AMOS結(jié)構(gòu)方程模型修正經(jīng)典案例4_第1頁(yè)
AMOS結(jié)構(gòu)方程模型修正經(jīng)典案例4_第2頁(yè)
AMOS結(jié)構(gòu)方程模型修正經(jīng)典案例4_第3頁(yè)
AMOS結(jié)構(gòu)方程模型修正經(jīng)典案例4_第4頁(yè)
AMOS結(jié)構(gòu)方程模型修正經(jīng)典案例4_第5頁(yè)
已閱讀5頁(yè),還剩45頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

/結(jié)構(gòu)方程模型修正經(jīng)典案例模型設(shè)定結(jié)構(gòu)方程模型分析過(guò)程可以分為模型構(gòu)建、模型運(yùn)算、模型修正以及模型解釋四個(gè)步驟。下面以一個(gè)研究實(shí)例作為說(shuō)明,使用7軟件本案例是在Amos7中完成的。進(jìn)行計(jì)算,闡述在實(shí)際應(yīng)用中結(jié)構(gòu)方程模型的構(gòu)建、運(yùn)算、修正及模型解釋過(guò)程。本案例是在Amos7中完成的。模型構(gòu)建的思路本案例在著名的美國(guó)顧客滿意度指數(shù)模型()的基礎(chǔ)上,提出了一個(gè)新的模型,并以此構(gòu)建潛變量并建立模型結(jié)構(gòu)。根據(jù)構(gòu)建的理論模型,通過(guò)設(shè)計(jì)問(wèn)卷對(duì)某超市顧客購(gòu)物服務(wù)滿意度調(diào)查得到實(shí)際數(shù)據(jù),然后利用對(duì)缺失值進(jìn)行處理后的數(shù)據(jù)見(jiàn)spss數(shù)據(jù)文件“處理后的數(shù)據(jù).sav”。進(jìn)行分析,并對(duì)文中提出的見(jiàn)spss數(shù)據(jù)文件“處理后的數(shù)據(jù).sav”。潛變量和可測(cè)變量的設(shè)定本文在繼承模型核心概念的基礎(chǔ)上,對(duì)模型作了一些改進(jìn),在模型中增加超市形象。它包括顧客對(duì)超市總體形象及及其他超市相比的知名度。它及顧客期望,感知價(jià)格和顧客滿意有關(guān),設(shè)計(jì)的模型見(jiàn)表7-1。模型中共包含七個(gè)因素(潛變量):超市形象、質(zhì)量期望、質(zhì)量感知、感知價(jià)值、顧客滿意、顧客抱怨、顧客忠誠(chéng),其中前四個(gè)要素是前提變量,后三個(gè)因素是結(jié)果變量,前提變量綜合決定并影響著結(jié)果變量(W.&,2000;殷榮伍,2000)。表7-1設(shè)計(jì)的結(jié)構(gòu)路徑圖和基本路徑假設(shè)設(shè)計(jì)的結(jié)構(gòu)路徑圖基本路徑假設(shè)超市形象超市形象質(zhì)量期望質(zhì)量感知感知價(jià)值顧客滿意顧客抱怨顧客忠誠(chéng)超市形象對(duì)質(zhì)量期望有路徑影響質(zhì)量期望對(duì)質(zhì)量感知有路徑影響質(zhì)量感知對(duì)感知價(jià)格有路徑影響質(zhì)量期望對(duì)感知價(jià)格有路徑影響感知價(jià)格對(duì)顧客滿意有路徑影響顧客滿意對(duì)顧客忠誠(chéng)有路徑影響超市形象對(duì)顧客滿意有路徑影響超市形象對(duì)顧客忠誠(chéng)有路徑影響2.1、顧客滿意模型中各因素的具體范疇參考前面模型的總體構(gòu)建情況、國(guó)外研究理論和其他行業(yè)實(shí)證結(jié)論,以及小范圍甄別調(diào)查的結(jié)果,模型中各要素需要觀測(cè)的具體范疇,見(jiàn)表7-2。表7-2模型變量對(duì)應(yīng)表潛變量?jī)?nèi)涵可測(cè)變量超市形象根據(jù)在固定電話、移動(dòng)電話、超市等行業(yè)中的調(diào)查研究,企業(yè)形象是影響總體滿意水平的第一要素,這里將超市形象要素列為影響因素,可以從以下幾個(gè)方面進(jìn)行觀測(cè)。某超市總體形象的評(píng)價(jià)(a1)及其它超市相比的形象(a2)及其它超市相比的品牌知名度(a3)質(zhì)量期望質(zhì)量期望是指顧客在使用某超市產(chǎn)品前對(duì)其的期望水平。顧客的質(zhì)量期望會(huì)影響顧客價(jià)值,而且質(zhì)量期望還會(huì)顧客感知造成影響.還有學(xué)者指出,對(duì)于顧客期望要素,至少可以從整體感覺(jué)、個(gè)性化服務(wù)、可靠性三個(gè)方面來(lái)觀測(cè)。結(jié)合上述因素,可以從幾個(gè)方面衡量對(duì)某超市的質(zhì)量期望。購(gòu)物前,對(duì)某超市整體服務(wù)的期望(a4)購(gòu)物前,期望某超市商品的新鮮程度達(dá)到的水平(a5)購(gòu)物前,期望某超市營(yíng)業(yè)時(shí)間安排合理程度(a6)購(gòu)物前,期望某超市員工服務(wù)態(tài)度達(dá)到的水平(a7)購(gòu)物前,期望某超市結(jié)賬速度達(dá)到的水平(a8)質(zhì)量感知質(zhì)量感知和質(zhì)量期望相對(duì)應(yīng),質(zhì)量期望考慮的是在購(gòu)買(mǎi)商品前的期望,質(zhì)量感知是在購(gòu)買(mǎi)商品后的實(shí)際感受??梢詮膸讉€(gè)方面衡量。購(gòu)物后,對(duì)某超市整體服務(wù)的滿意程度(a9)購(gòu)物后,認(rèn)為某超市商品的新鮮程度達(dá)到的水平(a10)購(gòu)物后,認(rèn)為超市營(yíng)業(yè)時(shí)間安排合理程度(a11)購(gòu)物后,認(rèn)為某超市員工服務(wù)態(tài)度達(dá)到的水平(a12)購(gòu)物后,認(rèn)為某超市結(jié)賬速度達(dá)到的水平(a13)感知價(jià)值根據(jù)和(,2000)對(duì)美國(guó)顧客滿意指數(shù)模型的進(jìn)一步研究,認(rèn)為對(duì)于顧客價(jià)值部分可以從性價(jià)比來(lái)衡量。您認(rèn)為某超市商品的價(jià)格如何(a14)及其他超市相比,您認(rèn)為某超市商品的價(jià)格如何(a15)顧客滿意顧客滿意一般可以從三個(gè)方面衡量,一是可以從整體上來(lái)感覺(jué);二是可以及消費(fèi)前的期望進(jìn)行比較,尋找兩者的差距;三是可以及理想狀態(tài)下的感覺(jué)比較,尋找兩者的差距。因此,可以通過(guò)以下幾個(gè)指標(biāo)衡量。對(duì)某超市的總體滿意程度(a16)和您消費(fèi)前的期望比,您對(duì)某超市的滿意程度(a17)和您心目中的超市比,您對(duì)某超市的滿意程度(a18)顧客抱怨和(1988)的研究成果,認(rèn)為顧客滿意的增加會(huì)減少顧客的抱怨,同時(shí)會(huì)增加顧客的忠誠(chéng),當(dāng)顧客不滿意時(shí),他們往往會(huì)選擇抱怨。對(duì)于抱怨的觀測(cè),一般有兩種方式,一種是比較正式的形式,向超市提出正式抱怨,有換貨,退貨等行為;另一種是非正式的形式,顧客會(huì)宣傳,形成群眾對(duì)于該超市的口碑。您對(duì)某超市投訴的頻率(包括給超市寫(xiě)投訴信和直接向超市人員反映)(a19)您對(duì)某超市抱怨的頻率(私下抱怨并未告知超市)(a20)您認(rèn)為某超市對(duì)顧客投訴的處理效率和效果正向的,采用Likert10級(jí)量度正向的,采用Likert10級(jí)量度從“非常低”到“非常高”顧客忠誠(chéng)顧客忠誠(chéng)主要可以從三個(gè)方面體現(xiàn):顧客推薦意向、轉(zhuǎn)換產(chǎn)品的意向、重復(fù)購(gòu)買(mǎi)的意向。同時(shí)還有學(xué)者指出顧客忠誠(chéng)可以從顧客對(duì)漲價(jià)的容忍性、重復(fù)購(gòu)買(mǎi)性兩方面衡量。綜合上述因素,擬從以下幾個(gè)方面衡量顧客忠誠(chéng)。我會(huì)經(jīng)常去某超市(a22)我會(huì)推薦同學(xué)和朋友去某超市(a23)如果發(fā)現(xiàn)某超市的產(chǎn)品或服務(wù)有問(wèn)題后,能以諒解的心態(tài)主動(dòng)向超市反饋,求得解決,并且以后還會(huì)來(lái)超市購(gòu)物(a24)關(guān)于顧客滿意調(diào)查數(shù)據(jù)的收集本次問(wèn)卷調(diào)研的對(duì)象為居住在某大學(xué)校內(nèi)的各類(lèi)學(xué)生(包括全日制本科生、全日制碩士和博士研究生),并且近一個(gè)月內(nèi)在校內(nèi)某超市有購(gòu)物體驗(yàn)的學(xué)生。調(diào)查采用隨機(jī)攔訪的方式,并且為避免樣本的同質(zhì)性和重復(fù)填寫(xiě),按照性別和被訪者經(jīng)常光顧的超市進(jìn)行控制。問(wèn)卷內(nèi)容包括7個(gè)潛變量因子,24項(xiàng)可測(cè)指標(biāo),7個(gè)人口變量,量表采用了10級(jí)量度,如對(duì)超市形象的測(cè)量:一、超市形象1代表“非常差勁”,10代表“非常好”1您對(duì)某超市總體形象的評(píng)價(jià)123456789102您認(rèn)為及其它校內(nèi)超市相比,某超市的形象如何123456789103您認(rèn)為及其它校內(nèi)超市相比,某超市品牌知名度如何12345678910本次調(diào)查共發(fā)放問(wèn)卷500份,收回有效樣本436份。缺失值的處理采用表列刪除法,即在一條記錄中,只要存在一項(xiàng)缺失,則刪除該記錄。最終得到401條數(shù)據(jù),基于這部分?jǐn)?shù)據(jù)做分析。數(shù)據(jù)的的信度和效度檢驗(yàn)1.?dāng)?shù)據(jù)的信度檢驗(yàn)信度()指測(cè)量結(jié)果(數(shù)據(jù))一致性或穩(wěn)定性的程度。一致性主要反映的是測(cè)驗(yàn)內(nèi)部題目之間的關(guān)系,考察測(cè)驗(yàn)的各個(gè)題目是否測(cè)量了相同的內(nèi)容或特質(zhì)。穩(wěn)定性是指用一種測(cè)量工具(譬如同一份問(wèn)卷)對(duì)同一群受試者進(jìn)行不同時(shí)間上的重復(fù)測(cè)量結(jié)果間的可靠系數(shù)。如果問(wèn)卷設(shè)計(jì)合理,重復(fù)測(cè)量的結(jié)果間應(yīng)該高度相關(guān)。由于本案例并沒(méi)有進(jìn)行多次重復(fù)測(cè)量,所以主要采用反映內(nèi)部一致性的指標(biāo)來(lái)測(cè)量數(shù)據(jù)的信度。折半信度()是將測(cè)量工具中的條目按奇偶數(shù)或前后分成兩半,采用公式估計(jì)相關(guān)系數(shù),相關(guān)系數(shù)高提示內(nèi)部一致性好。然而,折半信度系數(shù)是建立在兩半問(wèn)題條目分?jǐn)?shù)的方差相等這一假設(shè)基礎(chǔ)上的,但實(shí)際數(shù)據(jù)并不一定滿足這一假定,因此信度往往被低估。在1951年提出了一種新的方法('s系數(shù)),這種方法將測(cè)量工具中任一條目結(jié)果同其他所有條目作比較,對(duì)量表內(nèi)部一致性估計(jì)更為慎重,因此克服了折半信度的缺點(diǎn)。本章采用16.0研究數(shù)據(jù)的內(nèi)部一致性。在菜單中選擇下的(如圖7-1),將數(shù)據(jù)中在左邊方框中待分析的24個(gè)題目一一選中,然后點(diǎn)擊,左邊方框中待分析的24個(gè)題目進(jìn)入右邊的方框中,使用模型(默認(rèn)),得到圖7-2,然后點(diǎn)擊即可得到如表7-3的結(jié)果,顯示's系數(shù)為0.892,說(shuō)明案例所使用數(shù)據(jù)具有較好的信度。圖7-1信度分析的選擇圖7-2信度分析變量及方法的選擇表7-3信度分析結(jié)果'sN.89224另外,對(duì)問(wèn)卷中每個(gè)潛變量的信度分別檢驗(yàn)結(jié)果如表7-4所示操作過(guò)程同前,不同的是在圖7-14中選入右邊方框items中是相應(yīng)潛變量對(duì)應(yīng)的題目。如對(duì)超市形象潛變量,只需要把a(bǔ)1、a2和a3題目選入到右邊方框items中即可。。從表7-4可以看到,除顧客抱怨量表’s系數(shù)為0.255,比較低以外,其它分量表的系數(shù)均在0.7以上,且總量表的操作過(guò)程同前,不同的是在圖7-14中選入右邊方框items中是相應(yīng)潛變量對(duì)應(yīng)的題目。如對(duì)超市形象潛變量,只需要把a(bǔ)1、a2和a3題目選入到右邊方框items中即可。表7-4潛變量的信度檢驗(yàn)潛變量可測(cè)變量個(gè)數(shù)’s超市形象30.858質(zhì)量期望50.889質(zhì)量感知50.862感知價(jià)格20.929顧客滿意30.948顧客抱怨30.255顧客忠誠(chéng)30.7382.?dāng)?shù)據(jù)的效度檢驗(yàn)效度()指測(cè)量工具能夠正確測(cè)量出所要測(cè)量的特質(zhì)的程度,分為內(nèi)容效度()、效標(biāo)效度()和結(jié)構(gòu)效度()三個(gè)主要類(lèi)型。內(nèi)容效度也稱(chēng)表面效度或邏輯效度,是指測(cè)量目標(biāo)及測(cè)量?jī)?nèi)容之間的適合性及相符性。對(duì)內(nèi)容效度常采用邏輯分析及統(tǒng)計(jì)分析相結(jié)合的方法進(jìn)行評(píng)價(jià)。邏輯分析一般由研究者或?qū)<以u(píng)判所選題項(xiàng)是否“看上去”符合測(cè)量的目的和要求。準(zhǔn)則效度又稱(chēng)效標(biāo)效度、實(shí)證效度、統(tǒng)計(jì)效度、預(yù)測(cè)效度或標(biāo)準(zhǔn)關(guān)聯(lián)效度,是指用不同的幾種測(cè)量方式或不同的指標(biāo)對(duì)同一變量進(jìn)行測(cè)量,并將其中的一種方式作為準(zhǔn)則(效標(biāo)),用其他的方式或指標(biāo)及這個(gè)準(zhǔn)則作比較,如果其他方式或指標(biāo)也有效,那么這個(gè)測(cè)量即具備效標(biāo)效度。例如,是一個(gè)變量,我們使用、兩種工具進(jìn)行測(cè)量。如果使用作為準(zhǔn)則,并且和高度相關(guān),我們就說(shuō)也是具有很高的效度。當(dāng)然,使用這種方法的關(guān)鍵在于作為準(zhǔn)則的測(cè)量方式或指標(biāo)一定要是有效的,否則越比越差?,F(xiàn)實(shí)中,我們?cè)u(píng)價(jià)效標(biāo)效度的方法是相關(guān)分析或差異顯著性檢驗(yàn),但是在調(diào)查問(wèn)卷的效度分析中,選擇一個(gè)合適的準(zhǔn)則往往十分困難,也使這種方法的應(yīng)用受到一定限制。結(jié)構(gòu)效度也稱(chēng)構(gòu)想效度、建構(gòu)效度或理論效度,是指測(cè)量工具反映概念和命題的內(nèi)部結(jié)構(gòu)的程度,也就是說(shuō)如果問(wèn)卷調(diào)查結(jié)果能夠測(cè)量其理論特征,使調(diào)查結(jié)果及理論預(yù)期一致,就認(rèn)為數(shù)據(jù)是具有結(jié)構(gòu)效度的。它一般是通過(guò)測(cè)量結(jié)果及理論假設(shè)相比較來(lái)檢驗(yàn)的。確定結(jié)構(gòu)效度的基本步驟是,首先從某一理論出發(fā),提出關(guān)于特質(zhì)的假設(shè),然后設(shè)計(jì)和編制測(cè)量并進(jìn)行施測(cè),最后對(duì)測(cè)量的結(jié)果采用相關(guān)分析或因子分析等方法進(jìn)行分析,驗(yàn)證其及理論假設(shè)的相符程度。在實(shí)際操作的過(guò)程中,前面兩種效度(內(nèi)容效度和準(zhǔn)則效度)往往要求專(zhuān)家定性研究或具有公認(rèn)的效標(biāo)測(cè)量,因而難以實(shí)現(xiàn)的,而結(jié)構(gòu)效度便于可以采用多種方法來(lái)實(shí)現(xiàn):第一種方法是通過(guò)模型系數(shù)評(píng)價(jià)結(jié)構(gòu)效度。如果模型假設(shè)的潛變量之間的關(guān)系以及潛變量及可測(cè)變量之間的關(guān)系合理,非標(biāo)準(zhǔn)化系數(shù)應(yīng)當(dāng)具有顯著的統(tǒng)計(jì)意義。特別地,通過(guò)標(biāo)準(zhǔn)化系數(shù)關(guān)于標(biāo)準(zhǔn)化系數(shù)的解釋見(jiàn)本章第五節(jié)??梢员容^不同指標(biāo)間的效度。從表7-17可以看出在99%的置信度下所有非標(biāo)準(zhǔn)化系數(shù)具有統(tǒng)計(jì)顯著性,這說(shuō)明修正模型的整體結(jié)構(gòu)效度較好。關(guān)于標(biāo)準(zhǔn)化系數(shù)的解釋見(jiàn)本章第五節(jié)。第二種方法是通過(guò)相關(guān)系數(shù)評(píng)價(jià)結(jié)構(gòu)效度。如果在理論模型中潛變量之間存在相關(guān)關(guān)系,可以通過(guò)潛變量的相關(guān)系數(shù)來(lái)評(píng)價(jià)結(jié)構(gòu)效度:顯著的相關(guān)系數(shù)說(shuō)明理論模型假設(shè)成立,具有較好的結(jié)構(gòu)效度。第三種方法是先構(gòu)建理論模型,通過(guò)驗(yàn)證性因子分析的模型擬合情況來(lái)對(duì)量表的結(jié)構(gòu)效度進(jìn)行考評(píng)。因此數(shù)據(jù)的效度檢驗(yàn)就轉(zhuǎn)化為結(jié)構(gòu)方程模型評(píng)價(jià)中的模型擬合指數(shù)評(píng)價(jià)。對(duì)于本案例,從表7-16可知理論模型及數(shù)據(jù)擬合較好,結(jié)構(gòu)效度較好。結(jié)構(gòu)方程模型建模構(gòu)建如圖7.3的初始模型。圖7-3初始模型結(jié)構(gòu)圖7-4初始界面圖實(shí)現(xiàn)這部分的操作說(shuō)明也可參看書(shū)上第七章第二節(jié):Amos實(shí)現(xiàn)?;窘缑婕肮ぞ叽蜷_(kāi),初始界面如圖7-4。其中第一部分是建模區(qū)域,默認(rèn)是豎版格式。如果要建立的模型在橫向上占用較大空間,只需選擇菜單中的選項(xiàng)下的(如圖7.5),即可將建模區(qū)域調(diào)整為橫板格式。圖7-2中的第二部分是工具欄,用于模型的設(shè)定、運(yùn)算及修正。相關(guān)工具的具體功能參見(jiàn)書(shū)后附錄二。圖7-5建模區(qū)域的版式調(diào)整圖7-6建立潛變量模型設(shè)定操作1.模型的繪制在使用進(jìn)行模型設(shè)定之前,建議事先在紙上繪制出基本理論模型和變量影響關(guān)系路徑圖,并確定潛變量及可測(cè)變量的名稱(chēng),以避免不必要的返工。相關(guān)軟件操作如下:第一步,使用建模區(qū)域繪制模型中的七個(gè)潛變量(如圖7-6)。為了保持圖形的美觀,可以使用先繪制一個(gè)潛變量,再使用復(fù)制工具繪制其他潛變量,以保證潛變量大小一致。在潛變量上點(diǎn)擊右鍵選擇,為潛變量命名(如圖7-7)。繪制好的潛變量圖形如圖7-8。第二步設(shè)置潛變量之間的關(guān)系。使用來(lái)設(shè)置變量間的因果關(guān)系,使用來(lái)設(shè)置變量間的相關(guān)關(guān)系。繪制好的潛變量關(guān)系圖如圖7-9。圖7-7潛變量命名圖7-8命名后的潛變量圖7-9設(shè)定潛變量關(guān)系第三步為潛變量設(shè)置可測(cè)變量及相應(yīng)的殘差變量,可以使用繪制,也可以使用和自行繪制(繪制結(jié)果如圖7-10)。在可測(cè)變量上點(diǎn)擊右鍵選擇,為可測(cè)變量命名。其中一項(xiàng)對(duì)應(yīng)的是數(shù)據(jù)中的變量名(如圖7-11),在殘差變量上右鍵選擇為殘差變量命名。最終繪制完成模型結(jié)果如圖7-12。圖7-10設(shè)定可測(cè)變量及殘差變量圖7-11可測(cè)變量指定及命名圖7-12初始模型設(shè)置完成2.?dāng)?shù)據(jù)文件的配置可以處理多種數(shù)據(jù)格式,如文本文檔(*),表格文檔(*、*1),數(shù)據(jù)庫(kù)文檔(*、*),文檔(*)等。為了配置數(shù)據(jù)文件,選擇菜單中的(如圖7-13),出現(xiàn)如圖7-14左邊的對(duì)話框,然后點(diǎn)擊按鈕,出現(xiàn)如圖7-14右邊的對(duì)話框,找到需要讀入的數(shù)據(jù)文件“處理后的數(shù)據(jù)”,雙擊文件名或點(diǎn)擊下面的“打開(kāi)”按鈕,最后點(diǎn)擊圖7-14左邊的對(duì)話框中“”按鈕,這樣就讀入數(shù)據(jù)了。圖7-13數(shù)據(jù)配置圖7-14數(shù)據(jù)讀入模型擬合參數(shù)估計(jì)方法選擇模型運(yùn)算是使用軟件進(jìn)行模型參數(shù)估計(jì)的過(guò)程。提供了多種模型運(yùn)算方法供選擇詳細(xì)方法列表參見(jiàn)書(shū)后附錄一。??梢酝ㄟ^(guò)點(diǎn)擊菜單在(或點(diǎn)擊工具欄的詳細(xì)方法列表參見(jiàn)書(shū)后附錄一。本案例使用最大似然估計(jì)()進(jìn)行模型運(yùn)算,相關(guān)設(shè)置如圖7-15。圖7-15參數(shù)估計(jì)選擇標(biāo)準(zhǔn)化系數(shù)如果不做選擇,輸出結(jié)果默認(rèn)的路徑系數(shù)(或載荷系數(shù))沒(méi)有經(jīng)過(guò)標(biāo)準(zhǔn)化,稱(chēng)作非標(biāo)準(zhǔn)化系數(shù)。非標(biāo)準(zhǔn)化系數(shù)中存在依賴于有關(guān)變量的尺度單位,所以在比較路徑系數(shù)(或載荷系數(shù))時(shí)無(wú)法直接使用,因此需要進(jìn)行標(biāo)準(zhǔn)化。在中的項(xiàng)中選擇項(xiàng)(如圖7-26),即可輸出測(cè)量模型的因子載荷標(biāo)準(zhǔn)化系數(shù)如表7-5最后一列。圖7.16標(biāo)準(zhǔn)化系數(shù)計(jì)算標(biāo)準(zhǔn)化系數(shù)是將各變量原始分?jǐn)?shù)轉(zhuǎn)換為Z分?jǐn)?shù)Z分?jǐn)?shù)轉(zhuǎn)換公式為:。Z分?jǐn)?shù)轉(zhuǎn)換公式為:。因此不同變量間的標(biāo)準(zhǔn)化路徑系數(shù)(或標(biāo)準(zhǔn)化載荷系數(shù))可以直接比較。從表7-17最后一列中可以看出:受“質(zhì)量期望”潛變量影響的是“質(zhì)量感知”潛變量和“感知價(jià)格”潛變量;標(biāo)準(zhǔn)化路徑系數(shù)分別為0.434和0.244,這說(shuō)明“質(zhì)量期望”潛變量對(duì)“質(zhì)量感知”潛變量的影響程度大于其對(duì)“感知價(jià)格”潛變量的影響程度。參數(shù)估計(jì)結(jié)果的展示圖7-17模型運(yùn)算完成圖使用菜單下的進(jìn)行模型運(yùn)算(或使用工具欄中的),輸出結(jié)果如圖7-17。其中紅框部分是模型運(yùn)算基本結(jié)果信息,使用者也可以通過(guò)點(diǎn)擊()查看參數(shù)估計(jì)結(jié)果圖(圖7-18)。圖7-18參數(shù)估計(jì)結(jié)果圖還提供了表格形式的模型運(yùn)算詳細(xì)結(jié)果信息,通過(guò)點(diǎn)擊工具欄中的來(lái)查看。詳細(xì)信息包括分析基本情況()、變量基本情況()、模型信息()、估計(jì)結(jié)果()、修正指數(shù)()和模型擬合()六部分。在分析過(guò)程中,一般通過(guò)前三部分分析基本情況(AnalysisSummary)、變量基本情況(VariableSummary)、模型信息(NotesforModel)三部分的詳細(xì)介紹如書(shū)后分析基本情況(AnalysisSummary)、變量基本情況(VariableSummary)、模型信息(NotesforModel)三部分的詳細(xì)介紹如書(shū)后附錄三。模型評(píng)價(jià)1.路徑系數(shù)/載荷系數(shù)的顯著性參數(shù)估計(jì)結(jié)果如表7-5到表7-6,模型評(píng)價(jià)首先要考察模型結(jié)果中估計(jì)出的參數(shù)是否具有統(tǒng)計(jì)意義,需要對(duì)路徑系數(shù)或載荷系數(shù)潛變量與潛變量間的回歸系數(shù)稱(chēng)為路徑系數(shù);潛變量與可測(cè)變量間的回歸系數(shù)稱(chēng)為載荷系數(shù)。進(jìn)行統(tǒng)計(jì)顯著性檢驗(yàn),這類(lèi)似于回歸分析中的參數(shù)顯著性檢驗(yàn),原假設(shè)為系數(shù)等于。提供了一種簡(jiǎn)單便捷的方法,叫做()。值是一個(gè)Z統(tǒng)計(jì)量,使用參數(shù)估計(jì)值及其標(biāo)準(zhǔn)差之比構(gòu)成(如表7-5中第四列)。同時(shí)給出了的統(tǒng)計(jì)檢驗(yàn)相伴概率p(如表7-5中第五列),使用者可以根據(jù)p值進(jìn)行路徑系數(shù)/載荷系數(shù)的統(tǒng)計(jì)顯著性檢驗(yàn)。譬如對(duì)于表7.5中“超市形象”潛變量對(duì)“質(zhì)量期望”潛變量的路徑系數(shù)(第一行)為0.301,其值為6.68,相應(yīng)的p值小于0.01,則可以認(rèn)為這個(gè)路徑系數(shù)在95%的置信度下及0存在顯著性差異。潛變量與潛變量間的回歸系數(shù)稱(chēng)為路徑系數(shù);潛變量與可測(cè)變量間的回歸系數(shù)稱(chēng)為載荷系數(shù)。表7-5系數(shù)估計(jì)結(jié)果未標(biāo)準(zhǔn)化路徑系數(shù)估計(jì)..P標(biāo)準(zhǔn)化路徑系數(shù)估計(jì)質(zhì)量期望<超市形象0.3010.0456.68***160.358質(zhì)量感知<質(zhì)量期望0.4340.0577.633***170.434感知價(jià)格<質(zhì)量期望0.3290.0893.722***180.244感知價(jià)格<質(zhì)量感知-0.1210.082-1.4670.14219-0.089感知價(jià)格<超市形象-0.0050.065-0.070.94420-0.004顧客滿意<超市形象0.9120.04321.389***210.878顧客滿意<感知價(jià)格-0.0290.028-1.0360.323-0.032顧客忠誠(chéng)<超市形象0.1670.1011.6530.098220.183顧客忠誠(chéng)<顧客滿意0.50.14.988***240.569a1凡是a+數(shù)字的變量都是代表問(wèn)卷中相應(yīng)測(cè)量指標(biāo)的,其中數(shù)字代表的問(wèn)卷第一部分中問(wèn)題的序號(hào)。凡是a+數(shù)字的變量都是代表問(wèn)卷中相應(yīng)測(cè)量指標(biāo)的,其中數(shù)字代表的問(wèn)卷第一部分中問(wèn)題的序號(hào)。<超市形象10.927a2<超市形象1.0080.03627.991***10.899a3<超市形象0.7010.04814.667***20.629a5<質(zhì)量期望10.79a4<質(zhì)量期望0.790.06112.852***30.626a6<質(zhì)量期望0.8910.05316.906***40.786a7<質(zhì)量期望1.1590.05919.628***50.891a8<質(zhì)量期望1.0240.05817.713***60.816a10<質(zhì)量感知10.768a9<質(zhì)量感知1.160.06517.911***70.882a11<質(zhì)量感知0.7580.06811.075***80.563a12<質(zhì)量感知1.1010.06915.973***90.784a13<質(zhì)量感知0.9830.06714.777***100.732a18<顧客滿意10.886a17<顧客滿意1.0390.03430.171***110.939a15<感知價(jià)格10.963a14<感知價(jià)格0.9720.1277.67***120.904a16<顧客滿意1.0090.03331.024***130.95a24<顧客忠誠(chéng)10.682a23<顧客忠誠(chéng)1.2080.09213.079***140.846注:“***”表示0.01水平上顯著,括號(hào)中是相應(yīng)的值,即t值。表7-6方差估計(jì)方差估計(jì)..P超市形象3.5740.29911.958***25z22.2080.2439.08***26z12.060.2418.54***27z34.4050.6686.596***28z40.8940.1078.352***29z51.3730.2146.404***30e10.5840.0797.363***31e20.8610.0939.288***32e32.6750.19913.467***33e51.5260.1311.733***34e42.4590.18613.232***35e61.2450.10511.799***36e70.8870.1038.583***37e81.3350.11911.228***38e101.7590.15211.565***39e90.9760.1227.976***40e113.1380.23513.343***41e121.9260.17111.272***42e132.1280.17612.11***43e181.0560.08911.832***44e160.420.0528.007***45e170.5540.0619.103***46e150.3640.5910.6160.53847e243.4130.29511.55***48e223.3810.28112.051***49e231.730.2526.874***50e140.9810.5621.7450.08151注:“***”表示0.01水平上顯著,括號(hào)中是相應(yīng)的值,即t值。模型擬合評(píng)價(jià)在結(jié)構(gòu)方程模型中,試圖通過(guò)統(tǒng)計(jì)運(yùn)算方法(如最大似然法等)求出那些使樣本方差協(xié)方差矩陣及理論方差協(xié)方差矩陣的差異最小的模型參數(shù)。換一個(gè)角度,如果理論模型結(jié)構(gòu)對(duì)于收集到的數(shù)據(jù)是合理的,那么樣本方差協(xié)方差矩陣及理論方差協(xié)方差矩陣差別不大,即殘差矩陣()各個(gè)元素接近于0,就可以認(rèn)為模型擬合了數(shù)據(jù)。模型擬合指數(shù)是考察理論結(jié)構(gòu)模型對(duì)數(shù)據(jù)擬合程度的統(tǒng)計(jì)指標(biāo)。不同類(lèi)別的模型擬合指數(shù)可以從模型復(fù)雜性、樣本大小、相對(duì)性及絕對(duì)性等方面對(duì)理論模型進(jìn)行度量。提供了多種模型擬合指數(shù)(如表表7-7擬合指數(shù)指數(shù)名稱(chēng)評(píng)價(jià)標(biāo)準(zhǔn)表格中給出的是該擬合指數(shù)的最優(yōu)標(biāo)準(zhǔn),譬如對(duì)于RMSEA,其值小于0.05表示模型擬合較好,在0.05-0.08間表示模型擬合尚可(Browne&Cudeck,1993)。因此在實(shí)際研究中,可根據(jù)具體情況分析。表格中給出的是該擬合指數(shù)的最優(yōu)標(biāo)準(zhǔn),譬如對(duì)于RMSEA,其值小于0.05表示模型擬合較好,在0.05-0.08間表示模型擬合尚可(Browne&Cudeck,1993)。因此在實(shí)際研究中,可根據(jù)具體情況分析。絕對(duì)擬合指數(shù)(卡方)越小越好大于0.9小于0.05,越小越好小于0.05,越小越好小于0.05,越小越好相對(duì)擬合指數(shù)大于0.9,越接近1越好大于0.9,越接近1越好大于0.9,越接近1越好信息指數(shù)越小越好越小越好7-7)供使用者選擇詳細(xì)請(qǐng)參考Amos6.0User’詳細(xì)請(qǐng)參考Amos6.0User’sGuide489項(xiàng)。需要注意的是,擬合指數(shù)的作用是考察理論模型及數(shù)據(jù)的適配程度,并不能作為判斷模型是否成立的唯一依據(jù)。擬合優(yōu)度高的模型只能作為參考,還需要根據(jù)所研究問(wèn)題的背景知識(shí)進(jìn)行模型合理性討論。即便擬合指數(shù)沒(méi)有達(dá)到最優(yōu),但一個(gè)能夠使用相關(guān)理論解釋的模型更具有研究意義。模型修正關(guān)于案例中模型的擬合方法和模型修正指數(shù)詳情關(guān)于案例中模型的擬合方法和模型修正指數(shù)詳情也可參看書(shū)上第七章第三節(jié)和第四節(jié)。模型修正的思路模型擬合指數(shù)和系數(shù)顯著性檢驗(yàn)固然重要,但對(duì)于數(shù)據(jù)分析更重要的是模型結(jié)論一定要具有理論依據(jù),換言之,模型結(jié)果要可以被相關(guān)領(lǐng)域知識(shí)所解釋。因此,在進(jìn)行模型修正時(shí)主要考慮修正后的模型結(jié)果是否具有現(xiàn)實(shí)意義或理論價(jià)值,當(dāng)模型效果很差時(shí)如模型不可識(shí)別,或擬合指數(shù)結(jié)果很差。可以參考模型修正指標(biāo)對(duì)模型進(jìn)行調(diào)整。如模型不可識(shí)別,或擬合指數(shù)結(jié)果很差。當(dāng)模型效果很差時(shí),研究者可以根據(jù)初始模型的參數(shù)顯著性結(jié)果和提供的模型修正指標(biāo)進(jìn)行模型擴(kuò)展()或模型限制()。模型擴(kuò)展是指通過(guò)釋放部分限制路徑或添加新路徑,使模型結(jié)構(gòu)更加合理,通常在提高模型擬合程度時(shí)使用;模型限制是指通過(guò)刪除譬如可以刪除初始模型中不存在顯著意義的路徑。或限制部分路徑,使模型結(jié)構(gòu)更加簡(jiǎn)潔,通常在提高模型可識(shí)別性時(shí)使用。譬如可以刪除初始模型中不存在顯著意義的路徑。提供了兩種模型修正指標(biāo),其中修正指數(shù)()用于模型擴(kuò)展,臨界比率()這個(gè)CR不同于參數(shù)顯著性檢驗(yàn)中的CR,使用方法將在下文中闡明。用于模型限制。這個(gè)CR不同于參數(shù)顯著性檢驗(yàn)中的CR,使用方法將在下文中闡明。模型修正指標(biāo)無(wú)論是根據(jù)修正指數(shù)還是臨界比率進(jìn)行模型修正,都要以模型的實(shí)際意義與理論依據(jù)為基礎(chǔ)。無(wú)論是根據(jù)修正指數(shù)還是臨界比率進(jìn)行模型修正,都要以模型的實(shí)際意義與理論依據(jù)為基礎(chǔ)。1.修正指數(shù)()圖7-19修正指數(shù)計(jì)算修正指數(shù)用于模型擴(kuò)展,是指對(duì)于模型中某個(gè)受限制的參數(shù),若容許自由估計(jì)(譬如在模型中添加某條路徑),整個(gè)模型改良時(shí)將會(huì)減少的最小卡方值即當(dāng)模型釋放某個(gè)模型參數(shù)時(shí),卡方統(tǒng)計(jì)量的減少量將大于等于相應(yīng)的修正指數(shù)值。即當(dāng)模型釋放某個(gè)模型參數(shù)時(shí),卡方統(tǒng)計(jì)量的減少量將大于等于相應(yīng)的修正指數(shù)值。使用修正指數(shù)修改模型時(shí),原則上每次只修改一個(gè)參數(shù),從最大值開(kāi)始估算。但在實(shí)際中,也要考慮讓該參數(shù)自由估計(jì)是否有理論根據(jù)。若要使用修正指數(shù),需要在中的項(xiàng)選擇項(xiàng)(如圖7-19)。其后面的指的是輸出的開(kāi)始值只有修正指數(shù)值大于開(kāi)始值的路徑才會(huì)被輸出,一般默認(rèn)開(kāi)始值為4。。只有修正指數(shù)值大于開(kāi)始值的路徑才會(huì)被輸出,一般默認(rèn)開(kāi)始值為4。圖7-20臨界比率計(jì)算2.臨界比率()臨界比率用于模型限制,是計(jì)算模型中的每一對(duì)待估參數(shù)(路徑系數(shù)或載荷系數(shù))之差,并除以相應(yīng)參數(shù)之差的標(biāo)準(zhǔn)差所構(gòu)造出的統(tǒng)計(jì)量。在模型假設(shè)下,統(tǒng)計(jì)量服從正態(tài)分布,所以可以根據(jù)值判斷兩個(gè)待估參數(shù)間是否存在顯著性差異。若兩個(gè)待估參數(shù)間不存在顯著性差異,則可以限定模型在估計(jì)時(shí)對(duì)這兩個(gè)參數(shù)賦以相同的值。若要使用臨界比率,需要在中的項(xiàng)選擇項(xiàng)(如圖7-20)。案例修正對(duì)本章所研究案例,初始模型運(yùn)算結(jié)果如表7-8,各項(xiàng)擬合指數(shù)尚可。但從模型參數(shù)的顯著性檢驗(yàn)(如表7-5)中可發(fā)現(xiàn)可以看出,無(wú)論是關(guān)于感知價(jià)格的測(cè)量方程部分還是關(guān)于結(jié)構(gòu)方程部分(除及質(zhì)量期望的路徑外),系數(shù)都是不顯著的。關(guān)于感知價(jià)格的結(jié)構(gòu)方程部分的平方復(fù)相關(guān)系數(shù)為0.048,非常小。另外,從實(shí)際的角度考慮,通過(guò)自身的感受,某超市商品價(jià)格同校內(nèi)外其它主要超市的商品價(jià)格的差別不明顯,因此,首先考慮將該因子在本文的結(jié)構(gòu)方程模型中去除,并且增加質(zhì)量期望和質(zhì)量感知到顧客滿意的路徑。超市形象對(duì)顧客忠誠(chéng)的路徑先保留。修改的模型如圖7-21。表7-8常用擬合指數(shù)計(jì)算結(jié)果擬合指數(shù)卡方值(自由度)結(jié)果1031.4(180)0.8660.8420.8660.1091133.4411139.3782.834圖7-21修正的模型二根據(jù)上面提出的圖7-21提出的所示的模型,在中運(yùn)用極大似然估計(jì)運(yùn)行的部分結(jié)果如表7-9。表7-9常用擬合指數(shù)計(jì)算結(jié)果擬合指數(shù)卡方值(自由度)結(jié)果819.5(145)0.8830.8620.8840.108909.541914.2782.274從表7-8和表7-9可以看出,卡方值減小了很多,并且各擬合指數(shù)也都得到了改善,但及理想的擬合指數(shù)值仍有差距。該模型的各個(gè)參數(shù)在0.05的水平下都是顯著的,并且從實(shí)際考慮,各因子的各個(gè)路徑也是合理存在的。下面考慮通過(guò)修正指數(shù)對(duì)模型修正,通過(guò)點(diǎn)擊工具欄中的來(lái)查看模型輸出詳細(xì)結(jié)果中的項(xiàng)可以查看模型的修正指數(shù)()結(jié)果,雙箭頭(“<>”)部分是殘差變量間的協(xié)方差修正指數(shù),表示如果在兩個(gè)可測(cè)變量的殘差變量間增加一條相關(guān)路徑至少會(huì)減少的模型的卡方值;單箭頭(“<”)部分是變量間的回歸權(quán)重修正指數(shù),表示如果在兩個(gè)變量間增加一條因果路徑至少會(huì)減少的模型的卡方值。比如,超市形象到質(zhì)量感知的值為179.649,表明如果增加超市形象到質(zhì)量感知的路徑,則模型的卡方值會(huì)大大減小。從實(shí)際考慮,超市形象的確會(huì)影響到質(zhì)量感知,設(shè)想,一個(gè)具有良好品牌形象的超市,人們難免會(huì)對(duì)感到它的商品質(zhì)量較好;反之,則相反。因此考慮增加從超市形象到質(zhì)量感知的路徑的模型如圖7-22。根據(jù)上面提出的圖7-22所示的模型,在中運(yùn)用極大似然估計(jì)運(yùn)行的部分結(jié)果如表7-10、表7-11。表7-10常用擬合指數(shù)計(jì)算結(jié)果擬合指數(shù)卡方值(自由度)結(jié)果510.1(144)0.9360.9140.9370.080602.100606.9421.505從表7-9和表7-10可以看出,卡方值減小了很多,并且各擬合指數(shù)也都得到了改善,但及理想的擬合指數(shù)值仍有差距。表7-115%水平下不顯著的估計(jì)參數(shù)..P顧客滿意<質(zhì)量期望-.054.035-1.540.12422顧客忠誠(chéng)<超市形象.164.1001.632.10321圖7-22修正的模型三除上面表7-11中的兩個(gè)路徑系數(shù)在0.05的水平下不顯著外,該模型其它各個(gè)參數(shù)在0.01水平下都是顯著的,首先考慮去除p值較大的路徑,即質(zhì)量期望到顧客滿意的路徑。重新估計(jì)模型,結(jié)果如表7-12。表7-125%水平下不顯著的估計(jì)參數(shù)..P顧客忠誠(chéng)<超市形象.166.1011.652.09921從表7-12可以看出,超市形象對(duì)顧客忠誠(chéng)路徑系數(shù)估計(jì)的p值為0.099,仍大于0.05。并且從實(shí)際考慮,在學(xué)校內(nèi)部,學(xué)生一般不會(huì)根據(jù)超市之間在形象上的差別而選擇堅(jiān)持去同一個(gè)品牌的超市,更多的可能是通過(guò)超市形象影響超市滿意等因素進(jìn)而影響到顧客忠誠(chéng)因素??紤]刪除這兩個(gè)路徑的模型如圖7-23。根據(jù)上面提出的如圖7-23所示的模型,在中運(yùn)用極大似然估計(jì)運(yùn)行的部分結(jié)果如表7-13。表7-13常用擬合指數(shù)計(jì)算結(jié)果擬合指數(shù)卡方值(自由度)結(jié)果515.1(146)0.9360.9130.9360.080603.117607.7491.508從表7-10和表7-13可以看出,卡方值幾乎沒(méi)變,并且各擬合指數(shù)幾乎沒(méi)有改變,但模型便簡(jiǎn)單了,做此改變是值得的。該模型的各個(gè)參數(shù)在0.01的水平下都是顯著的,另外質(zhì)量感知對(duì)應(yīng)的測(cè)量指標(biāo)a11(關(guān)于營(yíng)業(yè)時(shí)間安排合理程度的打分)對(duì)應(yīng)方程的測(cè)定系數(shù)為0.278,比較小,從實(shí)際考慮,由于人大校內(nèi)東區(qū)物美超市的營(yíng)業(yè)時(shí)間從很長(zhǎng),幾乎是全天候營(yíng)業(yè)在顧客心中,可能該指標(biāo)能用質(zhì)量感知解釋的可能性不大,考慮刪除該測(cè)量指標(biāo)。修改后的模型如圖7-24。根據(jù)上面提出的如圖7-24所示的模型,在中運(yùn)用極大似然估計(jì)運(yùn)行的部分結(jié)果如表7-14。表7-14常用擬合指數(shù)計(jì)算結(jié)果擬合指數(shù)卡方值(自由度)結(jié)果401.3(129)0.9510.9300.9510.073485.291489.4801.213從表7-13和表7-14可以看出,卡方值減小了很多,并且各擬合指數(shù)都得到了較大的改善。該模型的各個(gè)參數(shù)在0.01的水平下都仍然是顯著的,各方程的對(duì)應(yīng)的測(cè)定系數(shù)增大了。圖7-23修正的模型四圖7-24修正的模型五下面考慮通過(guò)修正指數(shù)對(duì)模型修正,e12及e13的值最大,為26.932,表明如果增加a12及a13之間的殘差相關(guān)的路徑,則模型的卡方值會(huì)減小較多。從實(shí)際考慮,員工對(duì)顧客的態(tài)度及員工給顧客結(jié)帳的速度,實(shí)際上也確實(shí)存在相關(guān),設(shè)想,對(duì)顧客而言,超市員工結(jié)帳速度很慢本來(lái)就是一種對(duì)顧客態(tài)度不好的方面;反之,則相反。因此考慮增加e12及e13的相關(guān)性路徑。(這里的分析不考慮潛變量因子可測(cè)指標(biāo)的更改,理由是我們?cè)谠O(shè)計(jì)問(wèn)卷的題目的信度很好,而且題目本身的設(shè)計(jì)也不允許這樣做,以下同。)重新估計(jì)模型,重新尋找值較大的,e7及e8的值較大,為26.230,(雖然e3及e6的值等于26.746,但它們不屬于同一個(gè)潛變量因子,因此不能考慮增加相關(guān)性路徑,以下同)表明如果增加a7及a8之間的殘差相關(guān)的路徑,則模型的卡方值會(huì)減小較多。這也是員工對(duì)顧客的態(tài)度及員工給顧客結(jié)帳的速度之間存在相關(guān),因此考慮增加e7及e8的相關(guān)性路徑。重新估計(jì)模型,重新尋找值較大的,e17及e18的值較大,為13.991,表明如果增加a17及a18之間的殘差相關(guān)的路徑,則模型的卡方值會(huì)減小較多。實(shí)際上消費(fèi)前的滿意度和及心中理想超市比較的滿意度之間顯然存在相關(guān),因此考慮增加e17及e18的相關(guān)性路徑。重新估計(jì)模型,重新尋找值較大的,e2及e3的值較大,為11.088,表明如果增加a2及a3之間的殘差相關(guān)的路徑,則模型的卡方值會(huì)減小較多。實(shí)際上超市形象和超市品牌知名度之間顯然存在相關(guān),因此考慮增加e2及e3的相關(guān)性路徑。重新估計(jì)模型,重新尋找值較大的,e10及e12的值較大,為5.222,表明如果增加a10及a12之間的殘差相關(guān)的路徑,則模型的卡方值會(huì)減小較多。但實(shí)際上超市的食品保險(xiǎn)&日用品豐富性及員工態(tài)度之間顯然不存在相關(guān),因此不考慮增加e10及e12的相關(guān)性路徑。另外,從剩下的變量之間值沒(méi)有可以做處理的變量對(duì)了,因此考慮值修正后的模型如圖7-25。圖7-25修正的模型六根據(jù)上面提出的如圖7-25所示的模型,在中運(yùn)用極大似然估計(jì)運(yùn)行的部分結(jié)果如表7-15。表7-15常用擬合指數(shù)計(jì)算結(jié)果擬合指數(shù)卡方值(自由度)結(jié)果281.9(125)0.9720.9510.9720.056373.877378.4650.935從表7-14和表7-15可以看出,卡方值減小了很多,并且各擬合指數(shù)都得到了較大的改善。該模型的各個(gè)參數(shù)在0.01的水平下都仍然是顯著的,各方程的對(duì)應(yīng)的測(cè)定系數(shù)增大了。下面考慮根據(jù)來(lái)判斷對(duì)待估計(jì)參數(shù)的設(shè)定,即判斷哪些結(jié)構(gòu)方程之間的系數(shù)沒(méi)有顯著差異,哪些測(cè)量方程的系數(shù)之間沒(méi)有顯著差異,哪些結(jié)構(gòu)方程的隨機(jī)項(xiàng)的方差之間沒(méi)有顯著差異,哪些測(cè)量方程的隨機(jī)項(xiàng)的方差之間的之間沒(méi)有顯著差異,對(duì)沒(méi)有顯著差異的相應(yīng)參數(shù)估計(jì)設(shè)定為相等,直到最后所有相應(yīng)的都大于2為止。通過(guò)點(diǎn)擊工具欄中的來(lái)查看模型輸出詳細(xì)結(jié)果中的項(xiàng)可以查看臨界比率()結(jié)果,其中1到46代表模型中46個(gè)待估參數(shù),其含義在模型參數(shù)估計(jì)結(jié)果表(如表7-5,7-6)中標(biāo)識(shí)。根據(jù)值的大小一般絕對(duì)值小于2認(rèn)為沒(méi)有顯著差異。,可以判斷兩個(gè)模型參數(shù)的數(shù)值間是否存在顯著性差異。如果經(jīng)檢驗(yàn)發(fā)現(xiàn)參數(shù)值間不存在顯著性差異,則可以考慮模型估計(jì)時(shí)限定兩個(gè)參數(shù)相等。如果是某兩個(gè)參數(shù)沒(méi)有顯著差異,并且根據(jù)經(jīng)驗(yàn)也是如此,則可在相應(yīng)的認(rèn)為相等的參數(shù)對(duì)應(yīng)的路徑或殘差變量上點(diǎn)擊右鍵選擇,然后出現(xiàn)如圖7-11的選項(xiàng)卡,選擇項(xiàng),如一般絕對(duì)值小于2認(rèn)為沒(méi)有顯著差異。圖7-26對(duì)應(yīng)因果路徑圖7-27對(duì)應(yīng)殘差變量圖7-28對(duì)應(yīng)相關(guān)系數(shù)路徑圖7-26,圖7-27,圖7-28。然后在對(duì)應(yīng)因果路徑。對(duì)應(yīng)殘差變量。對(duì)應(yīng)相關(guān)系數(shù)路徑。輸入相同的英文名稱(chēng)即可。比如從圖7-25修正的模型六輸出的臨界比率結(jié)果中發(fā)現(xiàn)絕對(duì)值最小的是44和對(duì)應(yīng)因果路徑。對(duì)應(yīng)殘差變量。對(duì)應(yīng)相關(guān)系數(shù)路徑。圖7-29設(shè)置e22和e24的方差相等圖7-30修正的模型七小于95%置信水平下的臨界值,說(shuō)明兩個(gè)方差間不存在顯著差異。對(duì)應(yīng)的是e22和e24的方差估計(jì),從實(shí)際考慮,也可以認(rèn)為它們的方差相差,則殘差變量e22和e24上點(diǎn)擊右鍵選擇,出現(xiàn)如圖7-29的選項(xiàng)卡,然后在選項(xiàng)卡下面的中都輸入“v2”,最后關(guān)掉窗口即可設(shè)置e22和e24的方差相等。根據(jù)上面提出的如圖7-30所示的模型,在中運(yùn)用極大似然估計(jì)運(yùn)行的部分結(jié)果如表7-16。表7-16常用擬合指數(shù)計(jì)算結(jié)果擬合指數(shù)卡方值(自由度)結(jié)果295.9(146)0.9730.9480.9730.051345.909348.4020.865從表7-15和表7-16可以看出,卡方值雖然增大了一些,但自由度大大增加了,并且各擬合指數(shù)都得到了較大的改善(除外)。該模型的各個(gè)參數(shù)在0.01的水平下都仍然是顯著的,各方程的對(duì)應(yīng)的測(cè)定系數(shù)相對(duì)而言增大了很多。最優(yōu)模型參數(shù)估計(jì)的展示表7-17最優(yōu)模型各路徑系數(shù)估計(jì)未標(biāo)準(zhǔn)化路徑系數(shù)估計(jì)..P標(biāo)準(zhǔn)化路徑系數(shù)估計(jì)質(zhì)量期望<超市形象0.3530.03111.495***0.384質(zhì)量感知<超市形象0.7230.02331.516***0.814質(zhì)量感知<質(zhì)量期望0.1290.0353.687***160.134顧客滿意<質(zhì)量感知0.7230.02331.516***0.627顧客滿意<超市形象0.3530.03111.495***0.345顧客忠誠(chéng)<顧客滿意0.7230.02331.516***0.753a1<超市形象10.925a2<超市形象1.0420.0252.853***b0.901a3<超市形象0.7280.03620.367***d0.631a5<質(zhì)量期望10.836a4<質(zhì)量期望0.7280.03620.367***d0.622a6<質(zhì)量期望0.8720.02633.619***a0.808a7<質(zhì)量期望1.0420.0252.853***b0.853a8<質(zhì)量期望0.8720.02633.619***a0.731a10<質(zhì)量感知10.779a9<質(zhì)量感知1.1590.03632.545***c0.914a12<質(zhì)量感知1.0420.0252.853***b0.777a13<質(zhì)量感知0.8720.02633.619***a0.677a18<顧客滿意10.861a17<顧客滿意1.0420.0252.853***b0.919a16<顧客滿意1.0420.0252.853***b0.963a24<顧客忠誠(chéng)10.706a23<顧客忠誠(chéng)1.1590.03632.545***c0.847a22<顧客忠誠(chéng)0.8720.02633.619***a0.656注:“***”表示0.01水平上顯著,括號(hào)中是相應(yīng)的值,即t值。表7-18最優(yōu)模型相關(guān)性路徑系數(shù)估計(jì)協(xié)方差估計(jì)..P相關(guān)系數(shù)估計(jì)e12<>e130.6990.0729.658***r20.32e7<>e80.6990.0729.658***r20.46e18<>e170.2770.055.568***r10.289e2<>e30.2770.055.568***r10.178注:“***”表示0.01水平上顯著,括號(hào)中是相應(yīng)的值,即t值。表7-19最優(yōu)模型

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論