




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2024-2025學(xué)年陜西省澄城縣高三第一次測試數(shù)學(xué)試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知,則下列說法中正確的是()A.是假命題 B.是真命題C.是真命題 D.是假命題2.設(shè)為坐標(biāo)原點,是以為焦點的拋物線上任意一點,是線段上的點,且,則直線的斜率的最大值為()A. B. C. D.13.一只螞蟻在邊長為的正三角形區(qū)域內(nèi)隨機爬行,則在離三個頂點距離都大于的區(qū)域內(nèi)的概率為()A. B. C. D.4.已知函數(shù)f(x)=sin2x+sin2(x),則f(x)的最小值為()A. B. C. D.5.已知二次函數(shù)的部分圖象如圖所示,則函數(shù)的零點所在區(qū)間為()A. B. C. D.6.如圖是函數(shù)在區(qū)間上的圖象,為了得到這個函數(shù)的圖象,只需將的圖象上的所有的點()A.向左平移個長度單位,再把所得各點的橫坐標(biāo)變?yōu)樵瓉淼模v坐標(biāo)不變B.向左平移個長度單位,再把所得各點的橫坐標(biāo)變?yōu)樵瓉淼?倍,縱坐標(biāo)不變C.向左平移個長度單位,再把所得各點的橫坐標(biāo)變?yōu)樵瓉淼模v坐標(biāo)不變D.向左平移個長度單位,再把所得各點的橫坐標(biāo)變?yōu)樵瓉淼?倍,縱坐標(biāo)不變7.已知雙曲線的一條漸近線的傾斜角為,且,則該雙曲線的離心率為()A. B. C.2 D.48.已知等差數(shù)列中,,則()A.20 B.18 C.16 D.149.函數(shù)的值域為()A. B. C. D.10.拋物線的焦點為,則經(jīng)過點與點且與拋物線的準(zhǔn)線相切的圓的個數(shù)有()A.1個 B.2個 C.0個 D.無數(shù)個11.已知是雙曲線的左、右焦點,若點關(guān)于雙曲線漸近線的對稱點滿足(為坐標(biāo)原點),則雙曲線的漸近線方程為()A. B. C. D.12.劉徽是我國魏晉時期偉大的數(shù)學(xué)家,他在《九章算術(shù)》中對勾股定理的證明如圖所示.“勾自乘為朱方,股自乘為青方,令出入相補,各從其類,因就其余不移動也.合成弦方之冪,開方除之,即弦也”.已知圖中網(wǎng)格紙上小正方形的邊長為1,其中“正方形為朱方,正方形為青方”,則在五邊形內(nèi)隨機取一個點,此點取自朱方的概率為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知數(shù)列滿足:點在直線上,若使、、構(gòu)成等比數(shù)列,則______14.設(shè)復(fù)數(shù)滿足,其中是虛數(shù)單位,若是的共軛復(fù)數(shù),則____________.15.已知向量,且,則___________.16.已知拋物線,點為拋物線上一動點,過點作圓的切線,切點分別為,則線段長度的取值范圍為__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓的上頂點為,圓與軸的正半軸交于點,與有且僅有兩個交點且都在軸上,(為坐標(biāo)原點).(1)求橢圓的方程;(2)已知點,不過點且斜率為的直線與橢圓交于兩點,證明:直線與直線的斜率互為相反數(shù).18.(12分)如圖,為等腰直角三角形,,D為AC上一點,將沿BD折起,得到三棱錐,且使得在底面BCD的投影E在線段BC上,連接AE.(1)證明:;(2)若,求二面角的余弦值.19.(12分)已知x∈R,設(shè),,記函數(shù).(1)求函數(shù)取最小值時x的取值范圍;(2)設(shè)△ABC的角A,B,C所對的邊分別為a,b,c,若,,求△ABC的面積S的最大值.20.(12分)設(shè)函數(shù).(1)當(dāng)時,解不等式;(2)設(shè),且當(dāng)時,不等式有解,求實數(shù)的取值范圍.21.(12分)某景點上山共有級臺階,寓意長長久久.甲上臺階時,可以一步走一個臺階,也可以一步走兩個臺階,若甲每步上一個臺階的概率為,每步上兩個臺階的概率為.為了簡便描述問題,我們約定,甲從級臺階開始向上走,一步走一個臺階記分,一步走兩個臺階記分,記甲登上第個臺階的概率為,其中,且.(1)若甲走步時所得分數(shù)為,求的分布列和數(shù)學(xué)期望;(2)證明:數(shù)列是等比數(shù)列;(3)求甲在登山過程中,恰好登上第級臺階的概率.22.(10分)已知均為正實數(shù),函數(shù)的最小值為.證明:(1);(2).
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.D【解析】
舉例判斷命題p與q的真假,再由復(fù)合命題的真假判斷得答案.【詳解】當(dāng)時,故命題為假命題;記f(x)=ex﹣x的導(dǎo)數(shù)為f′(x)=ex,易知f(x)=ex﹣x(﹣∞,0)上遞減,在(0,+∞)上遞增,∴f(x)>f(0)=1>0,即,故命題為真命題;∴是假命題故選D本題考查復(fù)合命題的真假判斷,考查全稱命題與特稱命題的真假,考查指對函數(shù)的圖象與性質(zhì),是基礎(chǔ)題.2.C【解析】試題分析:設(shè),由題意,顯然時不符合題意,故,則,可得:,當(dāng)且僅當(dāng)時取等號,故選C.考點:1.拋物線的簡單幾何性質(zhì);2.均值不等式.【方法點晴】本題主要考查的是向量在解析幾何中的應(yīng)用及拋物線標(biāo)準(zhǔn)方程方程,均值不等式的靈活運用,屬于中檔題.解題時一定要注意分析條件,根據(jù)條件,利用向量的運算可知,寫出直線的斜率,注意均值不等式的使用,特別是要分析等號是否成立,否則易出問題.3.A【解析】
求出滿足條件的正的面積,再求出滿足條件的正內(nèi)的點到頂點、、的距離均不小于的圖形的面積,然后代入幾何概型的概率公式即可得到答案.【詳解】滿足條件的正如下圖所示:其中正的面積為,滿足到正的頂點、、的距離均不小于的圖形平面區(qū)域如圖中陰影部分所示,陰影部分區(qū)域的面積為.則使取到的點到三個頂點、、的距離都大于的概率是.故選:A.本題考查幾何概型概率公式、三角形的面積公式、扇形的面積公式的應(yīng)用,考查計算能力,屬于中等題.4.A【解析】
先通過降冪公式和輔助角法將函數(shù)轉(zhuǎn)化為,再求最值.【詳解】已知函數(shù)f(x)=sin2x+sin2(x),=,=,因為,所以f(x)的最小值為.故選:A本題主要考查倍角公式及兩角和與差的三角函數(shù)的逆用,還考查了運算求解的能力,屬于中檔題.5.B【解析】由函數(shù)f(x)的圖象可知,0<f(0)=a<1,f(1)=1-b+a=0,所以1<b<2.又f′(x)=2x-b,所以g(x)=ex+2x-b,所以g′(x)=ex+2>0,所以g(x)在R上單調(diào)遞增,又g(0)=1-b<0,g(1)=e+2-b>0,根據(jù)函數(shù)的零點存在性定理可知,函數(shù)g(x)的零點所在的區(qū)間是(0,1),故選B.6.A【解析】
由函數(shù)的最大值求出,根據(jù)周期求出,由五點畫法中的點坐標(biāo)求出,進而求出的解析式,與對比結(jié)合坐標(biāo)變換關(guān)系,即可求出結(jié)論.【詳解】由圖可知,,又,,又,,,為了得到這個函數(shù)的圖象,只需將的圖象上的所有向左平移個長度單位,得到的圖象,再將的圖象上各點的橫坐標(biāo)變?yōu)樵瓉淼模v坐標(biāo)不變)即可.故選:A本題考查函數(shù)的圖象求解析式,考查函數(shù)圖象間的變換關(guān)系,屬于中檔題.7.A【解析】
由傾斜角的余弦值,求出正切值,即的關(guān)系,求出雙曲線的離心率.【詳解】解:設(shè)雙曲線的半個焦距為,由題意又,則,,,所以離心率,故選:A.本題考查雙曲線的簡單幾何性質(zhì),屬于基礎(chǔ)題8.A【解析】
設(shè)等差數(shù)列的公差為,再利用基本量法與題中給的條件列式求解首項與公差,進而求得即可.【詳解】設(shè)等差數(shù)列的公差為.由得,解得.所以.故選:A本題主要考查了等差數(shù)列的基本量求解,屬于基礎(chǔ)題.9.A【解析】
由計算出的取值范圍,利用正弦函數(shù)的基本性質(zhì)可求得函數(shù)的值域.【詳解】,,,因此,函數(shù)的值域為.故選:A.本題考查正弦型函數(shù)在區(qū)間上的值域的求解,解答的關(guān)鍵就是求出對象角的取值范圍,考查計算能力,屬于基礎(chǔ)題.10.B【解析】
圓心在的中垂線上,經(jīng)過點,且與相切的圓的圓心到準(zhǔn)線的距離與到焦點的距離相等,圓心在拋物線上,直線與拋物線交于2個點,得到2個圓.【詳解】因為點在拋物線上,又焦點,,由拋物線的定義知,過點、且與相切的圓的圓心即為線段的垂直平分線與拋物線的交點,這樣的交點共有2個,故過點、且與相切的圓的不同情況種數(shù)是2種.故選:.本題主要考查拋物線的簡單性質(zhì),本題解題的關(guān)鍵是求出圓心的位置,看出圓心必須在拋物線上,且在垂直平分線上.11.B【解析】
先利用對稱得,根據(jù)可得,由幾何性質(zhì)可得,即,從而解得漸近線方程.【詳解】如圖所示:由對稱性可得:為的中點,且,所以,因為,所以,故而由幾何性質(zhì)可得,即,故漸近線方程為,故選B.本題考查了點關(guān)于直線對稱點的知識,考查了雙曲線漸近線方程,由題意得出是解題的關(guān)鍵,屬于中檔題.12.C【解析】
首先明確這是一個幾何概型面積類型,然后求得總事件的面積和所研究事件的面積,代入概率公式求解.【詳解】因為正方形為朱方,其面積為9,五邊形的面積為,所以此點取自朱方的概率為.故選:C本題主要考查了幾何概型的概率求法,還考查了數(shù)形結(jié)合的思想和運算求解的能力,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13.13【解析】
根據(jù)點在直線上可求得,由等比中項的定義可構(gòu)造方程求得結(jié)果.【詳解】在上,,成等比數(shù)列,,即,解得:.故答案為:.本題考查根據(jù)三項成等比數(shù)列求解參數(shù)值的問題,涉及到等比中項的應(yīng)用,屬于基礎(chǔ)題.14.【解析】
由于,則.15.【解析】
由向量平行的坐標(biāo)表示得出,求解即可得出答案.【詳解】因為,所以,解得.故答案為:本題主要考查了由向量共線或平行求參數(shù),屬于基礎(chǔ)題.16.【解析】
連接,易得,可得四邊形的面積為,從而可得,進而求出的取值范圍,可求得的范圍.【詳解】如圖,連接,易得,所以四邊形的面積為,且四邊形的面積為三角形面積的兩倍,所以,所以,當(dāng)最小時,最小,設(shè)點,則,所以當(dāng)時,,則,當(dāng)點的橫坐標(biāo)時,,此時,因為隨著的增大而增大,所以的取值范圍為.故答案為:.本題考查直線與圓的位置關(guān)系的應(yīng)用,考查拋物線上的動點到定點的距離的求法,考查學(xué)生的計算求解能力,屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1)(2)證明見解析【解析】
(1)根據(jù)條件可得,進而得到,即可得到橢圓方程;(2)設(shè)直線的方程為,聯(lián)立,分別表示出直線和直線斜率,相加利用根與系數(shù)關(guān)系即可得到.【詳解】解:(1)圓與有且僅有兩個交點且都在軸上,所以,又,,解得,故橢圓的方程為;(2)設(shè)直線的方程為,聯(lián)立,整理可得,則,解得,設(shè)點,,則,,所以,故直線與直線的斜率互為相反數(shù).本題考查直線與橢圓的位置關(guān)系,涉及橢圓的幾何性質(zhì),關(guān)鍵是求出橢圓的標(biāo)準(zhǔn)方程,屬于中檔題.18.(1)見解析;(2)【解析】
(1)由折疊過程知與平面垂直,得,再取中點,可證與平面垂直,得,從而可得線面垂直,再得線線垂直;(2)由已知得為中點,以為原點,所在直線為軸,在平面內(nèi)過作的垂線為軸建立空間直角坐標(biāo)系,由已知求出線段長,得出各點坐標(biāo),用平面的法向量計算二面角的余弦.【詳解】(1)易知與平面垂直,∴,連接,取中點,連接,由得,,∴平面,平面,∴,又,∴平面,∴;(2)由,知是中點,令,則,由,,∴,解得,故.以為原點,所在直線為軸,在平面內(nèi)過作的垂線為軸建立空間直角坐標(biāo)系,如圖,則,,,設(shè)平面的法向量為,則,取,則.又易知平面的一個法向量為,.∴二面角的余弦值為.本題考查證明線線垂直,考查用空間向量法求二面角.證線線垂直,一般先證線面垂直,而證線面垂直又要證線線垂直,注意線線垂直、線面垂直及面面垂直的轉(zhuǎn)化.求空間角,常用方法就是建立空間直角坐標(biāo)系,用空間向量法求空間角.19.(1);(2)【解析】
(1)先根據(jù)向量的數(shù)量積的運算,以及二倍角公式和兩角和的正弦公式化簡得到f(x)=,再根據(jù)正弦函數(shù)的性質(zhì)即可求出答案;(2)先求出C的大小,再根據(jù)余弦定理和基本不等式,即可求出,根據(jù)三角形的面積公式即可求出答案.【詳解】(1).令,k∈Z,即時,,取最小值,所以,所求的取值集合是;(2)由,得,因為,所以,所以,.在中,由余弦定理,得,即,當(dāng)且僅當(dāng)時取等號,所以的面積,因此的面積的最大值為.本題考查了向量的數(shù)量積的運算和二倍角公式,兩角和的正弦公式,余弦定理和基本不等式,三角形的面積公式,屬于中檔題.20.(1);(2).【解析】
(1)通過分類討論去掉絕對值符號,進而解不等式組求得結(jié)果;(2)將不等式整理為,根據(jù)能成立思想可知,由此構(gòu)造不等式求得結(jié)果.【詳解】(1)當(dāng)時,可化為,由,解得;由,解得;由,解得.綜上所述:所以原不等式的解集為.(2),,,,有解,,即,又,,實數(shù)的取值范圍是.本題考查絕對值不等式的求解、根據(jù)不等式有解求解參數(shù)范圍的問題;關(guān)鍵是明確對于不等式能成立的問題,通過分離變量的方式將問題轉(zhuǎn)化為所求參數(shù)與函數(shù)最值之間的比較問題.21.見解析【解析】
(1)由題可得的所有可能取值為,,,,且,,,,所以的分布列為所
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 中國紅柳桉木木材項目創(chuàng)業(yè)計劃書
- 中國減肥移動應(yīng)用(APP)項目創(chuàng)業(yè)計劃書
- 中國家具測試系統(tǒng)項目創(chuàng)業(yè)計劃書
- 中國吉林汽車零部件項目創(chuàng)業(yè)計劃書
- 中國三維建模軟件項目創(chuàng)業(yè)計劃書
- 中國B2C電子商務(wù)項目創(chuàng)業(yè)計劃書
- 中國可視電話項目創(chuàng)業(yè)計劃書
- 中國計算機及相關(guān)設(shè)備制造項目創(chuàng)業(yè)計劃書
- 中國固態(tài)硬盤(SSD)項目創(chuàng)業(yè)計劃書
- 2025年企業(yè)合同標(biāo)準(zhǔn)范本
- 2025年鐵路客運值班員(中級)職業(yè)技能鑒定參考試題庫(含答案)
- 心腎綜合征診療實踐指南解讀
- 2025年中國磷酸鐵行業(yè)發(fā)展趨勢預(yù)測及投資戰(zhàn)略咨詢報告
- 骨科優(yōu)勢病種中醫(yī)診療方案
- 酒店采購管理制度及流程
- 部編版五年級下冊語文習(xí)作《習(xí)作他-了》寫作指導(dǎo)+范文+點評
- 血站面試考試試題及答案
- 《醫(yī)療機構(gòu)重大事故隱患判定清單(試行)》知識培訓(xùn)
- 《新能源材料概論》 課件 第5章 儲能材料
- 光伏發(fā)電設(shè)備檢修維護(技師)職業(yè)技能鑒定備考試題庫(含答案)
- TCACM 1470-2023 胃癌前病變治未病干預(yù)指南
評論
0/150
提交評論