2022年江蘇省三校高考考前提分數(shù)學仿真卷含解析_第1頁
2022年江蘇省三校高考考前提分數(shù)學仿真卷含解析_第2頁
2022年江蘇省三校高考考前提分數(shù)學仿真卷含解析_第3頁
2022年江蘇省三校高考考前提分數(shù)學仿真卷含解析_第4頁
2022年江蘇省三校高考考前提分數(shù)學仿真卷含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2021-2022高考數(shù)學模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知奇函數(shù)是上的減函數(shù),若滿足不等式組,則的最小值為()A.-4 B.-2 C.0 D.42.若函數(shù)為自然對數(shù)的底數(shù))在區(qū)間上不是單調(diào)函數(shù),則實數(shù)的取值范圍是()A. B. C. D.3.已知邊長為4的菱形,,為的中點,為平面內(nèi)一點,若,則()A.16 B.14 C.12 D.84.已知函數(shù)在區(qū)間上恰有四個不同的零點,則實數(shù)的取值范圍是()A. B. C. D.5.已知定義在上的函數(shù)的周期為4,當時,,則()A. B. C. D.6.函數(shù)在區(qū)間上的大致圖象如圖所示,則可能是()A.B.C.D.7.已知復數(shù),則()A. B. C. D.28.一艘海輪從A處出發(fā),以每小時24海里的速度沿南偏東40°的方向直線航行,30分鐘后到達B處,在C處有一座燈塔,海輪在A處觀察燈塔,其方向是南偏東70°,在B處觀察燈塔,其方向是北偏東65°,那么B,C兩點間的距離是()A.6海里 B.6海里 C.8海里 D.8海里9.已知拋物線經(jīng)過點,焦點為,則直線的斜率為()A. B. C. D.10.如圖是國家統(tǒng)計局公布的年入境游客(單位:萬人次)的變化情況,則下列結論錯誤的是()A.2014年我國入境游客萬人次最少B.后4年我國入境游客萬人次呈逐漸增加趨勢C.這6年我國入境游客萬人次的中位數(shù)大于13340萬人次D.前3年我國入境游客萬人次數(shù)據(jù)的方差小于后3年我國入境游客萬人次數(shù)據(jù)的方差11.一個正四棱錐形骨架的底邊邊長為,高為,有一個球的表面與這個正四棱錐的每個邊都相切,則該球的表面積為()A. B. C. D.12.已知向量,滿足,在上投影為,則的最小值為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知等差數(shù)列的前項和為,且,則______.14.如圖,的外接圓半徑為,為邊上一點,且,,則的面積為______.15.已知變量(m>0),且,若恒成立,則m的最大值________.16.已知等比數(shù)列滿足,,則該數(shù)列的前5項的和為______________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知,函數(shù)有最小值7.(1)求的值;(2)設,,求證:.18.(12分)已知橢圓的左、右頂點分別為、,上、下頂點分別為,,為其右焦點,,且該橢圓的離心率為;(Ⅰ)求橢圓的標準方程;(Ⅱ)過點作斜率為的直線交橢圓于軸上方的點,交直線于點,直線與橢圓的另一個交點為,直線與直線交于點.若,求取值范圍.19.(12分)P是圓上的動點,P點在x軸上的射影是D,點M滿足.(1)求動點M的軌跡C的方程,并說明軌跡是什么圖形;(2)過點的直線l與動點M的軌跡C交于不同的兩點A,B,求以OA,OB為鄰邊的平行四邊形OAEB的頂點E的軌跡方程.20.(12分)已知圓:和拋物線:,為坐標原點.(1)已知直線和圓相切,與拋物線交于兩點,且滿足,求直線的方程;(2)過拋物線上一點作兩直線和圓相切,且分別交拋物線于兩點,若直線的斜率為,求點的坐標.21.(12分)如圖,在直角中,,通過以直線為軸順時針旋轉(zhuǎn)得到().點為斜邊上一點.點為線段上一點,且.(1)證明:平面;(2)當直線與平面所成的角取最大值時,求二面角的正弦值.22.(10分)如圖,為坐標原點,點為拋物線的焦點,且拋物線上點處的切線與圓相切于點(1)當直線的方程為時,求拋物線的方程;(2)當正數(shù)變化時,記分別為的面積,求的最小值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.B【解析】

根據(jù)函數(shù)的奇偶性和單調(diào)性得到可行域,畫出可行域和目標函數(shù),根據(jù)目標函數(shù)的幾何意義平移得到答案.【詳解】奇函數(shù)是上的減函數(shù),則,且,畫出可行域和目標函數(shù),,即,表示直線與軸截距的相反數(shù),根據(jù)平移得到:當直線過點,即時,有最小值為.故選:.【點睛】本題考查了函數(shù)的單調(diào)性和奇偶性,線性規(guī)劃問題,意在考查學生的綜合應用能力,畫出圖像是解題的關鍵.2.B【解析】

求得的導函數(shù),由此構造函數(shù),根據(jù)題意可知在上有變號零點.由此令,利用分離常數(shù)法結合換元法,求得的取值范圍.【詳解】,設,要使在區(qū)間上不是單調(diào)函數(shù),即在上有變號零點,令,則,令,則問題即在上有零點,由于在上遞增,所以的取值范圍是.故選:B【點睛】本小題主要考查利用導數(shù)研究函數(shù)的單調(diào)性,考查方程零點問題的求解策略,考查化歸與轉(zhuǎn)化的數(shù)學思想方法,屬于中檔題.3.B【解析】

取中點,可確定;根據(jù)平面向量線性運算和數(shù)量積的運算法則可求得,利用可求得結果.【詳解】取中點,連接,,,即.,,,則.故選:.【點睛】本題考查平面向量數(shù)量積的求解問題,涉及到平面向量的線性運算,關鍵是能夠?qū)⑺笙蛄窟M行拆解,進而利用平面向量數(shù)量積的運算性質(zhì)進行求解.4.A【解析】

函數(shù)的零點就是方程的解,設,方程可化為,即或,求出的導數(shù),利用導數(shù)得出函數(shù)的單調(diào)性和最值,由此可根據(jù)方程解的個數(shù)得出的范圍.【詳解】由題意得有四個大于的不等實根,記,則上述方程轉(zhuǎn)化為,即,所以或.因為,當時,,單調(diào)遞減;當時,,單調(diào)遞增;所以在處取得最小值,最小值為.因為,所以有兩個符合條件的實數(shù)解,故在區(qū)間上恰有四個不相等的零點,需且.故選:A.【點睛】本題考查復合函數(shù)的零點.考查轉(zhuǎn)化與化歸思想,函數(shù)零點轉(zhuǎn)化為方程的解,方程的解再轉(zhuǎn)化為研究函數(shù)的性質(zhì),本題考查了學生分析問題解決問題的能力.5.A【解析】

因為給出的解析式只適用于,所以利用周期性,將轉(zhuǎn)化為,再與一起代入解析式,利用對數(shù)恒等式和對數(shù)的運算性質(zhì),即可求得結果.【詳解】定義在上的函數(shù)的周期為4,當時,,,,.故選:A.【點睛】本題考查了利用函數(shù)的周期性求函數(shù)值,對數(shù)的運算性質(zhì),屬于中檔題.6.B【解析】

根據(jù)特殊值及函數(shù)的單調(diào)性判斷即可;【詳解】解:當時,,無意義,故排除A;又,則,故排除D;對于C,當時,,所以不單調(diào),故排除C;故選:B【點睛】本題考查根據(jù)函數(shù)圖象選擇函數(shù)解析式,這類問題利用特殊值與排除法是最佳選擇,屬于基礎題.7.C【解析】

根據(jù)復數(shù)模的性質(zhì)即可求解.【詳解】,,故選:C【點睛】本題主要考查了復數(shù)模的性質(zhì),屬于容易題.8.A【解析】

先根據(jù)給的條件求出三角形ABC的三個內(nèi)角,再結合AB可求,應用正弦定理即可求解.【詳解】由題意可知:∠BAC=70°﹣40°=30°.∠ACD=110°,∴∠ACB=110°﹣65°=45°,∴∠ABC=180°﹣30°﹣45°=105°.又AB=24×0.5=12.在△ABC中,由正弦定理得,即,∴.故選:A.【點睛】本題考查正弦定理的實際應用,關鍵是將給的角度、線段長度轉(zhuǎn)化為三角形的邊角關系,利用正余弦定理求解.屬于中檔題.9.A【解析】

先求出,再求焦點坐標,最后求的斜率【詳解】解:拋物線經(jīng)過點,,,,故選:A【點睛】考查拋物線的基礎知識及斜率的運算公式,基礎題.10.D【解析】

ABD可通過統(tǒng)計圖直接分析得出結論,C可通過計算中位數(shù)判斷選項是否正確.【詳解】A.由統(tǒng)計圖可知:2014年入境游客萬人次最少,故正確;B.由統(tǒng)計圖可知:后4年我國入境游客萬人次呈逐漸增加趨勢,故正確;C.入境游客萬人次的中位數(shù)應為與的平均數(shù),大于萬次,故正確;D.由統(tǒng)計圖可知:前年的入境游客萬人次相比于后年的波動更大,所以對應的方差更大,故錯誤.故選:D.【點睛】本題考查統(tǒng)計圖表信息的讀取以及對中位數(shù)和方差的理解,難度較易.處理問題的關鍵是能通過所給統(tǒng)計圖,分析出對應的信息,對學生分析問題的能力有一定要求.11.B【解析】

根據(jù)正四棱錐底邊邊長為,高為,得到底面的中心到各棱的距離都是1,從而底面的中心即為球心.【詳解】如圖所示:因為正四棱錐底邊邊長為,高為,所以,到的距離為,同理到的距離為1,所以為球的球心,所以球的半徑為:1,所以球的表面積為.故選:B【點睛】本題主要考查組合體的表面積,還考查了空間想象的能力,屬于中檔題.12.B【解析】

根據(jù)在上投影為,以及,可得;再對所求模長進行平方運算,可將問題轉(zhuǎn)化為模長和夾角運算,代入即可求得.【詳解】在上投影為,即又本題正確選項:【點睛】本題考查向量模長的運算,對于含加減法運算的向量模長的求解,通常先求解模長的平方,再開平方求得結果;解題關鍵是需要通過夾角取值范圍的分析,得到的最小值.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】

根據(jù)等差數(shù)列的性質(zhì)求得,結合等差數(shù)列前項和公式求得的值.【詳解】因為為等差數(shù)列,所以,解得,所以.故答案為:【點睛】本小題考查等差數(shù)列的性質(zhì),前項和公式的應用等基礎知識;考查運算求解能力,應用意識.14.【解析】

先由正弦定理得到,再在三角形ABD、ADC中分別由正弦定理進一步得到B=C,最后利用面積公式計算即可.【詳解】依題意可得,由正弦定理得,即,由圖可知是鈍角,所以,,在三角形ABD中,,,在三角形ADC中,由正弦定理得即,所以,,故,,,故的面積為.故答案為:.【點睛】本題考查正弦定理解三角形,考查學生的基本計算能力,要靈活運用正弦定理公式及三角形面積公式,本題屬于中檔題.15.【解析】

在不等式兩邊同時取對數(shù),然后構造函數(shù)f(x)=,求函數(shù)的導數(shù),研究函數(shù)的單調(diào)性即可得到結論.【詳解】不等式兩邊同時取對數(shù)得,即x2lnx1<x1lnx2,又即成立,設f(x)=,x∈(0,m),∵x1<x2,f(x1)<f(x2),則函數(shù)f(x)在(0,m)上為增函數(shù),函數(shù)的導數(shù),由f′(x)>0得1﹣lnx>0得lnx<1,得0<x<e,即函數(shù)f(x)的最大增區(qū)間為(0,e),則m的最大值為e故答案為:e【點睛】本題考查函數(shù)單調(diào)性與導數(shù)之間的應用,根據(jù)條件利用取對數(shù)得到不等式,從而可構造新函數(shù),是解決本題的關鍵16.31【解析】設,可化為,得,,,三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1).(2)見解析【解析】

(1)由絕對值三解不等式可得,所以當時,,即可求出參數(shù)的值;(2)由,可得,再利用基本不等式求出的最小值,即可得證;【詳解】解:(1)∵,∴當時,,解得.(2)∵,∴,∴,當且僅當,即,時,等號成立.∴.【點睛】本題主要考查絕對值三角不等式及基本不等式的簡單應用,屬于中檔題.18.(Ⅰ);(Ⅱ),.【解析】

(Ⅰ)由題意可得,的坐標,結合橢圓離心率,及隱含條件列式求得,的值,則橢圓方程可求;(Ⅱ)設直線,求得的坐標,再設直線,求出點的坐標,寫出的方程,聯(lián)立與,可求出的坐標,由,可得關于的函數(shù)式,由單調(diào)性可得取值范圍.【詳解】(Ⅰ),,,,,由,得,又,,解得:,,.橢圓的標準方程為;(Ⅱ)設直線,則與直線的交點,又,設直線,聯(lián)立,消可得.解得,,聯(lián)立,得,,直線,聯(lián)立,解得,,,,,,,,函數(shù)在上單調(diào)遞增,,.【點睛】本題考查橢圓方程的求法,考查直線與橢圓位置關系的應用,考查運算求解能力,意在考查學生對這些知識的理解掌握水平和分析推理計算能力.19.(1)點M的軌跡C的方程為,軌跡C是以,為焦點,長軸長為4的橢圓(2)【解析】

(1)設,根據(jù)可求得,代入圓的方程可得所求軌跡方程;根據(jù)軌跡方程可知軌跡是以,為焦點,長軸長為的橢圓;(2)設,與橢圓方程聯(lián)立,利用求得;利用韋達定理表示出與,根據(jù)平行四邊形和向量的坐標運算求得,消去后得到軌跡方程;根據(jù)求得的取值范圍,進而得到最終結果.【詳解】(1)設,則由知:點在圓上點的軌跡的方程為:軌跡是以,為焦點,長軸長為的橢圓(2)設,由題意知的斜率存在設,代入得:則,解得:設,,則四邊形為平行四邊形又∴,消去得:頂點的軌跡方程為【點睛】本題考查圓錐曲線中的軌跡方程的求解問題,關鍵是能夠利用已知中所給的等量關系建立起動點橫縱坐標滿足的關系式,進而通過化簡整理得到結果;易錯點是求得軌跡方程后,忽略的取值范圍.20.(1);(2)或.【解析】試題分析:直線與圓相切只需圓心到直線的距離等于圓的半徑,直線與曲線相交于兩點,且滿足,只需數(shù)量積為0,要聯(lián)立方程組設而不求,利用坐標關系及根與系數(shù)關系解題,這是解析幾何常用解題方法,第二步利用直線的斜率找出坐標滿足的要求,再利用兩直線與圓相切,求出點的坐標.試題解析:(1)解:設,,,由和圓相切,得.∴.由消去,并整理得,∴,.由,得,即.∴.∴,∴,∴.∴.∴或(舍).當時,,故直線的方程為.(2)設,,,則.∴.設,由直線和圓相切,得,即.設,同理可得:.故是方程的兩根,故.由得,故.同理,則,即.∴,解或.當時,;當時,.故或.21.(1)見解析;(2)【解析】

(1)先算出的長度,利用勾股定理證明,再由已知可得,利用線面垂直的判定定理即可證明;(2)由(1)可得為直線與平面所成的角,要使其最大,則應最小,可得為中點,然后建系分別求出

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論