




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2021-2022高考數學模擬試卷注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知函數,若方程恰有兩個不同實根,則正數m的取值范圍為()A. B.C. D.2.2020年是脫貧攻堅決戰(zhàn)決勝之年,某市為早日實現目標,現將甲、乙、丙、丁4名干部派遺到、、三個貧困縣扶貧,要求每個貧困縣至少分到一人,則甲被派遣到縣的分法有()A.6種 B.12種 C.24種 D.36種3.如圖是一個算法流程圖,則輸出的結果是()A. B. C. D.4.已知數列對任意的有成立,若,則等于()A. B. C. D.5.已知Sn為等比數列{an}的前n項和,a5=16,a3a4=﹣32,則S8=()A.﹣21 B.﹣24 C.85 D.﹣856.已知,復數,,且為實數,則()A. B. C.3 D.-37.已知復數滿足,其中是虛數單位,則復數在復平面中對應的點到原點的距離為()A. B. C. D.8.a為正實數,i為虛數單位,,則a=()A.2 B. C. D.19.已知,若對任意,關于x的不等式(e為自然對數的底數)至少有2個正整數解,則實數a的取值范圍是()A. B. C. D.10.已知當,,時,,則以下判斷正確的是A. B.C. D.與的大小關系不確定11.已知全集,集合,則()A. B. C. D.12.在中,角、、的對邊分別為、、,若,,,則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知等比數列的各項都是正數,且成等差數列,則=__________.14.《九章算術》卷5《商功》記載一個問題“今有圓堡瑽,周四丈八尺,高一丈一尺.問積幾何?答曰:二千一百一十二尺,術曰:周自相乘,以高乘之,十二而一”,這里所說的圓堡瑽就是圓柱體,它的體積為“周自相乘,以高乘之,十二而一”,就是說:圓堡瑽(圓柱體)的體積為(底面圓的周長的平方高),則由此可推得圓周率的取值為________.15.已知雙曲線的兩條漸近線方程為,若頂點到漸近線的距離為1,則雙曲線方程為.16.若,,則___________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在中,角A、B、C的對邊分別為a、b、c,且.(1)求角A的大??;(2)若,的平分線與交于點D,與的外接圓交于點E(異于點A),,求的值.18.(12分)在平面直角坐標系xOy中,已知平行于x軸的動直線l交拋物線C:于點P,點F為C的焦點.圓心不在y軸上的圓M與直線l,PF,x軸都相切,設M的軌跡為曲線E.(1)求曲線E的方程;(2)若直線與曲線E相切于點,過Q且垂直于的直線為,直線,分別與y軸相交于點A,當線段AB的長度最小時,求s的值.19.(12分)已知.(Ⅰ)若,求不等式的解集;(Ⅱ),,,求實數的取值范圍.20.(12分)如圖所示,在四棱錐中,底面是邊長為2的正方形,側面為正三角形,且面面,分別為棱的中點.(1)求證:平面;(2)(文科)求三棱錐的體積;(理科)求二面角的正切值.21.(12分)如圖,已知正方形所在平面與梯形所在平面垂直,BM∥AN,,,.(1)證明:平面;(2)求點N到平面CDM的距離.22.(10分)已知a>0,b>0,a+b=2.(Ⅰ)求的最小值;(Ⅱ)證明:
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.D【解析】
當時,函數周期為,畫出函數圖像,如圖所示,方程兩個不同實根,即函數和有圖像兩個交點,計算,,根據圖像得到答案.【詳解】當時,,故函數周期為,畫出函數圖像,如圖所示:方程,即,即函數和有兩個交點.,,故,,,,.根據圖像知:.故選:.【點睛】本題考查了函數的零點問題,確定函數周期畫出函數圖像是解題的關鍵.2.B【解析】
分成甲單獨到縣和甲與另一人一同到縣兩種情況進行分類討論,由此求得甲被派遣到縣的分法數.【詳解】如果甲單獨到縣,則方法數有種.如果甲與另一人一同到縣,則方法數有種.故總的方法數有種.故選:B【點睛】本小題主要考查簡答排列組合的計算,屬于基礎題.3.A【解析】
執(zhí)行程序框圖,逐次計算,根據判斷條件終止循環(huán),即可求解,得到答案.【詳解】由題意,執(zhí)行上述的程序框圖:第1次循環(huán):滿足判斷條件,;第2次循環(huán):滿足判斷條件,;第3次循環(huán):滿足判斷條件,;不滿足判斷條件,輸出計算結果,故選A.【點睛】本題主要考查了循環(huán)結構的程序框圖的結果的計算與輸出,其中解答中執(zhí)行程序框圖,逐次計算,根據判斷條件終止循環(huán)是解答的關鍵,著重考查了運算與求解能力,屬于基礎題.4.B【解析】
觀察已知條件,對進行化簡,運用累加法和裂項法求出結果.【詳解】已知,則,所以有,,,,兩邊同時相加得,又因為,所以.故選:【點睛】本題考查了求數列某一項的值,運用了累加法和裂項法,遇到形如時就可以采用裂項法進行求和,需要掌握數列中的方法,并能熟練運用對應方法求解.5.D【解析】
由等比數列的性質求得a1q4=16,a12q5=﹣32,通過解該方程求得它們的值,求首項和公比,根據等比數列的前n項和公式解答即可.【詳解】設等比數列{an}的公比為q,∵a5=16,a3a4=﹣32,∴a1q4=16,a12q5=﹣32,∴q=﹣2,則,則,故選:D.【點睛】本題主要考查等比數列的前n項和,根據等比數列建立條件關系求出公比是解決本題的關鍵,屬于基礎題.6.B【解析】
把和代入再由復數代數形式的乘法運算化簡,利用虛部為0求得m值.【詳解】因為為實數,所以,解得.【點睛】本題考查復數的概念,考查運算求解能力.7.B【解析】
利用復數的除法運算化簡z,復數在復平面中對應的點到原點的距離為利用模長公式即得解.【詳解】由題意知復數在復平面中對應的點到原點的距離為故選:B【點睛】本題考查了復數的除法運算,模長公式和幾何意義,考查了學生概念理解,數學運算,數形結合的能力,屬于基礎題.8.B【解析】
,選B.9.B【解析】
構造函數(),求導可得在上單調遞增,則,問題轉化為,即至少有2個正整數解,構造函數,,通過導數研究單調性,由可知,要使得至少有2個正整數解,只需即可,代入可求得結果.【詳解】構造函數(),則(),所以在上單調遞增,所以,故問題轉化為至少存在兩個正整數x,使得成立,設,,則,當時,單調遞增;當時,單調遞增.,整理得.故選:B.【點睛】本題考查導數在判斷函數單調性中的應用,考查不等式成立問題中求解參數問題,考查學生分析問題的能力和邏輯推理能力,難度較難.10.C【解析】
由函數的增減性及導數的應用得:設,求得可得為增函數,又,,時,根據條件得,即可得結果.【詳解】解:設,則,即為增函數,又,,,,即,所以,所以.故選:C.【點睛】本題考查了函數的增減性及導數的應用,屬中檔題.11.D【解析】
根據函數定義域的求解方法可分別求得集合,由補集和交集定義可求得結果.【詳解】,,,.故選:.【點睛】本題考查集合運算中的補集和交集運算問題,涉及到函數定義域的求解,屬于基礎題.12.B【解析】
利用兩角差的正弦公式和邊角互化思想可求得,可得出,然后利用余弦定理求出的值,最后利用正弦定理可求出的值.【詳解】,即,即,,,得,,.由余弦定理得,由正弦定理,因此,.故選:B.【點睛】本題考查三角形中角的正弦值的計算,考查兩角差的正弦公式、邊角互化思想、余弦定理與正弦定理的應用,考查運算求解能力,屬于中等題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
根據等差中項性質,結合等比數列通項公式即可求得公比;代入表達式,結合對數式的化簡即可求解.【詳解】等比數列的各項都是正數,且成等差數列,則,由等比數列通項公式可知,所以,解得或(舍),所以由對數式運算性質可得,故答案為:.【點睛】本題考查了等差數列通項公式的簡單應用,等比數列通項公式的用法,對數式的化簡運算,屬于中檔題.14.3【解析】
根據圓堡瑽(圓柱體)的體積為(底面圓的周長的平方高),可得,進而可求出的值【詳解】解:設圓柱底面圓的半徑為,圓柱的高為,由題意知,解得.故答案為:3.【點睛】本題主要考查了圓柱的體積公式.只要能看懂題目意思,結合方程的思想即可求出結果.15.【解析】由已知,即,取雙曲線頂點及漸近線,則頂點到該漸近線的距離為,由題可知,所以,則所求雙曲線方程為.16.【解析】
因為,所以,又,所以,則,所以.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1);(2)【解析】
(1)由,利用正弦定理轉化整理為,再利用余弦定理求解.(2)根據,利用兩角和的余弦得到,利用數形結合,設,在中,由正弦定理求得,在中,求得再求解.【詳解】(1)因為,所以,即,即,所以.(2)∵,.所以,從而.所以,.不妨設,O為外接圓圓心則AO=1,,.在中,由正弦定理知,有.即;在中,由,,從而.所以.【點睛】本題主要考查平面向量的模的幾何意義,還考查了數形結合的方法,屬于中檔題.18.(1),(2).【解析】
根據題意設,可得PF的方程,根據距離即可求出;點Q處的切線的斜率存在,由對稱性不妨設,根據導數的幾何意義和斜率公式,求,并構造函數,利用導數求出函數的最值.【詳解】因為拋物線C的方程為,所以F的坐標為,設,因為圓M與x軸、直線l都相切,l平行于x軸,所以圓M的半徑為,點,則直線PF的方程為,即,所以,又m,,所以,即,所以E的方程為,,設,,,由知,點Q處的切線的斜率存在,由對稱性不妨設,由,所以,,所以,,所以,.令,,則,由得,由得,所以在區(qū)間單調遞減,在單調遞增,所以當時,取得極小值也是最小值,即AB取得最小值此時.【點睛】本題考查了直線和拋物線的位置關系,以及利用導數求函數最值的關系,考查了運算能力和轉化能力,屬于難題.19.(Ⅰ);(Ⅱ).【解析】
(Ⅰ)利用零點分段討論法把函數改寫成分段函數的形式,分三種情況分別解不等式,然后取并集即可;(Ⅱ)利用絕對值三角不等式求出的最小值,利用均值不等式求出的最小值,結合題意,只需即可,解不等式即可求解.【詳解】(Ⅰ)當時,,,或,或,或所以不等式的解集為;(Ⅱ)因為,又(當時等號成立),依題意,,,有,則,解之得,故實數的取值范圍是.【點睛】本題考查由存在性問題求參數的范圍、零點分段討論法解絕對值不等式、利用絕對值三角不等式和均值不等式求最值;考查運算求解能力、分類討論思想、邏輯推理能力;屬于中檔題.20.(1)見解析(2)(文)(理)【解析】
(1)證明:取PD中點G,連結GF、AG,∵GF為△PDC的中位線,∴GF∥CD且,又AE∥CD且,∴GF∥AE且GF=AE,∴EFGA是平行四邊形,則EF∥AG,又EF不在平面PAD內,AG在平面PAD內,∴EF∥面PAD;(2)(文)解:取AD中點O,連結PO,∵面PAD⊥面ABCD,△PAD為正三角形,∴PO⊥面ABCD,且,又PC為面ABCD斜線,F為PC中點,∴F到面ABCD距離,故;(理)連OB交CE于M,可得Rt△EBC≌Rt△OAB,∴∠MEB=∠AOB,則∠MEB+∠MBE=90°,即OM⊥EC.連PM,又由(2)知PO⊥EC,可得EC⊥平面POM,則PM⊥EC,即∠PMO是二面角P-EC-D的平面角,在Rt△EBC中,,∴,∴,即二面角P-EC-D的正切值為.【方法點晴】本題主要考查線面平行的判定定理、二面角的求法、利用等積變換求三棱錐體積,屬于難題.證明線面平行的常用方法:①利用線面平行的判定定理,使用這個定理的關鍵是設法在平面內找到一條與已知直線平行的直線,可利用幾何體的特征,合理利用中位線定理、線面平行的性質或者構造平行四邊形、尋找比例式證明兩直線平行.②利用面面平行的性質,即兩平面平行,在其中一平面內的直線平行于另一平面.本題(1)是就是利用方法①證明的.21.(1)證明見解析(2)【解析】
(1)因為正方形ABCD所在平面與梯形ABMN所在平面垂直,平面平面,,所以平面ABMN,因為平面ABMN,平面ABMN,所以,,因為,所以,因為,所以,所以,因為在直角梯形ABMN中,,所以,所以,所以,因為,所以平面.(2)如圖,取BM的中點E,則,又BM∥AN,所以四邊形ABEN是平行四邊形,所以NE∥AB,又AB∥CD,所以NE∥CD,因為平面CDM,平面CDM,所以NE∥平面CDM,所以點N到平面CDM的
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 中國礦業(yè)大學《寫作教學研究》2023-2024學年第二學期期末試卷
- 山東鋁業(yè)職業(yè)學院《建筑裝飾工程概預算》2023-2024學年第二學期期末試卷
- 黔南民族幼兒師范高等??茖W校《企業(yè)經營與財務分析》2023-2024學年第二學期期末試卷
- 哈爾濱鐵道職業(yè)技術學院《大學生心理健康與自我調適》2023-2024學年第二學期期末試卷
- 四川托普信息技術職業(yè)學院《環(huán)境設施設計》2023-2024學年第二學期期末試卷
- 安徽外國語學院《旅游財務管理、旅游項目管理》2023-2024學年第二學期期末試卷
- 西安培華學院《土地利用規(guī)劃實訓》2023-2024學年第二學期期末試卷
- 安陽職業(yè)技術學院《移動通信A》2023-2024學年第二學期期末試卷
- 江西建設職業(yè)技術學院《EDA技術及應用A》2023-2024學年第二學期期末試卷
- 河北能源職業(yè)技術學院《改變世界的化學》2023-2024學年第二學期期末試卷
- 汽車維修技能大賽開幕式致辭
- 中心試驗室運行管理實施方案
- 板式開料標準
- 吊車起重吊裝方案
- 溫州市基準地價成果表(共45頁)
- 粉煤灰漂珠粉項目建議書范文
- 投資框架協議中英文版
- 50噸汽車吊性能表
- 暗黑破壞神2所有綠色套裝(大圖)
- 礦井安全避險系統有效性評估報告
- 砂石級配搭配計算表
評論
0/150
提交評論