數(shù)在區(qū)間上的值域是,則,問(wèn)題轉(zhuǎn)化為關(guān)于的方程在
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 行政組織理論在國(guó)際關(guān)系中的運(yùn)用與探討試題及答案
- 工地分類垃圾管理制度
- 探索集成測(cè)試在不同階段的應(yīng)用與最佳實(shí)踐試題及答案
- 深入研究的不容錯(cuò)過(guò)的試題及答案
- 培訓(xùn)單位檔案管理制度
- 公司招投標(biāo)法管理制度
- 家居商場(chǎng)終端管理制度
- 公路養(yǎng)護(hù)維修管理制度
- 醫(yī)藥生產(chǎn)倉(cāng)庫(kù)管理制度
- 北汽汽車績(jī)效管理制度
- 共點(diǎn)力平衡的應(yīng)用-完整版PPT
- 新版中日交流標(biāo)準(zhǔn)日本語(yǔ)初級(jí)下同步測(cè)試卷及答案(第30課)
- 保賠協(xié)會(huì)–歷史,承保內(nèi)容和組織
- 建筑物的防雷及安全用電電子教案
- 中國(guó)近現(xiàn)代史社會(huì)實(shí)踐報(bào)告-2000字
- 系桿拱橋工程測(cè)量施工方案
- ISA-300+使用-300技術(shù)使用說(shuō)明書(shū)
- 高層建筑“一棟一冊(cè)”消防安全檔案
- 柳洲學(xué)校學(xué)生儀容儀表日常檢查記錄表
- 人造草坪技術(shù)參數(shù)
- 淺談歌曲《我的祖國(guó)》
評(píng)論
0/150
提交評(píng)論