版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2021-2022高考數(shù)學(xué)模擬試卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請(qǐng)按照題號(hào)順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無(wú)效;在草稿紙、試題卷上答題無(wú)效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.《周易》是我國(guó)古代典籍,用“卦”描述了天地世間萬(wàn)象變化.如圖是一個(gè)八卦圖,包含乾、坤、震、巽、坎、離、艮、兌八卦(每一卦由三個(gè)爻組成,其中“”表示一個(gè)陽(yáng)爻,“”表示一個(gè)陰爻).若從含有兩個(gè)及以上陽(yáng)爻的卦中任取兩卦,這兩卦的六個(gè)爻中都恰有兩個(gè)陽(yáng)爻的概率為()A. B. C. D.2.為了得到函數(shù)的圖象,只需把函數(shù)的圖象上所有的點(diǎn)()A.向左平移個(gè)單位長(zhǎng)度 B.向右平移個(gè)單位長(zhǎng)度C.向左平移個(gè)單位長(zhǎng)度 D.向右平移個(gè)單位長(zhǎng)度3.復(fù)數(shù)的()A.第一象限 B.第二象限 C.第三象限 D.第四象限4.我國(guó)古代數(shù)學(xué)巨著《九章算術(shù)》中,有如下問題:“今有女子善織,日自倍,五日織五尺,問日織幾何?”這個(gè)問題用今天的白話敘述為:有一位善于織布的女子,每天織的布都是前一天的2倍,已知她5天共織布5尺,問這位女子每天分別織布多少?根據(jù)上述問題的已知條件,若該女子共織布尺,則這位女子織布的天數(shù)是()A.2 B.3 C.4 D.15.如圖所示,網(wǎng)格紙上小正方形的邊長(zhǎng)為,粗線畫出的是某多面體的三視圖,則該幾何體的各個(gè)面中最大面的面積為()A. B. C. D.6.閱讀如圖的程序框圖,若輸出的值為25,那么在程序框圖中的判斷框內(nèi)可填寫的條件是()A. B. C. D.7.已知命題p:直線a∥b,且b?平面α,則a∥α;命題q:直線l⊥平面α,任意直線m?α,則l⊥m.下列命題為真命題的是()A.p∧q B.p∨(非q) C.(非p)∧q D.p∧(非q)8.設(shè)為自然對(duì)數(shù)的底數(shù),函數(shù),若,則()A. B. C. D.9.已知函數(shù),則()A. B. C. D.10.已知圓與拋物線的準(zhǔn)線相切,則的值為()A.1 B.2 C. D.411.從集合中隨機(jī)選取一個(gè)數(shù)記為,從集合中隨機(jī)選取一個(gè)數(shù)記為,則在方程表示雙曲線的條件下,方程表示焦點(diǎn)在軸上的雙曲線的概率為()A. B. C. D.12.已知函數(shù),若,則a的取值范圍為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知,,其中,為正的常數(shù),且,則的值為_______.14.在中,角,,所對(duì)的邊分別邊,且,設(shè)角的角平分線交于點(diǎn),則的值最小時(shí),___.15.已知實(shí)數(shù),對(duì)任意,有,且,則______.16.袋中裝有兩個(gè)紅球、三個(gè)白球,四個(gè)黃球,從中任取四個(gè)球,則其中三種顏色的球均有的概率為________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在三棱錐中,平面平面,,.點(diǎn),,分別為線段,,的中點(diǎn),點(diǎn)是線段的中點(diǎn).(1)求證:平面.(2)判斷與平面的位置關(guān)系,并證明.18.(12分)已知函數(shù),其中,.(1)當(dāng)時(shí),求的值;(2)當(dāng)?shù)淖钚≌芷跒闀r(shí),求在上的值域.19.(12分)如圖,在三棱柱中,、、分別是、、的中點(diǎn).(1)證明:平面;(2)若底面是正三角形,,在底面的投影為,求到平面的距離.20.(12分)已知都是各項(xiàng)不為零的數(shù)列,且滿足其中是數(shù)列的前項(xiàng)和,是公差為的等差數(shù)列.(1)若數(shù)列是常數(shù)列,,,求數(shù)列的通項(xiàng)公式;(2)若是不為零的常數(shù)),求證:數(shù)列是等差數(shù)列;(3)若(為常數(shù),),.求證:對(duì)任意的恒成立.21.(12分)已知函數(shù).(1)解不等式;(2)若函數(shù)最小值為,且,求的最小值.22.(10分)某景點(diǎn)上山共有級(jí)臺(tái)階,寓意長(zhǎng)長(zhǎng)久久.甲上臺(tái)階時(shí),可以一步走一個(gè)臺(tái)階,也可以一步走兩個(gè)臺(tái)階,若甲每步上一個(gè)臺(tái)階的概率為,每步上兩個(gè)臺(tái)階的概率為.為了簡(jiǎn)便描述問題,我們約定,甲從級(jí)臺(tái)階開始向上走,一步走一個(gè)臺(tái)階記分,一步走兩個(gè)臺(tái)階記分,記甲登上第個(gè)臺(tái)階的概率為,其中,且.(1)若甲走步時(shí)所得分?jǐn)?shù)為,求的分布列和數(shù)學(xué)期望;(2)證明:數(shù)列是等比數(shù)列;(3)求甲在登山過程中,恰好登上第級(jí)臺(tái)階的概率.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.B【解析】
基本事件總數(shù)為個(gè),都恰有兩個(gè)陽(yáng)爻包含的基本事件個(gè)數(shù)為個(gè),由此求出概率.【詳解】解:由圖可知,含有兩個(gè)及以上陽(yáng)爻的卦有巽、離、兌、乾四卦,取出兩卦的基本事件有(巽,離),(巽,兌),(巽,乾),(離,兌),(離,乾),(兌,乾)共個(gè),其中符合條件的基本事件有(巽,離),(巽,兌),(離,兌)共個(gè),所以,所求的概率.故選:B.【點(diǎn)睛】本題滲透?jìng)鹘y(tǒng)文化,考查概率、計(jì)數(shù)原理等基本知識(shí),考查抽象概括能力和應(yīng)用意識(shí),屬于基礎(chǔ)題.2.D【解析】
通過變形,通過“左加右減”即可得到答案.【詳解】根據(jù)題意,故只需把函數(shù)的圖象上所有的點(diǎn)向右平移個(gè)單位長(zhǎng)度可得到函數(shù)的圖象,故答案為D.【點(diǎn)睛】本題主要考查三角函數(shù)的平移變換,難度不大.3.C【解析】所對(duì)應(yīng)的點(diǎn)為(-1,-2)位于第三象限.【考點(diǎn)定位】本題只考查了復(fù)平面的概念,屬于簡(jiǎn)單題.4.B【解析】
將問題轉(zhuǎn)化為等比數(shù)列問題,最終變?yōu)榍蠼獾缺葦?shù)列基本量的問題.【詳解】根據(jù)實(shí)際問題可以轉(zhuǎn)化為等比數(shù)列問題,在等比數(shù)列中,公比,前項(xiàng)和為,,,求的值.因?yàn)椋獾?,,解得.故選B.【點(diǎn)睛】本題考查等比數(shù)列的實(shí)際應(yīng)用,難度較易.熟悉等比數(shù)列中基本量的計(jì)算,對(duì)于解決實(shí)際問題很有幫助.5.B【解析】
根據(jù)三視圖可以得到原幾何體為三棱錐,且是有三條棱互相垂直的三棱錐,根據(jù)幾何體的各面面積可得最大面的面積.【詳解】解:分析題意可知,如下圖所示,該幾何體為一個(gè)正方體中的三棱錐,最大面的表面邊長(zhǎng)為的等邊三角形,故其面積為,故選B.【點(diǎn)睛】本題考查了幾何體的三視圖問題,解題的關(guān)鍵是要能由三視圖解析出原幾何體,從而解決問題.6.C【解析】
根據(jù)循環(huán)結(jié)構(gòu)的程序框圖,帶入依次計(jì)算可得輸出為25時(shí)的值,進(jìn)而得判斷框內(nèi)容.【詳解】根據(jù)循環(huán)程序框圖可知,則,,,,,此時(shí)輸出,因而不符合條件框的內(nèi)容,但符合條件框內(nèi)容,結(jié)合選項(xiàng)可知C為正確選項(xiàng),故選:C.【點(diǎn)睛】本題考查了循環(huán)結(jié)構(gòu)程序框圖的簡(jiǎn)單應(yīng)用,完善程序框圖,屬于基礎(chǔ)題.7.C【解析】
首先判斷出為假命題、為真命題,然后結(jié)合含有簡(jiǎn)單邏輯聯(lián)結(jié)詞命題的真假性,判斷出正確選項(xiàng).【詳解】根據(jù)線面平行的判定,我們易得命題若直線,直線平面,則直線平面或直線在平面內(nèi),命題為假命題;根據(jù)線面垂直的定義,我們易得命題若直線平面,則若直線與平面內(nèi)的任意直線都垂直,命題為真命題.故:A命題“”為假命題;B命題“”為假命題;C命題“”為真命題;D命題“”為假命題.故選:C.【點(diǎn)睛】本小題主要考查線面平行與垂直有關(guān)命題真假性的判斷,考查含有簡(jiǎn)單邏輯聯(lián)結(jié)詞的命題的真假性判斷,屬于基礎(chǔ)題.8.D【解析】
利用與的關(guān)系,求得的值.【詳解】依題意,所以故選:D【點(diǎn)睛】本小題主要考查函數(shù)值的計(jì)算,屬于基礎(chǔ)題.9.A【解析】
根據(jù)分段函數(shù)解析式,先求得的值,再求得的值.【詳解】依題意,.故選:A【點(diǎn)睛】本小題主要考查根據(jù)分段函數(shù)解析式求函數(shù)值,屬于基礎(chǔ)題.10.B【解析】
因?yàn)閳A與拋物線的準(zhǔn)線相切,則圓心為(3,0),半徑為4,根據(jù)相切可知,圓心到直線的距離等于半徑,可知的值為2,選B.【詳解】請(qǐng)?jiān)诖溯斎朐斀猓?1.A【解析】
設(shè)事件A為“方程表示雙曲線”,事件B為“方程表示焦點(diǎn)在軸上的雙曲線”,分別計(jì)算出,再利用公式計(jì)算即可.【詳解】設(shè)事件A為“方程表示雙曲線”,事件B為“方程表示焦點(diǎn)在軸上的雙曲線”,由題意,,,則所求的概率為.故選:A.【點(diǎn)睛】本題考查利用定義計(jì)算條件概率的問題,涉及到雙曲線的定義,是一道容易題.12.C【解析】
求出函數(shù)定義域,在定義域內(nèi)確定函數(shù)的單調(diào)性,利用單調(diào)性解不等式.【詳解】由得,在時(shí),是增函數(shù),是增函數(shù),是增函數(shù),∴是增函數(shù),∴由得,解得.故選:C.【點(diǎn)睛】本題考查函數(shù)的單調(diào)性,考查解函數(shù)不等式,解題關(guān)鍵是確定函數(shù)的單調(diào)性,解題時(shí)可先確定函數(shù)定義域,在定義域內(nèi)求解.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
把已知等式變形,展開兩角和與差的三角函數(shù),結(jié)合已知求得值.【詳解】解:由,得,,即,,又,,解得:.為正的常數(shù),.故答案為:.【點(diǎn)睛】本題考查兩角和與差的三角函數(shù),考查數(shù)學(xué)轉(zhuǎn)化思想方法,屬于中檔題.14.【解析】
根據(jù)題意,利用余弦定理和基本不等式得出,再利用正弦定理,即可得出.【詳解】因?yàn)椋瑒t,由余弦定理得:,當(dāng)且僅當(dāng)時(shí)取等號(hào),又因?yàn)?,,所?故答案為:.【點(diǎn)睛】本題考查余弦定理和正弦定理的應(yīng)用,以及基本不等式求最值,考查計(jì)算能力.15.-1【解析】
由二項(xiàng)式定理及展開式系數(shù)的求法得,又,所以,令得:,所以,得解.【詳解】由,且,則,又,所以,令得:,所以,故答案為:.【點(diǎn)睛】本題考查了二項(xiàng)式定理及展開式系數(shù)的求法,意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平.16.【解析】
基本事件總數(shù)n126,其中三種顏色的球都有包含的基本事件個(gè)數(shù)m72,由此能求出其中三種顏色的球都有的概率.【詳解】解:袋中有2個(gè)紅球,3個(gè)白球和4個(gè)黃球,從中任取4個(gè)球,基本事件總數(shù)n126,其中三種顏色的球都有,可能是2個(gè)紅球,1個(gè)白球和1個(gè)黃球或1個(gè)紅球,2個(gè)白球和1個(gè)黃球或1個(gè)紅球,1個(gè)白球和2個(gè)黃球,所以包含的基本事件個(gè)數(shù)m72,∴其中三種顏色的球都有的概率是p.故答案為:.【點(diǎn)睛】本題考查概率的求法,考查古典概型、排列組合等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,是基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1)見解析(2)平面.見解析【解析】
(1)要證平面,只需證明,,即可求得答案;(2)連接交于點(diǎn),連接,根據(jù)已知條件求證,即可判斷與平面的位置關(guān)系,進(jìn)而求得答案.【詳解】(1),為邊的中點(diǎn),,平面平面,平面平面,平面,平面,,在內(nèi),,為所在邊的中點(diǎn),,又,,平面.(2)判斷可知,平面,證明如下:連接交于點(diǎn),連接.、、分別為邊、、的中點(diǎn),.又是的重心,,,平面,平面,平面.【點(diǎn)睛】本題主要考查了求證線面垂直和線面平行,解題關(guān)鍵是掌握線面垂直判定定理和線面平行判斷定理,考查了分析能力和空間想象能力,屬于中檔題.18.(1)(2)【解析】
(1)根據(jù),得到函數(shù),然后,直接求解的值;(2)首先,化簡(jiǎn)函數(shù),然后,結(jié)合周期公式,得到,再結(jié)合,及正弦函數(shù)的性質(zhì)解答即可.【詳解】(1)因?yàn)?,所以?)因?yàn)榧匆驗(yàn)椋运砸驗(yàn)樗运援?dāng)時(shí),.當(dāng)時(shí),(最大值)當(dāng)時(shí),在是增函數(shù),在是減函數(shù).的值域是.【點(diǎn)睛】本題主要考查了簡(jiǎn)單角的三角函數(shù)值的求解方法,兩角和與差的正弦、余弦公式,三角函數(shù)的圖象與性質(zhì)等知識(shí),考查了運(yùn)算求解能力,屬于中檔題.19.(1)證明見解析;(2).【解析】
(1)連接,連接、交于點(diǎn),并連接,則點(diǎn)為的中點(diǎn),利用中位線的性質(zhì)得出,,利用空間平行線的傳遞性可得出,然后利用線面平行的判定定理可證得結(jié)論;(2)推導(dǎo)出平面,并計(jì)算出,由此可得出到平面的距離為,即可得解.【詳解】(1)連接,連接、交于點(diǎn),并連接,則點(diǎn)為的中點(diǎn),、分別為、的中點(diǎn),則,同理可得,.平面,平面,因此,平面;(2)由于在底面的投影為,平面,平面,,為正三角形,且為的中點(diǎn),,,平面,且,因此,到平面的距離為.【點(diǎn)睛】本題考查線面平行的證明,同時(shí)也考查了點(diǎn)到平面距離的計(jì)算,考查推理能力與計(jì)算能力,屬于中等題.20.(1);(2)詳見解析;(3)詳見解析.【解析】
(1)根據(jù),可求得,再根據(jù)是常數(shù)列代入根據(jù)通項(xiàng)與前項(xiàng)和的關(guān)系求解即可.(2)取,并結(jié)合通項(xiàng)與前項(xiàng)和的關(guān)系可求得再根據(jù)化簡(jiǎn)可得,代入化簡(jiǎn)即可知,再證明也成立即可.(3)由(2)當(dāng)時(shí),,代入所給的條件化簡(jiǎn)可得,進(jìn)而證明可得,即數(shù)列是等比數(shù)列.繼而求得,再根據(jù)作商法證明即可.【詳解】解:.是各項(xiàng)不為零的常數(shù)列,則,則由,及得,當(dāng)時(shí),,兩式作差,可得.當(dāng)時(shí),滿足上式,則;證明:,當(dāng)時(shí),,兩式相減得:即.即.又,,即.當(dāng)時(shí),,兩式相減得:.?dāng)?shù)列從第二項(xiàng)起是公差為的等差數(shù)列.又當(dāng)時(shí),由得,當(dāng)時(shí),由,得.故數(shù)列是公差為的等差數(shù)列;證明:由,當(dāng)時(shí),,即,,,即,即,當(dāng)時(shí),即.故從第二項(xiàng)起數(shù)列是等比數(shù)列,當(dāng)時(shí),..另外,由已知條件可得,又,,因而.令,則.故對(duì)任意的恒成立.【點(diǎn)睛】本題主要考查了等差等比數(shù)列的綜合運(yùn)用,需要熟練運(yùn)用通項(xiàng)與前項(xiàng)和的關(guān)系分析數(shù)列的遞推公式繼而求解通項(xiàng)公式或證明等差數(shù)列等.同時(shí)也考查了數(shù)列中的不等式證明等,需要根據(jù)題意分析數(shù)列為等比數(shù)列并求出通項(xiàng),再利用作商法證明.屬于難題.21.(1)(2)【解
溫馨提示
- 1. 本站所有資源如無(wú)特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年個(gè)人借款借條范本編制標(biāo)準(zhǔn)2篇
- 山地生態(tài)旅游項(xiàng)目租賃合同二零二五年度版2篇
- 2025年度個(gè)人創(chuàng)業(yè)貸款合同示范文本7篇
- 2025年度臨建板房施工現(xiàn)場(chǎng)廢棄物處理與施工合同4篇
- 2025年度高端門面租賃及品牌推廣合作協(xié)議4篇
- 2025版美容院美容師顧客滿意度調(diào)查與改進(jìn)合同4篇
- 二零二五版智能科技門面租賃合同電子版4篇
- 2025年度高速公路監(jiān)控弱電系統(tǒng)工程合同范本4篇
- 2025年度煤礦安全監(jiān)控系統(tǒng)安裝與維護(hù)服務(wù)合同4篇
- 2025材皮木糠生物質(zhì)顆粒生產(chǎn)合作協(xié)議3篇
- 2025年度版權(quán)授權(quán)協(xié)議:游戲角色形象設(shè)計(jì)與授權(quán)使用3篇
- 心肺復(fù)蘇課件2024
- 《城鎮(zhèn)燃?xì)忸I(lǐng)域重大隱患判定指導(dǎo)手冊(cè)》專題培訓(xùn)
- 湖南財(cái)政經(jīng)濟(jì)學(xué)院專升本管理學(xué)真題
- 全國(guó)身份證前六位、區(qū)號(hào)、郵編-編碼大全
- 2024-2025學(xué)年福建省廈門市第一中學(xué)高一(上)適應(yīng)性訓(xùn)練物理試卷(10月)(含答案)
- 《零售學(xué)第二版教學(xué)》課件
- 廣東省珠海市香洲區(qū)2023-2024學(xué)年四年級(jí)下學(xué)期期末數(shù)學(xué)試卷
- 房地產(chǎn)行業(yè)職業(yè)生涯規(guī)劃
- 江蘇省建筑與裝飾工程計(jì)價(jià)定額(2014)電子表格版
- MOOC 數(shù)字電路與系統(tǒng)-大連理工大學(xué) 中國(guó)大學(xué)慕課答案
評(píng)論
0/150
提交評(píng)論