Aspen軟件培訓(xùn)案例_第1頁(yè)
Aspen軟件培訓(xùn)案例_第2頁(yè)
Aspen軟件培訓(xùn)案例_第3頁(yè)
Aspen軟件培訓(xùn)案例_第4頁(yè)
Aspen軟件培訓(xùn)案例_第5頁(yè)
已閱讀5頁(yè),還剩77頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

ASPENPLUS軟件培訓(xùn)案例TOC\o"1-3"\u常壓系統(tǒng)流程模擬計(jì)算2減壓系統(tǒng)流程模擬計(jì)算6催化分餾塔流程模擬計(jì)算10催化吸收穩(wěn)定系統(tǒng)流程模擬計(jì)算14MDEA

脫硫流程模擬計(jì)算20煉廠含硫污水汽提流程模擬計(jì)算27MTBE裝置流程模擬計(jì)算32DMF萃取精餾流程模擬計(jì)算37丁二烯脫水流程模擬計(jì)算40甲乙酮脫水流程模擬計(jì)算43VCMPlantModel46VCMManufactureandProjectGoals48Section100–DirectChlorination51Section200–Oxychlorination53Section300–EDCPurification61Section400–EDCPyrolysis63Section500–VCMPurification67RunningAspenTechVCMModels69References71酸氣堿洗流程模擬計(jì)算72乙烯裂解氣堿洗流程模擬計(jì)算74水-異丁酸-丁酸間歇精餾流程模擬計(jì)算77流程優(yōu)化模擬計(jì)算79冷凝器、再沸器計(jì)算及安裝高度計(jì)算81非庫(kù)組份物性估計(jì)82乙醇和乙酸乙酯氣液平衡數(shù)據(jù)回歸應(yīng)用示例83模擬模型的數(shù)據(jù)擬合85應(yīng)用示例85常壓系統(tǒng)流程模擬計(jì)算一、工藝流程簡(jiǎn)述常減壓裝置是我國(guó)最基本的原油加工的裝置之一。主要包括換熱器系統(tǒng)、常壓系統(tǒng)、減壓系統(tǒng)。常壓系統(tǒng)是原油通過(guò)換熱網(wǎng)絡(luò)換熱到一定溫度后,再進(jìn)到常壓加熱爐加熱到要求的溫度,常壓加熱爐要求的出口溫度及原油的性質(zhì),拔出率有關(guān),一般要求常壓爐出口汽化率大于常壓塔所有側(cè)線產(chǎn)品一定的比例,這個(gè)比例叫過(guò)汽化率,一般為2~5%(wt)。常壓加熱爐出口達(dá)到一定溫度和汽化率的原油,進(jìn)到常壓塔的進(jìn)料段,油汽往上走,常壓塔側(cè)線抽出,一至四個(gè)左右的側(cè)線產(chǎn)品,為控制側(cè)線產(chǎn)品的干點(diǎn),抽出的側(cè)線產(chǎn)品進(jìn)到側(cè)線產(chǎn)品汽提塔中汽提,冷卻后出裝置,常壓塔進(jìn)料產(chǎn)品及出料產(chǎn)品之間的焓差,叫剩余熱,為回叫這部份熱量,常壓塔的各產(chǎn)品段有中段回流抽出,及冷原油換熱后返回塔內(nèi)。塔底抽出常壓重油,為提高拔出率和減少塔底結(jié)焦,有塔底還通入一定量的蒸汽。常壓系統(tǒng)分離其工流流程如圖1-1所示,所涉及主要模塊有原油混合器(M1)、常壓塔(T101)。圖1常壓系統(tǒng)模擬計(jì)算流程圖CGAS原油中瓦斯,OIL原油;W塔頂切水,GAS-常頂氣,GN常頂油;CP1常一線;S1常一線汽提蒸汽CP2常二線;S2常二線汽提蒸汽;CP3常三線;S3常三線汽提蒸汽;C4常四線產(chǎn)品;SS常底汽提蒸汽;CB常底油二、需要輸入的主要參數(shù)1、裝置進(jìn)料數(shù)據(jù)表1.1進(jìn)料數(shù)據(jù)1.進(jìn)出料參數(shù)出料量Kg/h進(jìn)料溫度進(jìn)料壓力Kg/cm2進(jìn)料組成WT%H2OH2N2CO2H2SCH4C2H6C2H4C3H8C3H6NC4IC4丁烯-1異丁烯順丁烯-2反丁烯-2IC5C5=常壓瓦斯268110.5720.260.0940.3432.82896.78140.6740.6360.50421.39420.54020.26950.2540.02861.76581.0678餾程IP10%30%50%70%90%EP比重產(chǎn)品抽出板常頂汽油53671146741061371610.7273常一線6250111331461601782040.792210常二線30667111982222542913090.843122常三線20667112603123373663780.86634常四線3250112433493954104274504880.892744減頂油155011861121672222723213540.8257減一線8333112302603003403820.8778減二線62500113173754104274504880.8927減三線14167113684344714945315690.9264減四線975011370446473501526538/750.9372減11520/13540/17.880.9798D1160數(shù)據(jù)塔底蒸汽210044011常一、二、三汽提蒸汽各100440112、單元操作參數(shù)表1.2單元操作參數(shù)T1常壓分餾塔常壓爐過(guò)汽化率3%(WT)操作壓力Kg/cm21.3全塔壓降kg/cm20.30抽出板/返回板中段回流量中段回流取熱量中段回流116/1465000Kg/h1.80Mkcal/h中段回流228/2457000Kg/h4.10Mkcal/h中段回流340/3610000Kg/h1.15Mkcal/h實(shí)際板數(shù)45進(jìn)料板塔底3、設(shè)計(jì)規(guī)定及模擬技巧3.1原油蒸餾數(shù)據(jù)的重要性3.2過(guò)汽化率3.3熱平衡及產(chǎn)品分布的密切關(guān)系表1.3設(shè)計(jì)規(guī)定理論板或板效率50%熱力學(xué)BK10初值設(shè)計(jì)規(guī)定常頂汽油干點(diǎn)180變量塔頂產(chǎn)品量三、軟件版本ASPENPLUS軟件12.1版本,文件名ERC250-C.APW減壓系統(tǒng)流程模擬計(jì)算一、工藝流程簡(jiǎn)述常減壓裝置是我國(guó)最基本的原油加工的裝置之一,其中主要包括原油換熱系統(tǒng)、常壓系統(tǒng)、減壓系統(tǒng)。常壓塔底出來(lái)的常壓渣油,進(jìn)到減壓加熱爐達(dá)到一定溫度和汽化率的原油,進(jìn)到減壓塔的進(jìn)料段,油汽往上走,減壓塔側(cè)線抽出,一至三個(gè)左右的側(cè)線產(chǎn)品,有的還抽出過(guò)汽化油,抽出的側(cè)線產(chǎn)品及原油換熱后,冷卻后出裝置,減壓塔進(jìn)料產(chǎn)品及出料產(chǎn)品之間的焓差,叫剩余熱,為回收這部份熱量,減壓塔的各產(chǎn)品段有中段回流抽出,及冷原油換熱后返回塔內(nèi),為減少結(jié)焦,還有一部份不經(jīng)過(guò)換熱的循環(huán)沖洗油。塔底抽出減壓渣油,為提高拔出率和減少塔底結(jié)焦,有的減壓塔底還通入一定量的蒸汽。減壓系統(tǒng)分離其工流流程如圖2-1所示,所涉及主要模塊有減壓塔進(jìn)料混合器(M1)、減壓塔(T102)。圖2-1減壓系統(tǒng)模擬計(jì)算流程圖JGAS減壓瓦斯,CB常底油;1進(jìn)減壓爐油;JT減頂污油;J1減一線;J2減二線;J3減三線;J4減四過(guò)汽化油;JB減底渣油二、需要輸入的主要參數(shù)1、裝置進(jìn)料數(shù)據(jù)表2.1進(jìn)料數(shù)據(jù)2、單元操作參數(shù)表2.2單元操作參數(shù)T1常壓分餾塔減壓爐過(guò)汽化率3%(WT)操作壓力mmHg20全塔壓降mmHg10抽出板/返回板中段回流取熱量中段回流13/1溫差721.39Mkcal/h中段回流27/4溫差905.70Mkcal/h中段回流39/8溫差947.9515Mkcal/h沖洗油9/10實(shí)際板數(shù)四段填料進(jìn)料板塔底3、設(shè)計(jì)規(guī)定及模擬技巧3.1進(jìn)料混合3.2產(chǎn)品分布及取熱關(guān)系表2.3設(shè)計(jì)規(guī)定理論板或板效率15塊熱力學(xué)BK10初值設(shè)計(jì)規(guī)定塔頂溫度75變量中段回流1熱負(fù)荷4、模塊及相關(guān)物流表2.4模塊及相關(guān)物流模塊名稱(chēng)代號(hào)流程圖上代號(hào)入口物流號(hào)出口物流號(hào)M1減壓進(jìn)料混合器MixerM1T102減壓塔ColumnT1三、軟件版本ASPENPLUS軟件12.1版本,文件名ERC250-V.APW催化分餾塔流程模擬計(jì)算一、工藝流程簡(jiǎn)述催化裂化是我國(guó)最重要的重質(zhì)石油餾份輕質(zhì)化的裝置之一。它由反再、主分餾及吸收穩(wěn)定系統(tǒng)三部分所組成。分餾系統(tǒng)的任務(wù)是把反再系統(tǒng)來(lái)的反應(yīng)產(chǎn)物油汽混合物進(jìn)行冷卻,分成各種產(chǎn)品,并使產(chǎn)品的主要性質(zhì)合乎規(guī)定的質(zhì)量指標(biāo)。分餾系統(tǒng)主要由分餾塔、產(chǎn)品汽提塔、各中段回流熱回收系統(tǒng),并為吸收穩(wěn)定系統(tǒng)提供足夠的熱量。催化分餾系統(tǒng)分離其工流流程如圖3-1所示,所涉及主要模塊有進(jìn)料混合罐(M1)、催化分餾塔(T2014)。圖3-1催化分餾系統(tǒng)模擬計(jì)算流程圖FEED進(jìn)分餾塔油汽;SS塔底汽提蒸汽;GAS塔頂氣;COIL輕柴油,SS1柴油汽提蒸汽;HOIL回?zé)捰?;YJ油漿;二、需要輸入的主要參數(shù)1、裝置進(jìn)料數(shù)據(jù)表3.1進(jìn)料數(shù)據(jù)表1進(jìn)出料參數(shù)出料量Kg/h進(jìn)料溫度進(jìn)料壓力Kg/cm2進(jìn)料組成WT%H2OCOCO2AIRCH4C2H4C3H8C3H6IC4NC4丁烯-1異丁烯順丁烯-2反丁烯-2IC5NC5C5=NC6H2S富氣293000.93.81043.02餾程IP10%30%50%70%90%EP比重產(chǎn)品抽出板粗汽油673204054761031381791980.723輕柴油550001892222472743053473620.906810吸收返回柴油170001892222472743053473620.9068回?zé)捰?97002903954355380.936628油漿8930226407468538/870.9927進(jìn)料中蒸汽121204922.7塔底汽提蒸汽量88028011汽提蒸汽量100280112、單元操作參數(shù)表3.2單元操作參數(shù)T201催化分餾塔操作壓力Kg/cm22.50全塔壓降Kg/cm20.30抽出板/返回板中段流量中段回流14/1230000Kg/h11.0Mkcal/h中段回流214/12198000Kg12.8Mkcal/h中段回流326/2425000Kg/h1.08Mkcal/h中段回流432/32300000Kg/h18.82Mkcal/h實(shí)際板數(shù)32進(jìn)料板油氣塔底富柴油6號(hào)板3、設(shè)計(jì)規(guī)定及模擬技巧表3.3設(shè)計(jì)規(guī)定理論板或板效率50%熱力學(xué)BK10初值設(shè)計(jì)規(guī)定塔頂溫度115變量中段回流1熱負(fù)荷4、模塊及相關(guān)物流表3.4模塊及相關(guān)物流模塊名稱(chēng)代號(hào)流程圖上代號(hào)入口物流號(hào)出口物流號(hào)M1進(jìn)料油汽混合器MixerM1催化餾塔DistillationT201三、軟件版本采用ASPENPLUS軟件12.1版本,文件名CHT201.APW催化吸收穩(wěn)定系統(tǒng)流程模擬計(jì)算一、工藝流程簡(jiǎn)述催化裂化是我國(guó)最重要的重質(zhì)石油餾份輕質(zhì)化的裝置之一。它由反再、主分餾及吸收穩(wěn)定系統(tǒng)三部分所組成。分餾系統(tǒng)的任務(wù)是把反再系統(tǒng)來(lái)的反應(yīng)產(chǎn)物油汽混合物進(jìn)行冷卻,分成各種產(chǎn)品,并使產(chǎn)品的主要性質(zhì)合乎規(guī)定的質(zhì)量指標(biāo)。分餾系統(tǒng)主要由分餾塔、產(chǎn)品汽提塔、各中段回流熱回收系統(tǒng),并為吸收穩(wěn)定系統(tǒng)提供足夠的熱量,不少催化裝置分餾系統(tǒng)取熱分配不合理,造成產(chǎn)品質(zhì)量不穩(wěn)定、吸收穩(wěn)定系統(tǒng)熱源不足。吸收穩(wěn)定系統(tǒng)對(duì)主分餾塔來(lái)的壓縮富氣和粗氣油進(jìn)行加工分離,得到干氣、液化氣及穩(wěn)定汽油等產(chǎn)品。一般包括四個(gè)塔第一塔為吸收塔,用初汽油和補(bǔ)充穩(wěn)定汽油吸收富氣中的液化氣組份,吸收后的干氣再進(jìn)入到再吸收塔,用催化分餾塔來(lái)的柴油吸收其中的較輕組份,再吸收塔頂?shù)玫胶静缓珻3組份的合格干氣,再吸收塔底富柴油回到分餾系統(tǒng)。吸收塔底富吸收液進(jìn)到解吸塔,通過(guò)加熱富吸收液中的比C2輕的組份基本脫除從解吸塔頂出來(lái)再回到平衡罐,再進(jìn)到吸收塔內(nèi);解吸塔底脫除C2組份的液化氣和汽油組份再進(jìn)到穩(wěn)定塔,通過(guò)分離穩(wěn)定塔頂?shù)玫紺5合格的液化氣組份,塔底得到蒸汽壓合格的汽油,合格汽油一部分作為補(bǔ)充吸收劑到吸收塔,一部分作為產(chǎn)品出裝置。吸收穩(wěn)定系統(tǒng)分離其工流流程如圖4-1所示,所涉及主要模塊有吸收塔(C10301)、解吸塔(C10302)、再解吸塔(C10303)、穩(wěn)定塔(C10304)。解吸塔進(jìn)料預(yù)熱器(E302)、穩(wěn)定塔進(jìn)料換熱器(E303),補(bǔ)充吸收劑冷卻器(C39),平衡罐(D301)。圖4-1催化吸收穩(wěn)定系統(tǒng)模擬計(jì)算流程圖GGGAS干氣;LLPG液化氣;GGOIL穩(wěn)定汽油;PCOIL貧柴油;PGAS干氣;FCOIL富柴油;二汽油;LPG液化氣;WDGOIL5穩(wěn)定汽油產(chǎn)品;D301平衡罐;C10301吸收塔,C10302解吸塔,C10303再吸收塔,C10304穩(wěn)定塔二、需要輸入的主要參數(shù)1、裝置進(jìn)料數(shù)據(jù)表4.1進(jìn)料數(shù)據(jù)表4-1裝置進(jìn)料數(shù)據(jù)進(jìn)料量Kg/h進(jìn)料溫度進(jìn)料壓力MPa.g進(jìn)料組成mol%H2N2O2COCO2CH4C2H6C2H4C3H6C3H8IC4NC4BUT1IBTE反丁烯-2順丁烯-2NC5干氣14500K421.2115.28813.4330.60.7952.57930.68211.79421.222.6740.5030.2180.0150.0590.0920.0170.0030.078液化氣85000K421.211.00.6940.667.6711.963.619.09.559.396.01餾程IP10%30%50%70%90%EP比重穩(wěn)定汽油115000Kg421.2139.55277.5163.51950.716貧柴油40000302.21192219.5253.53093380.9018323/952、單元操作參數(shù)表4.2單元操作參數(shù)F1進(jìn)料閃蒸罐汽化率溫度℃0.4615748C10301吸收塔C10302脫吸塔C10303再吸收塔C10304穩(wěn)定塔分流器SP1操作壓力MPa.G1.171.271.151.05WDGOIL2流量60000Kggh全塔壓降MPa0.040.040.040.05分流器SP2D301平衡罐溫度℃壓力Mpa.G351.19中段回流1抽出板/返回板流量Kg/h返回溫度℃3/3(理論)900002712流量55000KgghF2平衡罐溫度℃壓力Mpa.G482.22中段回流2抽出板/返回板流量Kg/h返回溫度℃5/5(理論)12000027E302出口溫度55P301壓力Mpa.G效率%1.3570中段回流3抽出板/返回板流量Kg/h返回溫度℃7/7(理論)12000028E303冷流出口溫度117P303壓力Mpa.G效率%1.9070中段回流4抽出板/返回板流量Kg/h返回溫度℃9/9(理論)12000028C39出口溫度30壓降0.02MPaP305壓力Mpa.G效率%2.3970實(shí)際板數(shù)/理論板進(jìn)料板30/12油塔頂/氣塔底30/12油塔頂/氣塔底30/9油塔頂/氣塔底50/37153、設(shè)計(jì)規(guī)定表4.3設(shè)計(jì)規(guī)定C10301吸收塔C10302脫吸塔C10303再吸收塔C10304穩(wěn)定塔熱力學(xué)BK10BK10BK10BK10設(shè)計(jì)規(guī)定1塔底C2-(mol)〈0.5%塔頂產(chǎn)品量(88208Kg/h)設(shè)計(jì)規(guī)定2回流2.3變量1塔頂產(chǎn)品量(初值33024Kg/h)冷凝器溫度404、靈敏度分析的應(yīng)用應(yīng)用方案研究功能研究,考察貧汽油流量、貧柴油流量對(duì)貧氣中C3含量、液化氣中C2含量的影響。 變量:1.貧汽油流量 2.貧柴油流量 考察參數(shù):1.貧氣中C3含量 2.液化氣中C2含量 三、軟件版本采用ASPENPLUS軟件12.1版本,文件名XST301.APWMDEA

脫硫流程模擬計(jì)算一、工藝流程簡(jiǎn)述煉廠氣和乙烯裂解氣都含有一定量H2S和CO2等酸性氣體,為防止設(shè)備腐蝕和最終產(chǎn)品的合格,在加工過(guò)程中都需要H2S和CO2等酸性氣體脫除,胺類(lèi)吸收劑性能好,并可再生循環(huán)使用,在煉廠氣和乙烯裂解氣脫除酸性氣體中得到文泛應(yīng)用。但胺類(lèi)吸收劑吸收H2S和CO2等酸性氣體過(guò)程為強(qiáng)非理想過(guò)程,一般的軟件和熱力方法對(duì)該過(guò)程的模擬,結(jié)果都欠佳,ASPENPLUS軟件中有胺類(lèi)吸收劑脫酸性氣體的專(zhuān)用數(shù)據(jù)包(KMDAE、MDEA),對(duì)于該過(guò)程的模擬較適用。甲基二乙醇胺(MDEA)由于具有選擇性,能吸收大部分的H2S而對(duì)CO2的吸收較少,因而廣泛用于煉廠氣的脫酸性氣體中。本例題就是用MDEA脫除煉廠氣中的酸性氣體模擬計(jì)算,其工流流程如圖6-1所示,界區(qū)來(lái)的煉廠氣進(jìn)到吸收塔(T301),該塔沒(méi)有再沸器和冷凝器,貧胺液從塔頂進(jìn)入,酸性氣從塔底進(jìn)入,貧胺液和酸性氣再塔內(nèi)逆流接確,脫除酸性氣體后的貧氣從塔頂出來(lái),吸收了酸性氣體的富胺液從塔底出來(lái)及到再生塔底出來(lái)的貧胺換熱后進(jìn)入到再生塔;胺液再生塔(T302),該塔有再沸器和冷凝器,由吸收塔底出來(lái)的富胺液進(jìn)到該塔,酸性氣體從塔頂出來(lái),脫除酸性氣體后的貧胺液及富胺液換熱,再冷卻后,回到吸收塔(T301)。所涉及主要模塊有吸收塔(T301)、胺液再生塔(T302),貧胺液泵P1。圖6-1MDEA脫硫裝置模擬計(jì)算流程圖GAS含酸煉廠氣進(jìn)料;MDEA貧胺液;PGAS1貧氣;L1富有胺液;LMDEA再生后貧胺液;H2S酸氣;MA-MDEA補(bǔ)充MDEA;MA-H2O補(bǔ)充水;循環(huán)MDEA貧胺液二、需要輸入的主要參數(shù)1、裝置進(jìn)料數(shù)據(jù)表6.1裝置進(jìn)料數(shù)據(jù)進(jìn)料量Kg/h進(jìn)料溫度進(jìn)料壓力atm進(jìn)料組成H2OCO2H2n2CH4C2H6C2H4C3H8C3H6IC4NC4IBTEIC5COH2SmdeaGAS3000m3/h401.50VOL%0.138.7589.891.23PMDEA20000401.50WT%8020.02、單元操作參數(shù)表6.2單元操作數(shù)據(jù)t301t302操作壓力atm1.501.30全塔壓降kg/cm20.30.30理論板數(shù)1211進(jìn)料板塔頂/塔底1板效率%3、設(shè)計(jì)規(guī)定表6.3設(shè)計(jì)規(guī)定T301塔T302塔計(jì)算模塊C—1熱力學(xué)ELECNRTLELECNRT計(jì)算所需補(bǔ)充在水和MDEA量設(shè)計(jì)規(guī)定1貧氣GAS中H2S10ppm(mol)塔頂產(chǎn)品735Kg/h設(shè)計(jì)規(guī)定2變量1MDEA流量變量2三、軟件版本采用ASPENPLUS軟件12.1版本,文件保KMDEA.APW四、例題2圖2MDEA脫硫裝置模擬計(jì)算流程圖裝置進(jìn)料數(shù)據(jù)FMGASGAS1LPGLPG1M1M2M11M22PMSOURTemperatureC35.540414039404043.539.1121.440Pressureatm9.6749.879.38415.415.49.879.879.67416.41.9621.575VaporFrac0.0071100000001MoleFlowkmol/hr1375.922218.584202.434183.143159.815553.011783.433569.162806.761277.63598.287MassFlowkg/hr30560.495836.365251.5958564.067588.337120001700012584.7717975.7227939.922620.571VolumeFlowl/min878.5689204.219022.436279.398247.609200.072287.782215.369311.652493.68726309.33EnthalpyMMkcal/hr-93.86-2.309-1.817-2.082-2.002-38.56-54.726-39.053-54.807-87.096-3.884MassFlowkg/hrH2O23161031.48506.3589599.5213599.329568.03513592.9622139.511021.486MDEA5799.0340000.6762399.883399.832399.883399.1545799.0090.025H2S436.673246.220.755190.260.5010.60.85246.065190.6091.397435.276CO6.51123.89117.3800006.51006.51CO2234.502259.5425.0380000234.50200234.502AIR9.8961457.21447.30400009.896009.896CH435.6181050.641015.022000035.6180035.618C2H630.0841188.111158.026000030.0840030.084C2H433.218995.96963.3450.950.3460032.6150.604033.218C3H888.6537.7136.6671506.011418.403001.04387.607088.65PROPY-01606.105158.82154.5323813.763211.943004.288601.8170606.105ISOBU-0130.355113.12108.3331198.341172.772004.78725.568030.355N-BUT-0111.08747.9945.259391.38383.024002.7318.356011.0871-BUT-0129.63949.6347.32471.63444.301002.3127.329029.639ISOBU-023.8490068.9265.0710003.84903.849TRANS-0123.90446.3243.688436.54415.268002.63221.272023.904CIS-2-0119.00761.2157.441312.72297.482003.76915.238019.007N-PEN-011.3600173.55172.190001.3601.362、單元操作參數(shù)表單元操作數(shù)據(jù)C-401C-402C-403操作壓力atm9.38415.401.575全塔壓降kg/cm20.31.00.40理論板數(shù)201021進(jìn)料板塔頂/塔底塔頂/塔底4初值1初值2塔頂產(chǎn)品2200kg/h回流比2.503、設(shè)計(jì)規(guī)定C-401C-402C-403熱力學(xué)ELECNRTL真實(shí)組份收劍方法:標(biāo)準(zhǔn)阻尼:中UNIFAC-LLELECNRTL真實(shí)組份收劍方法:寬沸程阻尼:中設(shè)計(jì)規(guī)定1冷凝器溫度40設(shè)計(jì)規(guī)定2塔底貧液中H2S50ppm變量1塔頂產(chǎn)品1200-2800kg/h變量2回流比0.5-3.0三、軟件版本采用ASPENPLUS軟件12.1版本,文件名C-401MDEA.APW煉廠含硫污水汽提流程模擬計(jì)算一、工藝流程簡(jiǎn)述煉廠加工裝置,都排放一定的污水,污水中含有H2S和CO2、NH3等酸性氣體,這些污水不能直接排放到污水廠,需經(jīng)過(guò)汽提脫除其中的酸性氣體,一般汽提后污水中H2S含量≤30mg/l的要求,NH3≤80mg/l的要求,凈化合格后的污水才能排放。但水、H2S和CO2、NH3等酸性氣體過(guò)程為強(qiáng)非理想過(guò)程,一般的軟件和熱力方法對(duì)該過(guò)程的模擬,結(jié)果都欠佳,ASPENPLUS軟件中有脫除水中酸性氣體的專(zhuān)用數(shù)據(jù)包(APISOUR),對(duì)于該過(guò)程的模擬較適用。本例題就是用汽提脫除煉廠酸性水中的氣體模擬計(jì)算,其工流流程如圖7-1所示。圖7-1污水汽提模擬計(jì)算流程圖SW含酸煉廠污水;QW凈化污水;SVAP2酸性水二、需要輸入的主要參數(shù)1、裝置進(jìn)料數(shù)據(jù)表7.1進(jìn)料數(shù)據(jù)2、單元操作參數(shù)表7.2單元操作數(shù)據(jù)C-2511回流罐D(zhuǎn)101操作壓力KPA250溫度35全塔壓降kg/cm20.30.1理論板數(shù)15進(jìn)料板3初值塔頂產(chǎn)品3795kg/h3、設(shè)計(jì)規(guī)定表7.3設(shè)計(jì)規(guī)定C-2511塔熱力學(xué)APISOUR收斂方法:正常設(shè)計(jì)規(guī)定1設(shè)計(jì)規(guī)定2變量1變量2三、軟件版本采用ASPENPLUS軟件12.1版本,文件保hl-sour.APW四、例題2文件名:SOUR-CX.APW模擬流程MTBE裝置流程模擬計(jì)算一、工藝流程簡(jiǎn)述MTBE(甲基叔丁基醚)是理想的高辛烷值汽油添加劑,是近20年長(zhǎng)盛不衰、銷(xiāo)售量最大、發(fā)展最快的化學(xué)品。含10%MTBE的汽油能使燃料消耗下降7%左右。除了增加汽油含氧量外,還可以促進(jìn)清潔燃燒,減少汽車(chē)有害氣體排放對(duì)大氣的污染。但是MTBE極易溶解于水,當(dāng)?shù)叵聝?chǔ)油罐泄漏或汽油溢撒至地面時(shí),MTBE分子會(huì)比汽油中的其他成分更快地穿過(guò)土壤進(jìn)入地下水,即使在濃度很低的情況下,也會(huì)導(dǎo)致水質(zhì)惡臭。美國(guó)地質(zhì)調(diào)查表明,使用新配方汽油的地區(qū)中20%地下水檢測(cè)到MTBE,而未使用新配方汽油的地區(qū)只有約2%的地下水檢測(cè)到MTBE。近年來(lái)美國(guó)聯(lián)邦研究部門(mén)展示MTBE是可能對(duì)人類(lèi)致癌的物質(zhì)。美國(guó)加利福尼亞州已決定在2002年12月31日后禁止使用MTBE。根據(jù)這一趨勢(shì),美國(guó)其它州也可能在不久的將來(lái)限用或禁用。歐洲的汽油儲(chǔ)罐主要為地上罐,及美國(guó)的情況不同,所以一直未采取限制措施。我國(guó)國(guó)內(nèi)MTBE的需求,主要受?chē)?guó)內(nèi)外高標(biāo)號(hào)汽油需求的影響。2000年國(guó)家公布了新標(biāo)準(zhǔn)汽油的質(zhì)量標(biāo)準(zhǔn),其中增加了苯含量,芳烴含量和烯烴含量的測(cè)定項(xiàng)目,規(guī)定汽油中烯烴含量不大于35%,另外還有氧含量的指標(biāo)要求。目前,國(guó)內(nèi)新標(biāo)準(zhǔn)清潔汽油的產(chǎn)量還不高,因此要全面適應(yīng)2003年1月1日起在全國(guó)范圍內(nèi)實(shí)施新標(biāo)準(zhǔn)清潔汽油的要求,就需要大量生產(chǎn)新標(biāo)準(zhǔn)清潔汽油的添加劑,所以近幾年內(nèi)作為高辛烷值汽油主要調(diào)和組分MTBE的需求量還會(huì)有所增加。自1973年世界上第一套年產(chǎn)10萬(wàn)噸的MTBE裝置在意大利建成投產(chǎn)以來(lái),我國(guó)從上世紀(jì)70年代末80年代初開(kāi)始進(jìn)行合成MTBE技術(shù)的研究。至1984年,我國(guó)第一套以固定床列管式反應(yīng)器為基礎(chǔ)的年產(chǎn)5500噸工業(yè)實(shí)驗(yàn)裝置在齊魯石化公司橡膠廠建成投產(chǎn),經(jīng)過(guò)多年生產(chǎn)實(shí)踐和不斷的技術(shù)改進(jìn),目前我國(guó)MTBE生產(chǎn)技術(shù)有:固定床技術(shù)、膨脹床技術(shù)、催化蒸餾技術(shù)、混相床和混合反應(yīng)蒸餾等多種生產(chǎn)技術(shù)。生產(chǎn)規(guī)模也從年產(chǎn)千噸擴(kuò)大到年產(chǎn)14萬(wàn)噸,先后有6種生產(chǎn)技術(shù)成功地用于我國(guó)的近40套MTBE裝置,技術(shù)水平達(dá)到當(dāng)前世界先進(jìn)水平。而且全部設(shè)備實(shí)現(xiàn)國(guó)產(chǎn)化,整個(gè)生產(chǎn)過(guò)程采用DCS控制,產(chǎn)品質(zhì)量穩(wěn)定。當(dāng)前國(guó)內(nèi)外較先進(jìn)的MTBE工藝為反應(yīng)精餾工藝,其生產(chǎn)裝置由醚化反應(yīng)器、甲醇凈化及反應(yīng)精餾、甲醇回收三個(gè)生產(chǎn)單元構(gòu)成。反應(yīng)精餾生產(chǎn)技術(shù)工藝過(guò)程為:混合碳四及甲醇按一定比例混合,進(jìn)入裝有凈化劑的離子過(guò)濾器過(guò)濾掉陽(yáng)離子和水,再經(jīng)預(yù)熱后,首先進(jìn)入反應(yīng)器進(jìn)行反應(yīng),在反應(yīng)器中絕大部分的異丁烯及甲醇反應(yīng)生成MTBE。從反應(yīng)器的底部出來(lái)的物料再進(jìn)入反應(yīng)塔,使在反應(yīng)器內(nèi)未轉(zhuǎn)化完的異丁烯在反應(yīng)塔內(nèi)進(jìn)一步反應(yīng)。醚化反應(yīng)后的物料由反應(yīng)塔底部流出,經(jīng)換熱器換熱、冷卻后得MTBE產(chǎn)品,醚后碳四及甲醇從反應(yīng)精餾頂部餾出去水洗塔由水萃取后去甲醇回收塔回收甲醇。本模擬例題為MTBE反應(yīng)精餾工藝全裝置模擬;在本例題中用到了PRO/II的轉(zhuǎn)化率反應(yīng)器、一般精餾塔、液-液萃取塔等基礎(chǔ)模塊,還用到了計(jì)算模塊、單變量、多變量控制器等高級(jí)模專(zhuān)塊。其流程如圖8-1所示,所涉及主要模塊有轉(zhuǎn)化率反應(yīng)器(R501、R503)、普通精餾塔(C501、C503)、液-液萃?。–502)、計(jì)算模塊(C-1、C-2)、物流計(jì)算器(D102)。圖8-1MTBE裝置模擬計(jì)算流程圖501碳四進(jìn)料;502預(yù)反甲醇進(jìn)料;508反應(yīng)精餾塔甲醇進(jìn)料;510MTBE產(chǎn)品;512水洗水;513醚后碳四;V1不凝氣;516回收甲醇;517回用水洗水二、需要輸入的主要參數(shù)1、裝置進(jìn)料數(shù)據(jù)表8.1進(jìn)料數(shù)據(jù)501502508512TemperatureC25252540PressurekPag298.675100700150VaporFrac0000MoleFlowkmol/hr74.7081315.166941.31110355.45984MassFlowkg/hr4250485.093841.940851000VolumeFlowl/min122.23310.192560.88127117.0349MassFlowkg/hrC3=4.25000C321.25000IC41292.425000NC4405.875000IC4=807.075000NC4=595000TC4=645.15000CC4=449.2250001,3C4==0000IC529.75000MA0483.953841.851292H2O01.140.08956998TBA0000MTBE0000DME0000MSBE00002、單元操作參數(shù)表8.2單元操作參數(shù)E501進(jìn)料預(yù)熱器出口溫度45R501預(yù)反-絕熱反應(yīng)轉(zhuǎn)化率基準(zhǔn)組份異丁烯+甲醇——》MTBE90%異丁烯異丁烯+水——》TBA85%水2甲醇——》二甲醚+水0.1%甲醇R502反應(yīng)精餾-絕熱反應(yīng)異丁烯+甲醇——》MTBE90%異丁烯2甲醇——》二甲醚+水2.5%甲醇異丁烯+甲醇——》MSBE5%異丁烯表8.3單元操作參數(shù)C501反應(yīng)精餾塔C502水洗塔C503甲醇回收塔操作壓力Mpa.G0.550.500.01全塔壓降Mpa0.150.020.04實(shí)際板數(shù)603045進(jìn)料板3030理論板數(shù)321029理論進(jìn)料板1619表8.4單元操作參數(shù)計(jì)算模塊C-1用計(jì)算模塊計(jì)算反應(yīng)器501進(jìn)料中醇/烯摩爾比1.05計(jì)算模塊C-2用計(jì)算模塊計(jì)算反應(yīng)器503進(jìn)料中醇/烯摩爾比2.50物流分離器D102碳四全從氣相V1出3、初值及設(shè)計(jì)規(guī)定表8.5設(shè)計(jì)規(guī)定C501反應(yīng)精餾塔C502水洗塔c503甲醇回收塔熱力學(xué)NRTL-RKVLE,unifac填充VLLE,unifac填充VLE,unifac填充初值1回流比1.0回流比10初值2塔頂產(chǎn)品/進(jìn)料比0.738塔頂產(chǎn)品/進(jìn)料比0.08519設(shè)計(jì)規(guī)定1塔底MTBE99%(wt)塔頂甲醇98.5%(wt)設(shè)計(jì)規(guī)定2變量1回流比塔頂產(chǎn)品/進(jìn)料比變量2注:由于缺少反應(yīng)動(dòng)力學(xué)數(shù)據(jù),用轉(zhuǎn)化率反應(yīng)器R503和精餾塔C501來(lái)模擬反應(yīng)精餾塔三、軟件版本采用ASPENPLUS軟件12.1版本,文件保MTBER501.APWDMF萃取精餾流程模擬計(jì)算一、工藝流程簡(jiǎn)述本例題利用DMF作為夾帶劑利用萃取精餾,來(lái)分離混合碳四中的單烯烴和二烯烴,其工流流程如圖9-1所示。圖9-1DMF-碳四萃取精餾模擬計(jì)算圖二、需要輸入的主要參數(shù)1、裝置進(jìn)料數(shù)據(jù)表9.1進(jìn)料數(shù)據(jù)物料號(hào)101TemperatureC40Pressurekg/sqcm4.523MassFlowkg/hr30340VolumeFlowcum/hr52.321EnthalpyMMkcal/hr2.266MassFlowkg/hrH2O0C3H60.592C3H80.561IC4518.338IBTE6402.283BUT14637.4713BD13411.33NC42554.235TRANS-011410.813CIS-2-011046.731C3H441.37812BD69.7811BUTYNE47.533VAC(乙烯基乙炔)197.717C80IC50DMF1.2392、單元操作參數(shù)表9.2單元操作數(shù)據(jù)C101操作壓力MPA.G0.34全塔壓降kg/cm21理論板數(shù)98進(jìn)料板5/51初值塔頂產(chǎn)品16200kg/h回流比1.453、設(shè)計(jì)規(guī)定及熱力學(xué)表9.3設(shè)計(jì)規(guī)定及熱力學(xué)C101熱力學(xué)液相活度系數(shù)法收斂方法:強(qiáng)非理想設(shè)計(jì)規(guī)定1設(shè)計(jì)規(guī)定2變量1變量2三、軟件版本采用ASPENPLUS軟件12.1版本,文件保C4DMF.APW丁二烯脫水流程模擬計(jì)算一、工藝流程簡(jiǎn)述本例題利用共沸精餾,脫除1,3-丁二烯中的少量的水方法來(lái)模擬,其工流流程如圖10-1所示,圖中T304A用不帶冷凝器的塔、外加一傾析器來(lái)模擬該脫水過(guò)程。圖中T304B用帶冷凝器的塔來(lái)模擬該脫水過(guò)程??疾靸煞N方法的差別,并考察不同熱力學(xué)方法對(duì)模擬結(jié)果的影響。了解V-L體系,V-L-W體系,V-L-L體系,L-L體系的概念,及所用熱力學(xué)方法的差異。圖10-1模擬計(jì)算流程圖二、需要輸入的主要參數(shù)1、裝置進(jìn)料數(shù)據(jù)表10.1進(jìn)料數(shù)據(jù)物流號(hào)305TemperatureC35.5Pressurekg/sqcm3.88MassFlowkg/hr2441.031MassFlowkg/hrH2O4.491AIR01-BUT-019.606TRANS-01102.293CIS-2-01127.5721,3-B-012161.3522,2-D-0135.6032-MET-010.0733-MET-010.039N-HEX-010.001TBC0ETHYL-0102、單元操作參數(shù)表10.2單元操作數(shù)據(jù)T304AT304B操作壓力MPA.G0.260.26全塔壓降kg/cm20.20.2理論板數(shù)3232進(jìn)料板44初值塔頂產(chǎn)品2213kg/h塔頂產(chǎn)品0.1kg/h回流量2213kg/h3、設(shè)計(jì)規(guī)定表10.3設(shè)計(jì)規(guī)定T304AV101T304B熱力學(xué)V-L體系?收斂方法:正常L-L體系?V-L-W體系?收斂方法:正常設(shè)計(jì)規(guī)定1設(shè)計(jì)規(guī)定2變量1變量2三、軟件版本采用ASPENPLUS軟件12.1版本,文件保BD13-H2O.APW甲乙酮脫水流程模擬計(jì)算一、工藝流程簡(jiǎn)述本例題利用共沸精餾,脫除甲乙酮中的少量的方法來(lái)模擬,其工流流程如圖10-2所示,圖中T1551A用不帶冷凝器的塔、外加一三相閃蒸罐來(lái)模擬該脫水過(guò)程。圖中T1551B用帶冷凝器的塔來(lái)模擬該脫水過(guò)程??疾靸煞N方法的差別,并考察不同熱力學(xué)方法對(duì)模擬結(jié)果的影響。圖10-2甲乙酮脫水模擬流程二、需要輸入的主要參數(shù)裝置進(jìn)料數(shù)據(jù)表10.4進(jìn)料數(shù)據(jù)物流號(hào)3ATemperatureC45PressureMPa0.25MassFlowkg/hr14940.43MassFlowkg/hrH2O60.005H20.002IC4=0C4=10NC40TC4=0CC4=0TBA0.017MEK9916.758SBA4913.641SBE0.006NC60C80C8T0HCOM502、單元操作參數(shù)表10.5單元操作數(shù)據(jù)T1551AV1251AT1551B操作壓力MPA0.100.100.10全塔壓降kg/cm20.5400.5理論板數(shù)3031進(jìn)料板56初值塔頂產(chǎn)品8000kg/h塔頂產(chǎn)品0.1kg/h回流量11638kg/h3、設(shè)計(jì)規(guī)定表10.6設(shè)計(jì)規(guī)定T1551AV1251AT1551B熱力學(xué)V-L體系?收斂方法:強(qiáng)非理想V-L-L體系?V-L-W體系?收斂方法:正常設(shè)計(jì)規(guī)定1塔底水0.03%(wt)設(shè)計(jì)規(guī)定2變量1塔頂產(chǎn)品量500-12800kg/h變量2三、軟件版本采用ASPENPLUS軟件12.1版本,文件保MEK-H2OA.APWVCMPlantModelMay2002TableofContentsVCMManufactureandProjectGoals 48Section100–DirectChlorination 51Section200–Oxychlorination 53Section300–EDCPurification 61Section400–EDCPyrolysis 63Section500–VCMPurification 67RunningAspenTechVCMModels 69VCMManufactureandProjectGoals DirectChlorination CH2=CH2+Cl2ClCH2CH2Cl (1) EDCPyrolysis 2ClCH2CH2Cl2CH2=CHCl+2HCl (2)Oxychlorination CH2=CH2+2HCl+?O2ClCH2CH2Cl+H2O (3) Overallreaction 2CH2=CH2+Cl2+?O22CH2=CHCl+H2O (4)InatypicalbalancedplantproducingVCMfromEDC,alltheHClproducedintheEDCpyrolysisisusedasthefeedfortheoxychlorination.Onthisbasis,EDCproductionisaboutevenlysplitbetweendirectchlorinationandoxychlorination,andthereisnonetproductionorconsumptionofHCl.Thethreeprincipalreactionstepsandtheassociatedseparationandheat-integrationstepsareshowninFigure1.Figure1.PrincipalStepsinaBalancedVinylChlorideProcessIntheplant,theprinciplestepsaredesignatedassectionnumbersasfollows:SectionProcessStepSection100DirectChlorinationSection200OxychlorinationSection300EthyleneDichloride(EDC)PurificationSection400EDCPyrolysisSection500VinylChloride(VCM)PurificationSection100–DirectChlorinationDirectchlorinationofethyleneisconductedinliquidEDCinabubblecolumnreactor.EthyleneandchlorinedissolveintheliquidphaseandcombineinahomogeneouscatalyticreactiontoformEDC.Undertypicalprocessconditions,thereactionrateiscontrolledbymasstransfer,withabsorptionofethyleneasthelimitingfactor.Thecatalyst,ferricchloride,ishighlyefficientforthechlorinationreaction.Theproductisextractedfromthevaporphase.IntheAspenPlusmodeldevelopedinthisprojectthereactorismodeledsimplyasanRSTOICmodelinwhichtheconversiontoEDCandthevarioussideproductsisspecified.ThecomponentsusedintheSection100modelareasfollows:IDComponentnameFormulaC2H4ETHYLENEC2H4C2H6ETHANEC2H6C3H6PROPYLENEC3H6-2CL2CHLORINECL2O2OXYGENO2HCLHYDROGEN-CHLORIDEHCLH2HYDROGENH2N2NITROGENN2LIGHTSETHYL-CHLORIDEC2H5CLEDC1,2-DICHLOROETHANEC2H4CL2-2C2H3CL31,1,2-TRICHLOROETHANEC2H3CL3HEAVIES1,1,2,2-TETRACHLOROETHANEC2H2CL4-D2H2OWATERH2OC2CL4TETRACHLOROETHYLENEC2CL4ThephysicalpropertymethodNRTL-RKisused.ThismethodusestheNRTLactivity-coefficientmodeltodescribethenonidealityoftheliquidphaseandtheRedlich-Kwongmodeltodescribethenonidealityofthevaporphase.ItisappropriateforthemixturesandconditionsoftheDirectChlorinationsection.TheDirectChlorinationreactorhasbeendescribedusinganRSTOICmodelwiththefollowingreactionsandspecifiedconversions:RxnNo.StoichiometryKeyComponentFractionalConversion1C2H4+CL2-->EDCCL20.99842C2H4+4CL2-->C2CL4+4HCLCL20.00023EDC+CL2-->C2H3CL3+HCLCL20.00142C2H4+2CL2-->LIGHTS+C2H3CL3CL20.0004ThefirstreactionintheabovetableisEquation(1)inChapter1.Theotherreactionsdescribethemainsidereactions.ThereactionsandconversionswerechosenbasedupontheinformationpublishedinVCMreferences(CowferandGorensek,1996;Ullmann’s,1999)andtheexperienceoftheAspenTechandpersonnel.UsingtheDirectChlorinationreactordescribedabove,anAspenPlusmodelforSection100oftheplantwasdevelopedasshowninFigure2.Section200–OxychlorinationIDComponentnameFormulaHCLHYDROGEN-CHLORIDEHCLC2H2ACETYLENEC2H2VCMVINYL-CHLORIDEC2H3CLEDC1,2-DICHLOROETHANEC2H4CL2-2C4H5CLCHLOROPRENEC4H5CLLBETHYL-CHLORIDEC2H5CLTEC1,1,2-TRICHLOROETHANEC2H3CL3HB1,1,2,2-TETRACHLOROETHANEC2H2CL4-D2NAOHSODIUM-HYDROXIDENAOHH2OWATERH2ONA+NA+NA+H3O+H3O+H3O+OH-OH-OH-CL-CL-CL-NACLSODIUM-CHLORIDENACLNA2CO3SODIUM-CARBONATENA2CO3NACLO3SODIUM-CHLORATENACLO3NA2SO4SODIUM-SULFATENA2SO4H2SO4SULFURIC-ACIDH2SO4CO2CARBON-DIOXIDECO2HSO4-HSO4-HSO4-HCO3-HCO3-HCO3-CLO3-CLO3-CLO3-CO3--CO3--CO3-2SO4--SO4--SO4-2N2NITROGENN2O2OXYGENO2COCARBON-MONOXIDECOC2H4ETHYLENEC2H4C3H8PROPANEC3H8C3H6PROPYLENEC3H6-2H2HYDROGENH2C2H6ETHANEC2H6CO2-INCARBON-DIOXIDECO2Threephysical-propertymodelsareusedinthissection:NRTL-RK,ELECNRTL,andSTEAMNBS.NRTL-RKusestheNRTLactivity-coefficientmodeltodescribethenonidealityoftheliquidphaseandtheRedlich-Kwongmodeltodescribethenonidealityofthevaporphase.ItisappropriateforthemixturesandconditionsoftheOxychlorinationsectioncontainingnon-electrolytemixtures.Formixturescontainingelectrolytes,theELECNRTLoptionisused.ThisoptionissimilartotheNRTL-RKmodel,butisalsoabletodescribemixturescontainingions.ELECNRTLdefaultstoNRTL-RKwhentheconcentrationofionicspeciesbecomeszero.TheSTEAMNBSmodelisahighlyaccuratemodelforpurewaterandisusedforthecoolingcircuitofthereactor.ThemainreactionofoxychlorinationisgivenbyEquation(3)ofChapter1.Severalotherby-productsarealsoformedinthisreactor.Wehavechosenthefollowingsevenreactionsbasedupontherecentliterature(CowferandGorensek,1996;Ullmann,1999;CarrubbaandSpencer,1970;WachiandAsai,1994;Prasad,PrasadandAnanth,2001;Al-Zahrani,2001):C2H4+2HCL+.5O2EDC+H2OC2H4+3HCL+O2TEC+2H2OC2H4+HCLLBC2H4+4HCL+1.5O2HB+3H2OC2H4+3O22CO2+2H2OC2H4+2O22CO+2H2OC2H4+HCL+.5O2VCM+H2OC2H4+2HCL+.5O2EDC+H2OC2H4+3HCL+O2TEC+2H2OC2H4+HCLLBC2H4+4HCL+1.5O2HB+3H2OC2H4+3O22CO2+2H2OC2H4+2O22CO+2H2OC2H4+HCL+.5O2VCM+H2OSection300–EDCPurificationIDComponentNameFormulaC2H4ETHYLENEC2H4C2H3CLVINYL-CHLORIDEC2H3CLC2H5CLETHYL-CHLORIDEC2H5CLP-CCL21,1-DICHLOROETHYLENEC2H2CL2-D1F-CCL2TRANS-1,2-DICHLOROETHYLENEC2H2CL2-D3C4H5CLCHLOROPRENEC4H5CL1,1EDC1,1-DICHLOROETHANEC2H4CL2-11,1,1-011,1,1-TRICHLOROETHANEC2H3CL3-D0CHCL3CHLOROFORMCHCL3CH2CL2DICHLOROMETHANECH2CL2CCL4CARBON-TETRACHLORIDECCL4CIS-1-01CIS-1,2-DICHLOROETHYLENEC2H2CL2-D2C6H6BENZENEC6H6C2HCL3TRICHLOROETHYLENEC2HCL31,2-EDC1,2-DICHLOROETHANEC2H4CL2-2C2CL4TETRACHLOROETHYLENEC2CL41,1,2-021,1,2-TRICHLOROETHANEC2H3CL3H2OWATERH2OHCLHYDROGEN-CHLORIDEHCLN2NITROGENN2ThephysicalpropertymethodNRTL-RKisused.ThismethodusestheNRTLactivity-coefficientmodeltodescribethenonidealityoftheliquidphaseandtheRedlich-Kwongmodeltodescribethenonidealityofthevaporphase.ItisappropriateforthemixturesandconditionsoftheEDCPyrolysissection.Section400–EDCPyrolysisIDComponentnameFormulaHCLHYDROGEN-CHLORIDEHCLC2H2ACETYLENEC2H2VCMVINYL-CHLORIDEC2H3CLEDC1,2-DICHLOROETHANEC2H4CL2-2C4H5CLCHLOROPRENEC4H5CLLBETHYL-CHLORIDEC2H5CLTEC1,1,2-TRICHLOROETHANEC2H3CL3HBTETRACHLOROETHYLENEC2CL4H2OWATERH2OCO2CARBON-DIOXIDECO2N2NITROGENN2O2OXYGENO2COCARBON-MONOXIDECOC2H4ETHYLENEC2H4C3H8PROPANEC3H8C3H6PROPYLENEC3H6-2H2HYDROGENH2C2H6ETHANEC2H6BENZBENZENEC6H6CARBONCARBON-GRAPHITECNC4N-BUTANEC4H10-1IC4ISOBUTANEC4H10-2ARGONARGONAREDCVCM+HCL6.00E-12EDCC2H2+2HCL1.00E-14EDC+H25.00E-18EDC+2HCLHB+3H21.00E-202EDCC4H5CL+3HCL3.00E-213EDCBENZ+6HCL1.00E-20EDC+HCLTEC+H21.00E-20ThephysicalpropertymethodNRTL-RKisused.ThismethodusestheNRTLactivity-coefficientmodeltodescribethenonidealityoftheliquidphaseandtheRedlich-Kwongmodeltodescribethenonidealityofthevaporphase.ItisappropriateforthemixturesandconditionsoftheEDCPyrolysissection.Section500–VCMPurificationIDComponentnameFormulaHCLHYDROGEN-CHLORIDEHCLC2H2ACETYLENEC2H2VCMVINYL-CHLORIDEC2H3CLEDC1,2-DICHLOROETHANEC2H4CL2-2C4H5CLCHLOROPRENEC4H5CLLBETHYL-CHLORIDEC2H5CLTEC1,1,2-TRICHLOROETHANEC2H3CL3HBTETRACHLOROETHYLENEC2CL4NAOHSODIUM-HYDROXIDENAOHH2OWATERH2ONA+NA+NA+H3O+H3O+H3O+OH-OH-OH-CL-CL-CL-NACLSODIUM-CHLORIDENACLNA2CO3SODIUM-CARBONATENA2CO3NACLO3SODIUM-CHLORATENACLO3NA2SO4SODIUM-SULFATENA2SO4H2SO4SULFURIC-ACIDH2SO4CO2CARBON-DIOXIDECO2HSO4-HSO4-HSO4-HCO3-HCO3-HCO3-CLO3-CLO3-CLO3-CO3--CO3--CO3-2SO4--SO4--SO4-2Twophysical-propertymodelsareusedinthissection:NRTL-RKandELECNRTL.NRTL-RKusestheNRTLactivity-coefficientmodeltodescribethenonidealityoftheliquidphaseandtheRedlich-Kwongmodeltodescribethenonidealityofthevaporphase.ItisappropriateforthemixturesandconditionsoftheOxychlorinationsectioncontainingnon-electrolytemixtures.Formixturescontainingelectrolytes,theELECNRTLoptionisused.ThisoptionissimilartotheNRTL-RKmodel,butisalsoabletodescribemixturescontainingions.ELECNRTLdefaultstoNRTL-RKwhentheconcentrationofionicspeciesbecomeszero.RunningAspenTechVCMModelsTheVCMplantmodelscontainbkporapwfilesandassociatedFortransubroutinessupplyingtheusermodels(typicallythekineticsofheat-transfermodels).InthiscaseonlytheEDCPyrolysisreactorhasauserFortransubroutine,theheat-transfermodelcalledEDCHT.Inordertorunanyoneofthemodels,savethesetoffilesintoachosendirectory.Notethatthebkpandapwfilesareequivalent.bkpfilesareupwardlycompatiblewithnewversionsofAspenPlus,whiletheapwfilesarenot.apwfilesretainmoregraphicalinformationthanthebkpfiles.Itisrecommendedthatbothbkpandapwfilesberetained.CompiletheFortransubroutinesusingstandardAspenPlusprocedures.Nowrunthebkptheapwfile.ItisusuallyeasiertocreatedllfilesthatcontaintheFortransubroutines.A.dlldistributionofFortransubroutinestocustomerswhodonothaveaFortrancompiler.Thecustomersimplyfollowstheinstructionsoutlinedbelowunder"InstructionsforUsingMYDLL.DLL”inordertocallthesubroutinefromhismodelwithintheAspenPlusGUI.Creatinga.dllaFortrancompiler.Youdonotneedtodothisstepifa.dllalreadybeencreated.Followtheseinstructionstocreatea.DLLfile:Openthe“AspenPlusSimulationEngine”window.Thisisdonethroughthe“Start”buttoninWindows.Thisactionsetsthecorrectenvironmentvariablesanddefaultdirectories.CompiletheFortransubroutinesyouwantincludedsoastocreatethecorresponding.OBJfiles.Example:

ASPCOMPMYSUBR.FORcreatesMYSUBR.OBJPlaceallyour.OBJfilesinadirectoryandfromthereexecutethefollowingcommand:

ASPLINKMYDLLThesecommandscreate,whichincludesall.OBJthecurrentdirectory.AftersuccessfulcompletionofStep3,MYDLL.DLLisreadyfordistributionanduse.MYDLL.DLLisaallowstheuseofcompiledFortranwithoutacompiler.Forexample,MYDLL.DLLmightcontainsubroutine"USRKIN"thatcalculatesreactionkinetics.FollowthesestepstosetupyoursystemtoincludeMYDLL.DLLinyourAspenPlussimulation:CreateanewtextthenameRUN.OPT.InRUN.OPTtypethepathwhereMYDLL.DLLresides.Example:

c:\MyData\MySimulations\MYDLL.DLLInASPEN-PLUSgotoRUN/SETTINGSandtypethepathpointingtoRUN.OPTinthefieldlabeled"LinkerOptions".Example:

c:\MyData\MySimulations\RUN.OPT

Notethatlinesstartingwith“#”aretreatedascommentlines.Also,RUN.OPTmayhavemultiplelinesidentifyingseveralDLL’susedinthesimulation.YouarenowreadytorunyourAspenPlussimulationthatmakesuseofMYDLL.DLL.AspenTechhascreateddll’scontainingtheVCMmodelsfor’suse.Thiscallededcpyr.dll.Theuseofthedll’sisthepreferredwaytorunthesimulationmodels.ReferencesAl-Zahrani,S.M.;Aljodai,A.M.;Wagialla,K.M.,“ModellingandSimulationof1,2-DichloroethaneProductionbyEthyleneOxychlorinationinFluidized-BedReactor,”Chem.Eng.Sci.,56,621(2001).Carrubba,R.V.;Spencer,J.L.,“KineticsoftheOxychlorinationofEthylene,”Ind.Eng.Chem.Proc.Des.Dev.,9,414(1970).Cowfer,J.A.;Gorensek,M.B.;“VinylChloride,”Kirk-OthmerEncyclopediaofChemicalTechnology,4thEdi

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論