版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2021-2022高考數(shù)學(xué)模擬試卷考生請(qǐng)注意:1.答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.集合的真子集的個(gè)數(shù)為()A.7 B.8 C.31 D.322.若,,則的值為()A. B. C. D.3.已知集合,則集合()A. B. C. D.4.網(wǎng)絡(luò)是一種先進(jìn)的高頻傳輸技術(shù),我國(guó)的技術(shù)發(fā)展迅速,已位居世界前列.華為公司2019年8月初推出了一款手機(jī),現(xiàn)調(diào)查得到該款手機(jī)上市時(shí)間和市場(chǎng)占有率(單位:%)的幾組相關(guān)對(duì)應(yīng)數(shù)據(jù).如圖所示的折線圖中,橫軸1代表2019年8月,2代表2019年9月……,5代表2019年12月,根據(jù)數(shù)據(jù)得出關(guān)于的線性回歸方程為.若用此方程分析并預(yù)測(cè)該款手機(jī)市場(chǎng)占有率的變化趨勢(shì),則最早何時(shí)該款手機(jī)市場(chǎng)占有率能超過0.5%(精確到月)()A.2020年6月 B.2020年7月 C.2020年8月 D.2020年9月5.如圖所示,網(wǎng)絡(luò)紙上小正方形的邊長(zhǎng)為1,粗線畫出的是某四棱錐的三視圖,則該幾何體的體積為()A.2 B. C.6 D.86.在中,“”是“為鈍角三角形”的()A.充分非必要條件 B.必要非充分條件 C.充要條件 D.既不充分也不必要條件7.已知集合,,則()A. B.C. D.8.若不等式在區(qū)間內(nèi)的解集中有且僅有三個(gè)整數(shù),則實(shí)數(shù)的取值范圍是()A. B.C. D.9.設(shè)是等差數(shù)列的前n項(xiàng)和,且,則()A. B. C.1 D.210.設(shè)全集,集合,,則()A. B. C. D.11.橢圓是日常生活中常見的圖形,在圓柱形的玻璃杯中盛半杯水,將杯體傾斜一個(gè)角度,水面的邊界即是橢圓.現(xiàn)有一高度為12厘米,底面半徑為3厘米的圓柱形玻璃杯,且杯中所盛水的體積恰為該玻璃杯容積的一半(玻璃厚度忽略不計(jì)),在玻璃杯傾斜的過程中(杯中的水不能溢出),杯中水面邊界所形成的橢圓的離心率的取值范圍是()A. B. C. D.12.已知非零向量、,若且,則向量在向量方向上的投影為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.設(shè)函數(shù),則滿足的的取值范圍為________.14.在邊長(zhǎng)為的菱形中,點(diǎn)在菱形所在的平面內(nèi).若,則_____.15.已知函數(shù),若的最小值為,則實(shí)數(shù)的取值范圍是_________16.已知集合,,則_____________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在等比數(shù)列中,已知,.設(shè)數(shù)列的前n項(xiàng)和為,且,(,).(1)求數(shù)列的通項(xiàng)公式;(2)證明:數(shù)列是等差數(shù)列;(3)是否存在等差數(shù)列,使得對(duì)任意,都有?若存在,求出所有符合題意的等差數(shù)列;若不存在,請(qǐng)說明理由.18.(12分)在三角形中,角,,的對(duì)邊分別為,,,若.(Ⅰ)求角;(Ⅱ)若,,求.19.(12分)已知函數(shù).(Ⅰ)解不等式;(Ⅱ)設(shè)其中為常數(shù).若方程在上恰有兩個(gè)不相等的實(shí)數(shù)根,求實(shí)數(shù)的取值范圍.20.(12分)對(duì)于正整數(shù),如果個(gè)整數(shù)滿足,且,則稱數(shù)組為的一個(gè)“正整數(shù)分拆”.記均為偶數(shù)的“正整數(shù)分拆”的個(gè)數(shù)為均為奇數(shù)的“正整數(shù)分拆”的個(gè)數(shù)為.(Ⅰ)寫出整數(shù)4的所有“正整數(shù)分拆”;(Ⅱ)對(duì)于給定的整數(shù),設(shè)是的一個(gè)“正整數(shù)分拆”,且,求的最大值;(Ⅲ)對(duì)所有的正整數(shù),證明:;并求出使得等號(hào)成立的的值.(注:對(duì)于的兩個(gè)“正整數(shù)分拆”與,當(dāng)且僅當(dāng)且時(shí),稱這兩個(gè)“正整數(shù)分拆”是相同的.)21.(12分)已知在中,角、、的對(duì)邊分別為,,,,.(1)若,求的值;(2)若,求的面積.22.(10分)如圖,在三棱錐中,,是的中點(diǎn),點(diǎn)在上,平面,平面平面,為銳角三角形,求證:(1)是的中點(diǎn);(2)平面平面.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.A【解析】
計(jì)算,再計(jì)算真子集個(gè)數(shù)得到答案.【詳解】,故真子集個(gè)數(shù)為:.故選:.【點(diǎn)睛】本題考查了集合的真子集個(gè)數(shù),意在考查學(xué)生的計(jì)算能力.2.A【解析】
取,得到,取,則,計(jì)算得到答案.【詳解】取,得到;取,則.故.故選:.【點(diǎn)睛】本題考查了二項(xiàng)式定理的應(yīng)用,取和是解題的關(guān)鍵.3.D【解析】
弄清集合B的含義,它的元素x來自于集合A,且也是集合A的元素.【詳解】因,所以,故,又,,則,故集合.故選:D.【點(diǎn)睛】本題考查集合的定義,涉及到解絕對(duì)值不等式,是一道基礎(chǔ)題.4.C【解析】
根據(jù)圖形,計(jì)算出,然后解不等式即可.【詳解】解:,點(diǎn)在直線上,令因?yàn)闄M軸1代表2019年8月,所以橫軸13代表2020年8月,故選:C【點(diǎn)睛】考查如何確定線性回歸直線中的系數(shù)以及線性回歸方程的實(shí)際應(yīng)用,基礎(chǔ)題.5.A【解析】
先由三視圖確定該四棱錐的底面形狀,以及四棱錐的高,再由體積公式即可求出結(jié)果.【詳解】由三視圖可知,該四棱錐為斜著放置的四棱錐,四棱錐的底面為直角梯形,上底為1,下底為2,高為2,四棱錐的高為2,所以該四棱錐的體積為.故選A【點(diǎn)睛】本題主要考查幾何的三視圖,由幾何體的三視圖先還原幾何體,再由體積公式即可求解,屬于??碱}型.6.C【解析】分析:從兩個(gè)方向去判斷,先看能推出三角形的形狀是銳角三角形,而非鈍角三角形,從而得到充分性不成立,再看當(dāng)三角形是鈍角三角形時(shí),也推不出成立,從而必要性也不滿足,從而選出正確的結(jié)果.詳解:由題意可得,在中,因?yàn)?,所以,因?yàn)?,所以,,結(jié)合三角形內(nèi)角的條件,故A,B同為銳角,因?yàn)?,所以,即,所以,因此,所以是銳角三角形,不是鈍角三角形,所以充分性不滿足,反之,若是鈍角三角形,也推不出“,故必要性不成立,所以為既不充分也不必要條件,故選D.點(diǎn)睛:該題考查的是有關(guān)充分必要條件的判斷問題,在解題的過程中,需要用到不等式的等價(jià)轉(zhuǎn)化,余弦的和角公式,誘導(dǎo)公式等,需要明確對(duì)應(yīng)此類問題的解題步驟,以及三角形形狀對(duì)應(yīng)的特征.7.C【解析】
求出集合,計(jì)算出和,即可得出結(jié)論.【詳解】,,,.故選:C.【點(diǎn)睛】本題考查交集和并集的計(jì)算,考查計(jì)算能力,屬于基礎(chǔ)題.8.C【解析】
由題可知,設(shè)函數(shù),,根據(jù)導(dǎo)數(shù)求出的極值點(diǎn),得出單調(diào)性,根據(jù)在區(qū)間內(nèi)的解集中有且僅有三個(gè)整數(shù),轉(zhuǎn)化為在區(qū)間內(nèi)的解集中有且僅有三個(gè)整數(shù),結(jié)合圖象,可求出實(shí)數(shù)的取值范圍.【詳解】設(shè)函數(shù),,因?yàn)?,所以,或,因?yàn)闀r(shí),,或時(shí),,,其圖象如下:當(dāng)時(shí),至多一個(gè)整數(shù)根;當(dāng)時(shí),在內(nèi)的解集中僅有三個(gè)整數(shù),只需,,所以.故選:C.【點(diǎn)睛】本題考查不等式的解法和應(yīng)用問題,還涉及利用導(dǎo)數(shù)求函數(shù)單調(diào)性和函數(shù)圖象,同時(shí)考查數(shù)形結(jié)合思想和解題能力.9.C【解析】
利用等差數(shù)列的性質(zhì)化簡(jiǎn)已知條件,求得的值.【詳解】由于等差數(shù)列滿足,所以,,.故選:C【點(diǎn)睛】本小題主要考查等差數(shù)列的性質(zhì),屬于基礎(chǔ)題.10.D【解析】
求解不等式,得到集合A,B,利用交集、補(bǔ)集運(yùn)算即得解【詳解】由于故集合或故集合故選:D【點(diǎn)睛】本題考查了集合的交集和補(bǔ)集混合運(yùn)算,考查了學(xué)生概念理解,數(shù)學(xué)運(yùn)算的能力,屬于中檔題.11.C【解析】
根據(jù)題意可知當(dāng)玻璃杯傾斜至杯中水剛好不溢出時(shí),水面邊界所形成橢圓的離心率最大,由橢圓的幾何性質(zhì)即可確定此時(shí)橢圓的離心率,進(jìn)而確定離心率的取值范圍.【詳解】當(dāng)玻璃杯傾斜至杯中水剛好不溢出時(shí),水面邊界所形成橢圓的離心率最大.此時(shí)橢圓長(zhǎng)軸長(zhǎng)為,短軸長(zhǎng)為6,所以橢圓離心率,所以.故選:C【點(diǎn)睛】本題考查了橢圓的定義及其性質(zhì)的簡(jiǎn)單應(yīng)用,屬于基礎(chǔ)題.12.D【解析】
設(shè)非零向量與的夾角為,在等式兩邊平方,求出的值,進(jìn)而可求得向量在向量方向上的投影為,即可得解.【詳解】,由得,整理得,,解得,因此,向量在向量方向上的投影為.故選:D.【點(diǎn)睛】本題考查向量投影的計(jì)算,同時(shí)也考查利用向量的模計(jì)算向量的夾角,考查計(jì)算能力,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
當(dāng)時(shí),函數(shù)單調(diào)遞增,當(dāng)時(shí),函數(shù)為常數(shù),故需滿足,且,解得答案.【詳解】,當(dāng)時(shí),函數(shù)單調(diào)遞增,當(dāng)時(shí),函數(shù)為常數(shù),需滿足,且,解得.故答案為:.【點(diǎn)睛】本題考查了根據(jù)函數(shù)單調(diào)性解不等式,意在考查學(xué)生對(duì)于函數(shù)性質(zhì)的靈活運(yùn)用.14.【解析】
以菱形的中心為坐標(biāo)原點(diǎn)建立平面直角坐標(biāo)系,再設(shè),根據(jù)求出的坐標(biāo),進(jìn)而求得即可.【詳解】解:連接設(shè)交于點(diǎn)以點(diǎn)為原點(diǎn),分別以直線為軸,建立如圖所示的平面直角坐標(biāo)系,則:設(shè)得,解得,,或,顯然得出的是定值,取則,.故答案為:.【點(diǎn)睛】本題主要考查了建立平面直角坐標(biāo)系求解向量數(shù)量積的有關(guān)問題,屬于中檔題.15.【解析】
,可得在時(shí),最小值為,時(shí),要使得最小值為,則對(duì)稱軸在1的右邊,且,求解出即滿足最小值為.【詳解】當(dāng),,當(dāng)且僅當(dāng)時(shí),等號(hào)成立.當(dāng)時(shí),為二次函數(shù),要想在處取最小,則對(duì)稱軸要滿足并且,即,解得.【點(diǎn)睛】本題考查分段函數(shù)的最值問題,對(duì)每段函數(shù)先進(jìn)行分類討論,找到每段的最小值,然后再對(duì)兩段函數(shù)的最小值進(jìn)行比較,得到結(jié)果,題目較綜合,屬于中檔題.16.【解析】
由集合和集合求出交集即可.【詳解】解:集合,,.故答案為:.【點(diǎn)睛】本題考查了交集及其運(yùn)算,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1)(2)見解析(3)存在唯一的等差數(shù)列,其通項(xiàng)公式為,滿足題設(shè)【解析】
(1)由,可得公比,即得;(2)由(1)和可得數(shù)列的遞推公式,即可知結(jié)果為常數(shù),即得證;(3)由(2)可得數(shù)列的通項(xiàng)公式,,設(shè)出等差數(shù)列,再根據(jù)不等關(guān)系來算出的首項(xiàng)和公差即可.【詳解】(1)設(shè)等比數(shù)列的公比為q,因?yàn)?,,所以,解?所以數(shù)列的通項(xiàng)公式為:.(2)由(1)得,當(dāng),時(shí),可得①,②②①得,,則有,即,,.因?yàn)椋散俚?,,所以,所以?所以數(shù)列是以為首項(xiàng),1為公差的等差數(shù)列.(3)由(2)得,所以,.假設(shè)存在等差數(shù)列,其通項(xiàng),使得對(duì)任意,都有,即對(duì)任意,都有.③首先證明滿足③的.若不然,,則,或.(i)若,則當(dāng),時(shí),,這與矛盾.(ii)若,則當(dāng),時(shí),.而,,所以.故,這與矛盾.所以.其次證明:當(dāng)時(shí),.因?yàn)?,所以在上單調(diào)遞增,所以,當(dāng)時(shí),.所以當(dāng),時(shí),.再次證明.(iii)若時(shí),則當(dāng),,,,這與③矛盾.(iv)若時(shí),同(i)可得矛盾.所以.當(dāng)時(shí),因?yàn)?,,所以?duì)任意,都有.所以,.綜上,存在唯一的等差數(shù)列,其通項(xiàng)公式為,滿足題設(shè).【點(diǎn)睛】本題考查求等比數(shù)列通項(xiàng)公式,證明等差數(shù)列,以及數(shù)列中的探索性問題,是一道數(shù)列綜合題,考查學(xué)生的分析,推理能力.18.(Ⅰ)(Ⅱ)8【解析】
(Ⅰ)由余弦定理可得,即可求出A,(Ⅱ)根據(jù)同角的三角函數(shù)的關(guān)系和兩角和的正弦公式和正弦定理即可求出.【詳解】(Ⅰ)由余弦定理,所以,所以,即,因?yàn)?,所以;(Ⅱ)因?yàn)?,所以,因?yàn)?,,由正弦定理得,所?【點(diǎn)睛】本題考查利用正弦定理與余弦定理解三角形,屬于簡(jiǎn)單題.19.(Ⅰ);(Ⅱ).【解析】
(I)零點(diǎn)分段法,分,,討論即可;(II),分,,三種情況討論.【詳解】原不等式即.當(dāng)時(shí),化簡(jiǎn)得.解得;當(dāng)時(shí),化簡(jiǎn)得.此時(shí)無解;當(dāng)時(shí),化簡(jiǎn)得.解得.綜上,原不等式的解集為由題意,設(shè)方程兩根為.當(dāng)時(shí),方程等價(jià)于方程.易知當(dāng),方程在上有兩個(gè)不相等的實(shí)數(shù)根.此時(shí)方程在上無解.滿足條件.當(dāng)時(shí),方程等價(jià)于方程,此時(shí)方程在上顯然沒有兩個(gè)不相等的實(shí)數(shù)根.當(dāng)時(shí),易知當(dāng),方程在上有且只有一個(gè)實(shí)數(shù)根.此時(shí)方程在上也有一個(gè)實(shí)數(shù)根.滿足條件.綜上,實(shí)數(shù)的取值范圍為.【點(diǎn)睛】本題考查解絕對(duì)值不等式以及方程根的個(gè)數(shù)求參數(shù)范圍,考查學(xué)生的運(yùn)算能力,是一道中檔題.20.(Ⅰ),,,,;(Ⅱ)為偶數(shù)時(shí),,為奇數(shù)時(shí),;(Ⅲ)證明見解析,,【解析】
(Ⅰ)根據(jù)題意直接寫出答案.(Ⅱ)討論當(dāng)為偶數(shù)時(shí),最大為,當(dāng)為奇數(shù)時(shí),最大為,得到答案.(Ⅲ)討論當(dāng)為奇數(shù)時(shí),,至少存在一個(gè)全為1的拆分,故,當(dāng)為偶數(shù)時(shí),根據(jù)對(duì)應(yīng)關(guān)系得到,再計(jì)算,,得到答案.【詳解】(Ⅰ)整數(shù)4的所有“正整數(shù)分拆”為:,,,,.(Ⅱ)當(dāng)為偶數(shù)時(shí),時(shí),最大為;當(dāng)為奇數(shù)時(shí),時(shí),最大為;綜上所述:為偶數(shù),最大為,為奇數(shù)時(shí),最大為.(Ⅲ)當(dāng)為奇數(shù)時(shí),,至少存在一個(gè)全為1的拆分,故;當(dāng)為偶數(shù)時(shí),設(shè)是每個(gè)數(shù)均為偶數(shù)的“正整數(shù)分拆”,則它至少對(duì)應(yīng)了和的均為奇數(shù)的“正整數(shù)分拆”,故.綜上所述:.當(dāng)時(shí),偶數(shù)“正整數(shù)分拆”為,奇數(shù)“正整數(shù)分拆”為,;當(dāng)時(shí),偶數(shù)“正整數(shù)分拆”為,,奇數(shù)“正整數(shù)分拆”為,故;當(dāng)時(shí),對(duì)于偶數(shù)“正整數(shù)分拆”,除了各項(xiàng)不全為的奇數(shù)拆分外,至少多出一項(xiàng)各項(xiàng)均為的“正整數(shù)分拆”,故.綜上所述:使成立的為:或.【點(diǎn)睛】本土考查了數(shù)列的新定義問題,意在考查學(xué)生的計(jì)算能力和綜合應(yīng)用能力.21.(1)7(2)14【解析】
(1)在中,,可得,結(jié)合正弦定理,即可求得答案;(2)根據(jù)余弦定理和三角形面積公式,即可求得答案.【詳解】(1)在中,,,,,,.(2),,,解得,.【點(diǎn)睛】本題主要考查了正弦定理和余弦定理解三角形,解
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 遼寧醫(yī)藥職業(yè)學(xué)院《Java+語言程序設(shè)計(jì)實(shí)驗(yàn)》2023-2024學(xué)年第一學(xué)期期末試卷
- 蘭州工業(yè)學(xué)院《行為醫(yī)學(xué)》2023-2024學(xué)年第一學(xué)期期末試卷
- 江西建設(shè)職業(yè)技術(shù)學(xué)院《土地測(cè)量與評(píng)價(jià)》2023-2024學(xué)年第一學(xué)期期末試卷
- 吉林職業(yè)技術(shù)學(xué)院《外國(guó)音樂史Ⅰ》2023-2024學(xué)年第一學(xué)期期末試卷
- 湖南電子科技職業(yè)學(xué)院《物流流程再造》2023-2024學(xué)年第一學(xué)期期末試卷
- 黑龍江司法警官職業(yè)學(xué)院《生物信息學(xué)》2023-2024學(xué)年第一學(xué)期期末試卷
- 重慶應(yīng)用技術(shù)職業(yè)學(xué)院《集成電路版圖設(shè)計(jì)》2023-2024學(xué)年第一學(xué)期期末試卷
- 重慶建筑工程職業(yè)學(xué)院《外語教育研究方法》2023-2024學(xué)年第一學(xué)期期末試卷
- 中央戲劇學(xué)院《計(jì)算機(jī)網(wǎng)絡(luò)基礎(chǔ)》2023-2024學(xué)年第一學(xué)期期末試卷
- 中國(guó)石油大學(xué)(北京)《數(shù)據(jù)庫(kù)技術(shù)及應(yīng)用實(shí)踐》2023-2024學(xué)年第一學(xué)期期末試卷
- 南陽石油分公司非油品業(yè)務(wù)經(jīng)營(yíng)管理制度概要
- GB/T 2843-1981鋼化玻璃抗沖擊性試驗(yàn)方法(227克鋼球試驗(yàn))
- FZ/T 73042-2011針織圍巾、披肩
- 統(tǒng)編部編版三年級(jí)道德與法治下冊(cè)優(yōu)秀課件【全冊(cè)】
- 生物質(zhì)能完整資料課件
- 2023年版義務(wù)教育音樂課程標(biāo)準(zhǔn)(標(biāo)準(zhǔn)版)
- 特色服裝民族服飾項(xiàng)目大學(xué)生創(chuàng)業(yè)計(jì)劃書
- (完整版)漢密爾頓焦慮量表(HAMA)
- 大型集團(tuán)公司商學(xué)院培訓(xùn)體系建設(shè)方案
- 職工退休提取住房公積金申表版
- 電力電子技術(shù)全套課件
評(píng)論
0/150
提交評(píng)論