版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2024-2025學(xué)年安徽省江淮十校高三下學(xué)期第一次質(zhì)檢數(shù)學(xué)試題注意事項(xiàng)1.考生要認(rèn)真填寫考場(chǎng)號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知函數(shù),,若對(duì)任意,總存在,使得成立,則實(shí)數(shù)的取值范圍為()A. B.C. D.2.在三棱錐中,,,P在底面ABC內(nèi)的射影D位于直線AC上,且,.設(shè)三棱錐的每個(gè)頂點(diǎn)都在球Q的球面上,則球Q的半徑為()A. B. C. D.3.已知函數(shù),,若成立,則的最小值為()A.0 B.4 C. D.4.已知銳角滿足則()A. B. C. D.5.M、N是曲線y=πsinx與曲線y=πcosx的兩個(gè)不同的交點(diǎn),則|MN|的最小值為()A.π B.π C.π D.2π6.某三棱錐的三視圖如圖所示,則該三棱錐的體積為()A. B.4C. D.57.已知,是函數(shù)圖像上不同的兩點(diǎn),若曲線在點(diǎn),處的切線重合,則實(shí)數(shù)的最小值是()A. B. C. D.18.已知與函數(shù)和都相切,則不等式組所確定的平面區(qū)域在內(nèi)的面積為()A. B. C. D.9.三棱錐中,側(cè)棱底面,,,,,則該三棱錐的外接球的表面積為()A. B. C. D.10.已知雙曲線(,)的左、右頂點(diǎn)分別為,,虛軸的兩個(gè)端點(diǎn)分別為,,若四邊形的內(nèi)切圓面積為,則雙曲線焦距的最小值為()A.8 B.16 C. D.11.已知復(fù)數(shù),滿足,則()A.1 B. C. D.512.已知雙曲線:的焦點(diǎn)為,,且上點(diǎn)滿足,,,則雙曲線的離心率為A. B. C. D.5二、填空題:本題共4小題,每小題5分,共20分。13.三對(duì)父子去參加親子活動(dòng),坐在如圖所示的6個(gè)位置上,有且僅有一對(duì)父子是相鄰而坐的坐法有________種(比如:B與D、B與C是相鄰的,A與D、C與D是不相鄰的).14.若奇函數(shù)滿足,為R上的單調(diào)函數(shù),對(duì)任意實(shí)數(shù)都有,當(dāng)時(shí),,則________.15.兩光滑的曲線相切,那么它們?cè)诠颤c(diǎn)處的切線方向相同.如圖所示,一列圓(an>0,rn>0,n=1,2…)逐個(gè)外切,且均與曲線y=x2相切,若r1=1,則a1=___,rn=______16.若函數(shù),則的值為______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知.(1)求的單調(diào)區(qū)間;(2)當(dāng)時(shí),求證:對(duì)于,恒成立;(3)若存在,使得當(dāng)時(shí),恒有成立,試求的取值范圍.18.(12分)山東省2020年高考將實(shí)施新的高考改革方案.考生的高考總成績將由3門統(tǒng)一高考科目成績和自主選擇的3門普通高中學(xué)業(yè)水平等級(jí)考試科目成績組成,總分為750分.其中,統(tǒng)一高考科目為語文、數(shù)學(xué)、外語,自主選擇的3門普通高中學(xué)業(yè)水平等級(jí)考試科目是從物理、化學(xué)、生物、歷史、政治、地理6科中選擇3門作為選考科目,語、數(shù)、外三科各占150分,選考科目成績采用“賦分制”,即原始分?jǐn)?shù)不直接用,而是按照學(xué)生分?jǐn)?shù)在本科目考試的排名來劃分等級(jí)并以此打分得到最后得分.根據(jù)高考綜合改革方案,將每門等級(jí)考試科目中考生的原始成績從高到低分為A、B+、B、C+、C、D+、D、E共8個(gè)等級(jí)。參照正態(tài)分布原則,確定各等級(jí)人數(shù)所占比例分別為3%、7%、16%、24%、24%、16%、7%、3%.等級(jí)考試科目成績計(jì)入考生總成績時(shí),將A至E等級(jí)內(nèi)的考生原始成績,依照等比例轉(zhuǎn)換法則,分別轉(zhuǎn)換到91-100、81-90、71-80,61-70、51-60、41-50、31-40、21-30八個(gè)分?jǐn)?shù)區(qū)間,得到考生的等級(jí)成績.舉例說明.某同學(xué)化學(xué)學(xué)科原始分為65分,該學(xué)科C+等級(jí)的原始分分布區(qū)間為58~69,則該同學(xué)化學(xué)學(xué)科的原始成績屬C+等級(jí).而C+等級(jí)的轉(zhuǎn)換分區(qū)間為61~70,那么該同學(xué)化學(xué)學(xué)科的轉(zhuǎn)換分為:設(shè)該同學(xué)化學(xué)科的轉(zhuǎn)換等級(jí)分為x,69-6565-58=70-x四舍五入后該同學(xué)化學(xué)學(xué)科賦分成績?yōu)?7.(1)某校高一年級(jí)共2000人,為給高一學(xué)生合理選科提供依據(jù),對(duì)六個(gè)選考科目進(jìn)行測(cè)試,其中物理考試原始成績基本服從正態(tài)分布ξ~N(60,12(i)若小明同學(xué)在這次考試中物理原始分為84分,等級(jí)為B+,其所在原始分分布區(qū)間為82~93,求小明轉(zhuǎn)換后的物理成績;(ii)求物理原始分在區(qū)間(72,84)的人數(shù);(2)按高考改革方案,若從全省考生中隨機(jī)抽取4人,記X表示這4人中等級(jí)成績?cè)趨^(qū)間[61,80]的人數(shù),求X的分布列和數(shù)學(xué)期望.(附:若隨機(jī)變量ξ~N(μ,σ2),則Pμ-σ<ξ<μ+σ=0.68219.(12分)如圖,已知四棱錐的底面是等腰梯形,,,,,為等邊三角形,且點(diǎn)P在底面上的射影為的中點(diǎn)G,點(diǎn)E在線段上,且.(1)求證:平面.(2)求二面角的余弦值.20.(12分)已知拋物線:()的焦點(diǎn)到點(diǎn)的距離為.(1)求拋物線的方程;(2)過點(diǎn)作拋物線的兩條切線,切點(diǎn)分別為,,點(diǎn)、分別在第一和第二象限內(nèi),求的面積.21.(12分)已知數(shù)列為公差不為零的等差數(shù)列,是數(shù)列的前項(xiàng)和,且、、成等比數(shù)列,.設(shè)數(shù)列的前項(xiàng)和為,且滿足.(1)求數(shù)列、的通項(xiàng)公式;(2)令,證明:.22.(10分)如圖,在四棱錐中底面是菱形,,是邊長為的正三角形,,為線段的中點(diǎn).求證:平面平面;是否存在滿足的點(diǎn),使得?若存在,求出的值;若不存在,請(qǐng)說明理由.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.C【解析】
將函數(shù)解析式化簡(jiǎn),并求得,根據(jù)當(dāng)時(shí)可得的值域;由函數(shù)在上單調(diào)遞減可得的值域,結(jié)合存在性成立問題滿足的集合關(guān)系,即可求得的取值范圍.【詳解】依題意,則,當(dāng)時(shí),,故函數(shù)在上單調(diào)遞增,當(dāng)時(shí),;而函數(shù)在上單調(diào)遞減,故,則只需,故,解得,故實(shí)數(shù)的取值范圍為.故選:C.本題考查了導(dǎo)數(shù)在判斷函數(shù)單調(diào)性中的應(yīng)用,恒成立與存在性成立問題的綜合應(yīng)用,屬于中檔題.2.A【解析】
設(shè)的中點(diǎn)為O先求出外接圓的半徑,設(shè),利用平面ABC,得,在及中利用勾股定理構(gòu)造方程求得球的半徑即可【詳解】設(shè)的中點(diǎn)為O,因?yàn)?,所以外接圓的圓心M在BO上.設(shè)此圓的半徑為r.因?yàn)?,所以,解?因?yàn)椋?設(shè),易知平面ABC,則.因?yàn)椋?,即,解?所以球Q的半徑.故選:A本題考查球的組合體,考查空間想象能力,考查計(jì)算求解能力,是中檔題3.A【解析】
令,進(jìn)而求得,再轉(zhuǎn)化為函數(shù)的最值問題即可求解.【詳解】∵∴(),∴,令:,,在上增,且,所以在上減,在上增,所以,所以的最小值為0.故選:A本題主要考查了導(dǎo)數(shù)在研究函數(shù)最值中的應(yīng)用,考查了轉(zhuǎn)化的數(shù)學(xué)思想,恰當(dāng)?shù)挠靡粋€(gè)未知數(shù)來表示和是本題的關(guān)鍵,屬于中檔題.4.C【解析】
利用代入計(jì)算即可.【詳解】由已知,,因?yàn)殇J角,所以,,即.故選:C.本題考查二倍角的正弦、余弦公式的應(yīng)用,考查學(xué)生的運(yùn)算能力,是一道基礎(chǔ)題.5.C【解析】
兩函數(shù)的圖象如圖所示,則圖中|MN|最小,設(shè)M(x1,y1),N(x2,y2),則x1=,x2=π,|x1-x2|=π,|y1-y2|=|πsinx1-πcosx2|=π+π=π,∴|MN|==π.故選C.6.B【解析】
還原幾何體的直觀圖,可將此三棱錐放入長方體中,利用體積分割求解即可.【詳解】如圖,三棱錐的直觀圖為,體積.故選:B.本題主要考查了錐體的體積的求解,利用的體積分割的方法,考查了空間想象力及計(jì)算能力,屬于中檔題.7.B【解析】
先根據(jù)導(dǎo)數(shù)的幾何意義寫出在兩點(diǎn)處的切線方程,再利用兩直線斜率相等且縱截距相等,列出關(guān)系樹,從而得出,令函數(shù),結(jié)合導(dǎo)數(shù)求出最小值,即可選出正確答案.【詳解】解:當(dāng)時(shí),,則;當(dāng)時(shí),則.設(shè)為函數(shù)圖像上的兩點(diǎn),當(dāng)或時(shí),,不符合題意,故.則在處的切線方程為;在處的切線方程為.由兩切線重合可知,整理得.不妨設(shè)則,由可得則當(dāng)時(shí),的最大值為.則在上單調(diào)遞減,則.故選:B.本題考查了導(dǎo)數(shù)的幾何意義,考查了推理論證能力,考查了函數(shù)與方程、分類與整合、轉(zhuǎn)化與化歸等思想方法.本題的難點(diǎn)是求出和的函數(shù)關(guān)系式.本題的易錯(cuò)點(diǎn)是計(jì)算.8.B【解析】
根據(jù)直線與和都相切,求得的值,由此畫出不等式組所表示的平面區(qū)域以及圓,由此求得正確選項(xiàng).【詳解】.設(shè)直線與相切于點(diǎn),斜率為,所以切線方程為,化簡(jiǎn)得①.令,解得,,所以切線方程為,化簡(jiǎn)得②.由①②對(duì)比系數(shù)得,化簡(jiǎn)得③.構(gòu)造函數(shù),,所以在上遞減,在上遞增,所以在處取得極小值也即是最小值,而,所以有唯一解.也即方程③有唯一解.所以切線方程為.即.不等式組即,畫出其對(duì)應(yīng)的區(qū)域如下圖所示.圓可化為,圓心為.而方程組的解也是.畫出圖像如下圖所示,不等式組所確定的平面區(qū)域在內(nèi)的部分如下圖陰影部分所示.直線的斜率為,直線的斜率為.所以,所以,而圓的半徑為,所以陰影部分的面積是.故選:B本小題主要考查根據(jù)公共切線求參數(shù),考查不等式組表示區(qū)域的畫法,考查圓的方程,考查兩條直線夾角的計(jì)算,考查扇形面積公式,考查數(shù)形結(jié)合的數(shù)學(xué)思想方法,考查分析思考與解決問題的能力,屬于難題.9.B【解析】由題,側(cè)棱底面,,,,則根據(jù)余弦定理可得,的外接圓圓心三棱錐的外接球的球心到面的距離則外接球的半徑,則該三棱錐的外接球的表面積為點(diǎn)睛:本題考查的知識(shí)點(diǎn)是球內(nèi)接多面體,熟練掌握球的半徑公式是解答的關(guān)鍵.10.D【解析】
根據(jù)題意畫出幾何關(guān)系,由四邊形的內(nèi)切圓面積求得半徑,結(jié)合四邊形面積關(guān)系求得與等量關(guān)系,再根據(jù)基本不等式求得的取值范圍,即可確定雙曲線焦距的最小值.【詳解】根據(jù)題意,畫出幾何關(guān)系如下圖所示:設(shè)四邊形的內(nèi)切圓半徑為,雙曲線半焦距為,則所以,四邊形的內(nèi)切圓面積為,則,解得,則,即故由基本不等式可得,即,當(dāng)且僅當(dāng)時(shí)等號(hào)成立.故焦距的最小值為.故選:D本題考查了雙曲線的定義及其性質(zhì)的簡(jiǎn)單應(yīng)用,圓錐曲線與基本不等式綜合應(yīng)用,屬于中檔題.11.A【解析】
首先根據(jù)復(fù)數(shù)代數(shù)形式的除法運(yùn)算求出,求出的模即可.【詳解】解:,,故選:A本題考查了復(fù)數(shù)求模問題,考查復(fù)數(shù)的除法運(yùn)算,屬于基礎(chǔ)題.12.D【解析】
根據(jù)雙曲線定義可以直接求出,利用勾股定理可以求出,最后求出離心率.【詳解】依題意得,,,因此該雙曲線的離心率.本題考查了雙曲線定義及雙曲線的離心率,考查了運(yùn)算能力.二、填空題:本題共4小題,每小題5分,共20分。13.192【解析】
根據(jù)題意,分步進(jìn)行分析:①,在三對(duì)父子中任選1對(duì),安排在相鄰的位置上,②,將剩下的4人安排在剩下的4個(gè)位置,要求父子不能坐在相鄰的位置,由分步計(jì)數(shù)原理計(jì)算可得答案.【詳解】根據(jù)題意,分步進(jìn)行分析:①,在三對(duì)父子中任選1對(duì),有3種選法,由圖可得相鄰的位置有4種情況,將選出的1對(duì)父子安排在相鄰的位置,有種安排方法;②,將剩下的4人安排在剩下的4個(gè)位置,要求父子不能坐在相鄰的位置,有種安排方法,則有且僅有一對(duì)父子是相鄰而坐的坐法種;故答案為:本題考查排列、組合的應(yīng)用,涉及分步計(jì)數(shù)原理的應(yīng)用,屬于基礎(chǔ)題.14.【解析】
根據(jù)可得,函數(shù)是以為周期的函數(shù),令,可求,從而可得,代入解析式即可求解.【詳解】令,則,由,則,所以,解得,所以,由時(shí),,所以時(shí),;由,所以,所以函數(shù)是以為周期的函數(shù),,又函數(shù)為奇函數(shù),所以.故答案為:本題主要考查了換元法求函數(shù)解析式、函數(shù)的奇偶性、周期性的應(yīng)用,屬于中檔題.15.【解析】
第一空:將圓與聯(lián)立,利用計(jì)算即可;第二空:找到兩外切的圓的圓心與半徑的關(guān)系,再將與聯(lián)立,得到,與結(jié)合可得為等差數(shù)列,進(jìn)而可得.【詳解】當(dāng)r1=1時(shí),圓,與聯(lián)立消去得,則,解得;由圖可知當(dāng)時(shí),①,將與聯(lián)立消去得,則,整理得,代入①得,整理得,則.故答案為:;.本題是拋物線與圓的關(guān)系背景下的數(shù)列題,關(guān)鍵是找到圓心和半徑的關(guān)系,建立遞推式,由遞推式求通項(xiàng)公式,綜合性較強(qiáng),是一道難度較大的題目.16.【解析】
根據(jù)題意,由函數(shù)的解析式求出的值,進(jìn)而計(jì)算可得答案.【詳解】根據(jù)題意,函數(shù),則,則;故答案為:.本題考查分段函數(shù)的性質(zhì)、對(duì)數(shù)運(yùn)算法則的應(yīng)用,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查運(yùn)算求解能力.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1)單調(diào)減區(qū)間為,單調(diào)增區(qū)間為;(2)詳見解析;(3).【解析】
試題分析:(1)對(duì)函數(shù)求導(dǎo)后,利用導(dǎo)數(shù)和單調(diào)性的關(guān)系,可求得函數(shù)的單調(diào)區(qū)間.(2)構(gòu)造函數(shù),利用導(dǎo)數(shù)求得函數(shù)在上遞減,且,則,故原不等式成立.(3)同(2)構(gòu)造函數(shù),對(duì)分成三類,討論函數(shù)的單調(diào)性、極值和最值,由此求得的取值范圍.試題解析:(1),當(dāng)時(shí),.解得.當(dāng)時(shí),解得.所以單調(diào)減區(qū)間為,單調(diào)增區(qū)間為.(2)設(shè),當(dāng)時(shí),由題意,當(dāng)時(shí),恒成立.,∴當(dāng)時(shí),恒成立,單調(diào)遞減.又,∴當(dāng)時(shí),恒成立,即.∴對(duì)于,恒成立.(3)因?yàn)椋桑?)知,當(dāng)時(shí),恒成立,即對(duì)于,,不存在滿足條件的;當(dāng)時(shí),對(duì)于,,此時(shí).∴,即恒成立,不存在滿足條件的;當(dāng)時(shí),令,可知與符號(hào)相同,當(dāng)時(shí),,,單調(diào)遞減.∴當(dāng)時(shí),,即恒成立.綜上,的取值范圍為.點(diǎn)睛:本題主要考查導(dǎo)數(shù)和單調(diào)區(qū)間,導(dǎo)數(shù)與不等式的證明,導(dǎo)數(shù)與恒成立問題的求解方法.第一問求函數(shù)的單調(diào)區(qū)間,這是導(dǎo)數(shù)問題的基本題型,也是基本功,先求定義域,然后求導(dǎo),要注意通分和因式分解.二、三兩問一個(gè)是恒成立問題,一個(gè)是存在性問題,要注意取值是最大值還是最小值.18.(1)(i)83.;(ii)272.(2)見解析.【解析】
(1)根據(jù)原始分?jǐn)?shù)分布區(qū)間及轉(zhuǎn)換分區(qū)間,結(jié)合所給示例,即可求得小明轉(zhuǎn)換后的物理成績;根據(jù)正態(tài)分布滿足N60,122(2)根據(jù)各等級(jí)人數(shù)所占比例可知在區(qū)間61,80內(nèi)的概率為25,由二項(xiàng)分布即可求得X【詳解】(1)(i)設(shè)小明轉(zhuǎn)換后的物理等級(jí)分為x,93-8484-82求得x≈82.64.小明轉(zhuǎn)換后的物理成績?yōu)?3分;(ii)因?yàn)槲锢砜荚囋挤只痉恼龖B(tài)分布N60,所以P(72<ξ<84)=P(60<ξ<84)-P(60<ξ<72)===0.136.所以物理原始分在區(qū)間72,84的人數(shù)為2000×0.136=272(人);(2)由題意得,隨機(jī)抽取1人,其等級(jí)成績?cè)趨^(qū)間61,80內(nèi)的概率為25隨機(jī)抽取4人,則X~B4,PX=0=3PX=2=CPX=4X的分布列為X01234P812162169616數(shù)學(xué)期望EX本題考查了統(tǒng)計(jì)的綜合應(yīng)用,正態(tài)分布下求某區(qū)間概率的方法,分布列及數(shù)學(xué)期望的求法,文字多,數(shù)據(jù)多,需要細(xì)心的分析和理解,屬于中檔題。19.(1)證明見解析(2)【解析】
(1)由等腰梯形的性質(zhì)可證得,由射影可得平面,進(jìn)而求證;(2)取的中點(diǎn)F,連接,以G為原點(diǎn),所在直線為x軸,所在直線為y軸,所在直線為z軸,建立空間直角坐標(biāo)系,分別求得平面與平面的法向量,再利用數(shù)量積求解即可.【詳解】(1)在等腰梯形中,點(diǎn)E在線段上,且,點(diǎn)E為上靠近C點(diǎn)的四等分點(diǎn),,,,,點(diǎn)P在底面上的射影為的中點(diǎn)G,連接,平面,平面,.又,平面,平面,平面.(2)取的中點(diǎn)F,連接,以G為原點(diǎn),所在直線為x軸,所在直線為y軸,所在直線為z軸,建立空間直角坐標(biāo)系,如圖所示,由(1)易知,,,又,,,為等邊三角形,,則,,,,,,,,,設(shè)平面的法向量為,則,即,令,則,,,設(shè)平面的法向量為,則,即,令,則,,,設(shè)平面與平面的夾角為θ,則二面角的余弦值為.本題考查線面垂直的證明,考查空間向量法求二面角,考查運(yùn)算能力與空間想象能力.20.(1)(2)【解析】
(1)因?yàn)椋傻?,即可求得答案;?)分別設(shè)、的斜率為和,切點(diǎn),,可得過點(diǎn)的拋物線的切線方程為:,聯(lián)立直線方程和拋物線方程,得到關(guān)于一元二次方程,根據(jù),求得,,進(jìn)而求得切點(diǎn),坐標(biāo),根據(jù)兩點(diǎn)間距離公式求得,根據(jù)點(diǎn)到直線距離公式求得點(diǎn)到切線的距離,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 租房協(xié)議書游戲
- 2025年度個(gè)人住房按揭貸款合同協(xié)議3篇
- 2025年度個(gè)人房產(chǎn)租賃押金返還融資協(xié)議4篇
- 2025年度鋼材貿(mào)易代理與結(jié)算服務(wù)合同
- 2025-2030全球單深位旋轉(zhuǎn)伸縮貨叉行業(yè)調(diào)研及趨勢(shì)分析報(bào)告
- 2025-2030全球奶酪凝乳酶行業(yè)調(diào)研及趨勢(shì)分析報(bào)告
- 2025-2030全球棉籽濃縮蛋白 (CPC)行業(yè)調(diào)研及趨勢(shì)分析報(bào)告
- 2024年軍隊(duì)文職人員招聘考試《教育學(xué)》模擬卷2
- 外教聘請(qǐng)中介合同合同協(xié)議
- 2025年度個(gè)人挖掘機(jī)租賃安全責(zé)任合同4篇
- 2024公路瀝青路面結(jié)構(gòu)內(nèi)部狀況三維探地雷達(dá)快速檢測(cè)規(guī)程
- 浙江省臺(tái)州市2021-2022學(xué)年高一上學(xué)期期末質(zhì)量評(píng)估政治試題 含解析
- 2024年高考真題-地理(河北卷) 含答案
- 中國高血壓防治指南(2024年修訂版)解讀課件
- 2024年浙江省中考科學(xué)試卷
- 初三科目綜合模擬卷
- 2024風(fēng)力發(fā)電葉片維保作業(yè)技術(shù)規(guī)范
- 《思想道德與法治》課程教學(xué)大綱
- 2024光儲(chǔ)充一體化系統(tǒng)解決方案
- 2024年全國高考新課標(biāo)卷物理真題(含答案)
- 處理后事授權(quán)委托書
評(píng)論
0/150
提交評(píng)論