版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
天津市五校2025屆高三第一次聯(lián)考數(shù)學(xué)試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.一個(gè)超級斐波那契數(shù)列是一列具有以下性質(zhì)的正整數(shù):從第三項(xiàng)起,每一項(xiàng)都等于前面所有項(xiàng)之和(例如:1,3,4,8,16…).則首項(xiàng)為2,某一項(xiàng)為2020的超級斐波那契數(shù)列的個(gè)數(shù)為()A.3 B.4 C.5 D.62.已知函數(shù)是定義在R上的奇函數(shù),且滿足,當(dāng)時(shí),(其中e是自然對數(shù)的底數(shù)),若,則實(shí)數(shù)a的值為()A. B.3 C. D.3.已知函數(shù),,若成立,則的最小值是()A. B. C. D.4.函數(shù)(其中是自然對數(shù)的底數(shù))的大致圖像為()A. B. C. D.5.我國古代典籍《周易》用“卦”描述萬物的變化.每一“重卦”由從下到上排列的6個(gè)爻組成,爻分為陽爻“——”和陰爻“——”.如圖就是一重卦.在所有重卦中隨機(jī)取一重卦,則該重卦至少有2個(gè)陽爻的概率是()A. B. C. D.6.執(zhí)行如圖所示的程序框圖,若輸出的值為8,則框圖中①處可以填().A. B. C. D.7.已知集合,,則A. B.C. D.8.設(shè)向量,滿足,,,則的取值范圍是A. B.C. D.9.已知函數(shù),若對任意,都有成立,則實(shí)數(shù)的取值范圍是()A. B. C. D.10.已知圓與拋物線的準(zhǔn)線相切,則的值為()A.1 B.2 C. D.411.已知函數(shù),,若總有恒成立.記的最小值為,則的最大值為()A.1 B. C. D.12.已知,,,則的大小關(guān)系為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.雙曲線的離心率為_________.14.某部隊(duì)在訓(xùn)練之余,由同一場地訓(xùn)練的甲?乙?丙三隊(duì)各出三人,組成小方陣開展游戲,則來自同一隊(duì)的戰(zhàn)士既不在同一行,也不在同一列的概率為______.15.甲,乙兩隊(duì)參加關(guān)于“一帶一路”知識競賽,甲隊(duì)有編號為1,2,3的三名運(yùn)動員,乙隊(duì)有編號為1,2,3,4的四名運(yùn)動員,若兩隊(duì)各出一名隊(duì)員進(jìn)行比賽,則出場的兩名運(yùn)動員編號相同的概率為______.16.在《九章算術(shù)》中,將底面為矩形且有一條側(cè)棱與底面垂直的四棱錐稱之為陽馬.如圖,若四棱錐為陽馬,側(cè)棱底面,且,,設(shè)該陽馬的外接球半徑為,內(nèi)切球半徑為,則__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù),.(1)求曲線在點(diǎn)處的切線方程;(2)求函數(shù)的極小值;(3)求函數(shù)的零點(diǎn)個(gè)數(shù).18.(12分)如圖,在平行四邊形中,,,現(xiàn)沿對角線將折起,使點(diǎn)A到達(dá)點(diǎn)P,點(diǎn)M,N分別在直線,上,且A,B,M,N四點(diǎn)共面.(1)求證:;(2)若平面平面,二面角平面角大小為,求直線與平面所成角的正弦值.19.(12分)已知函數(shù).(1)求不等式的解集;(2)設(shè)的最小值為,正數(shù),滿足,證明:.20.(12分)已知點(diǎn)到拋物線C:y1=1px準(zhǔn)線的距離為1.(Ⅰ)求C的方程及焦點(diǎn)F的坐標(biāo);(Ⅱ)設(shè)點(diǎn)P關(guān)于原點(diǎn)O的對稱點(diǎn)為點(diǎn)Q,過點(diǎn)Q作不經(jīng)過點(diǎn)O的直線與C交于兩點(diǎn)A,B,直線PA,PB,分別交x軸于M,N兩點(diǎn),求的值.21.(12分)如圖,在三棱柱中,平面,,且.(1)求棱與所成的角的大小;(2)在棱上確定一點(diǎn),使二面角的平面角的余弦值為.22.(10分)某芯片公司為制定下一年的研發(fā)投入計(jì)劃,需了解年研發(fā)資金投入量x(單位:億元)對年銷售額y(單位:億元)的影響.該公司對歷史數(shù)據(jù)進(jìn)行對比分析,建立了兩個(gè)函數(shù)模型:①y=α+βx2,②y=eλx+t,其中現(xiàn)該公司收集了近12年的年研發(fā)資金投入量xi和年銷售額yi的數(shù)據(jù),i=1,2,?,12,并對這些數(shù)據(jù)作了初步處理,得到了右側(cè)的散點(diǎn)圖及一些統(tǒng)計(jì)量的值.令xyi=1i=1uv20667702004604.20i=1i=1i=1i=13125000215000.30814(1)設(shè)ui和yi的相關(guān)系數(shù)為r1,xi和(2)(i)根據(jù)(1)的選擇及表中數(shù)據(jù),建立y關(guān)于x的回歸方程(系數(shù)精確到0.01);(ii)若下一年銷售額y需達(dá)到90億元,預(yù)測下一年的研發(fā)資金投入量x是多少億元?附:①相關(guān)系數(shù)r=i=1n(xi-x②參考數(shù)據(jù):308=4×77,90≈9.4868,e
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.A【解析】
根據(jù)定義,表示出數(shù)列的通項(xiàng)并等于2020.結(jié)合的正整數(shù)性質(zhì)即可確定解的個(gè)數(shù).【詳解】由題意可知首項(xiàng)為2,設(shè)第二項(xiàng)為,則第三項(xiàng)為,第四項(xiàng)為,第五項(xiàng)為第n項(xiàng)為且,則,因?yàn)椋?dāng)?shù)闹悼梢詾?;即?個(gè)這種超級斐波那契數(shù)列,故選:A.本題考查了數(shù)列新定義的應(yīng)用,注意自變量的取值范圍,對題意理解要準(zhǔn)確,屬于中檔題.2.B【解析】
根據(jù)題意,求得函數(shù)周期,利用周期性和函數(shù)值,即可求得.【詳解】由已知可知,,所以函數(shù)是一個(gè)以4為周期的周期函數(shù),所以,解得,故選:B.本題考查函數(shù)周期的求解,涉及對數(shù)運(yùn)算,屬綜合基礎(chǔ)題.3.A【解析】分析:設(shè),則,把用表示,然后令,由導(dǎo)數(shù)求得的最小值.詳解:設(shè),則,,,∴,令,則,,∴是上的增函數(shù),又,∴當(dāng)時(shí),,當(dāng)時(shí),,即在上單調(diào)遞減,在上單調(diào)遞增,是極小值也是最小值,,∴的最小值是.故選A.點(diǎn)睛:本題易錯(cuò)選B,利用導(dǎo)數(shù)法求函數(shù)的最值,解題時(shí)學(xué)生可能不會將其中求的最小值問題,通過構(gòu)造新函數(shù),轉(zhuǎn)化為求函數(shù)的最小值問題,另外通過二次求導(dǎo),確定函數(shù)的單調(diào)區(qū)間也很容易出錯(cuò).4.D【解析】由題意得,函數(shù)點(diǎn)定義域?yàn)榍?,所以定義域關(guān)于原點(diǎn)對稱,且,所以函數(shù)為奇函數(shù),圖象關(guān)于原點(diǎn)對稱,故選D.5.C【解析】
利用組合的方法求所求的事件的對立事件,即該重卦沒有陽爻或只有1個(gè)陽爻的概率,再根據(jù)兩對立事件的概率和為1求解即可.【詳解】設(shè)“該重卦至少有2個(gè)陽爻”為事件.所有“重卦”共有種;“該重卦至少有2個(gè)陽爻”的對立事件是“該重卦沒有陽爻或只有1個(gè)陽爻”,其中,沒有陽爻(即6個(gè)全部是陰爻)的情況有1種,只有1個(gè)陽爻的情況有種,故,所以該重卦至少有2個(gè)陽爻的概率是.故選:C本題主要考查了對立事件概率和為1的方法求解事件概率的方法.屬于基礎(chǔ)題.6.C【解析】
根據(jù)程序框圖寫出幾次循環(huán)的結(jié)果,直到輸出結(jié)果是8時(shí).【詳解】第一次循環(huán):第二次循環(huán):第三次循環(huán):第四次循環(huán):第五次循環(huán):第六次循環(huán):第七次循環(huán):第八次循環(huán):所以框圖中①處填時(shí),滿足輸出的值為8.故選:C此題考查算法程序框圖,根據(jù)循環(huán)條件依次寫出每次循環(huán)結(jié)果即可解決,屬于簡單題目.7.D【解析】
因?yàn)?,,所以,,故選D.8.B【解析】
由模長公式求解即可.【詳解】,當(dāng)時(shí)取等號,所以本題答案為B.本題考查向量的數(shù)量積,考查模長公式,準(zhǔn)確計(jì)算是關(guān)鍵,是基礎(chǔ)題.9.D【解析】
先將所求問題轉(zhuǎn)化為對任意恒成立,即得圖象恒在函數(shù)圖象的上方,再利用數(shù)形結(jié)合即可解決.【詳解】由得,由題意函數(shù)得圖象恒在函數(shù)圖象的上方,作出函數(shù)的圖象如圖所示過原點(diǎn)作函數(shù)的切線,設(shè)切點(diǎn)為,則,解得,所以切線斜率為,所以,解得.故選:D.本題考查導(dǎo)數(shù)在不等式恒成立中的應(yīng)用,考查了學(xué)生轉(zhuǎn)化與化歸思想以及數(shù)形結(jié)合的思想,是一道中檔題.10.B【解析】
因?yàn)閳A與拋物線的準(zhǔn)線相切,則圓心為(3,0),半徑為4,根據(jù)相切可知,圓心到直線的距離等于半徑,可知的值為2,選B.【詳解】請?jiān)诖溯斎朐斀猓?1.C【解析】
根據(jù)總有恒成立可構(gòu)造函數(shù),求導(dǎo)后分情況討論的最大值可得最大值最大值,即.根據(jù)題意化簡可得,求得,再換元求導(dǎo)分析最大值即可.【詳解】由題,總有即恒成立.設(shè),則的最大值小于等于0.又,若則,在上單調(diào)遞增,無最大值.若,則當(dāng)時(shí),,在上單調(diào)遞減,當(dāng)時(shí),,在上單調(diào)遞增.故在處取得最大值.故,化簡得.故,令,可令,故,當(dāng)時(shí),,在遞減;當(dāng)時(shí),,在遞增.故在處取得極大值,為.故的最大值為.故選:C本題主要考查了根據(jù)導(dǎo)數(shù)求解函數(shù)的最值問題,需要根據(jù)題意分析導(dǎo)數(shù)中參數(shù)的范圍,再分析函數(shù)的最值,進(jìn)而求導(dǎo)構(gòu)造函數(shù)求解的最大值.屬于難題.12.A【解析】
根據(jù)指數(shù)函數(shù)與對數(shù)函數(shù)的單調(diào)性,借助特殊值即可比較大小.【詳解】因?yàn)?,所?因?yàn)?,所以,因?yàn)?,為增函?shù),所以所以,故選:A.本題主要考查了指數(shù)函數(shù)、對數(shù)函數(shù)的單調(diào)性,利用單調(diào)性比較大小,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13.2【解析】14.【解析】
分兩步進(jìn)行:首先,先排第一行,再排第二行,最后排第三行;其次,對每一行選人;最后,利用計(jì)算出概率即可.【詳解】首先,第一行隊(duì)伍的排法有種;第二行隊(duì)伍的排法有2種;第三行隊(duì)伍的排法有1種;然后,第一行的每個(gè)位置的人員安排有種;第二行的每個(gè)位置的人員安排有種;第三行的每個(gè)位置的人員安排有種.所以來自同一隊(duì)的戰(zhàn)士既不在同一行,也不在同一列的概率.故答案為:.本題考查了分步計(jì)數(shù)原理,排列與組合知識,考查了轉(zhuǎn)化能力,屬于中檔題.15.【解析】
出場運(yùn)動員編號相同的事件顯然有3種,計(jì)算出總的基本事件數(shù),由古典概型概率計(jì)算公式求得答案.【詳解】甲隊(duì)有編號為1,2,3的三名運(yùn)動員,乙隊(duì)有編號為1,2,3,4的四名運(yùn)動員,出場的兩名運(yùn)動員編號相同的事件數(shù)為3,出現(xiàn)的基本事件總數(shù),則出場的兩名運(yùn)動員編號相同的概率為.故答案為:本題考查求古典概率的概率問題,屬于基礎(chǔ)題.16.【解析】
該陽馬補(bǔ)形所得到的長方體的對角線為外接球的直徑,由此能求出,內(nèi)切球在側(cè)面內(nèi)的正視圖是的內(nèi)切圓,從而內(nèi)切球半徑為,由此能求出.【詳解】四棱錐為陽馬,側(cè)棱底面,且,,設(shè)該陽馬的外接球半徑為,該陽馬補(bǔ)形所得到的長方體的對角線為外接球的直徑,,,側(cè)棱底面,且底面為正方形,內(nèi)切球在側(cè)面內(nèi)的正視圖是的內(nèi)切圓,內(nèi)切球半徑為,故.故答案為.本題考查了幾何體外接球和內(nèi)切球的相關(guān)問題,補(bǔ)形法的運(yùn)用,以及數(shù)學(xué)文化,考查了空間想象能力,是中檔題.解決球與其他幾何體的切、接問題,關(guān)鍵是能夠確定球心位置,以及選擇恰當(dāng)?shù)慕嵌茸龀鼋孛?球心位置的確定的方法有很多,主要有兩種:(1)補(bǔ)形法(構(gòu)造法),通過補(bǔ)形為長方體(正方體),球心位置即為體對角線的中點(diǎn);(2)外心垂線法,先找出幾何體中不共線三點(diǎn)構(gòu)成的三角形的外心,再找出過外心且與不共線三點(diǎn)確定的平面垂直的垂線,則球心一定在垂線上.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1);(2)極小值;(3)函數(shù)的零點(diǎn)個(gè)數(shù)為.【解析】
(1)求出和的值,利用點(diǎn)斜式可得出所求切線的方程;(2)利用導(dǎo)數(shù)分析函數(shù)的單調(diào)性,進(jìn)而可得出該函數(shù)的極小值;(3)由當(dāng)時(shí),以及,結(jié)合函數(shù)在區(qū)間上的單調(diào)性可得出函數(shù)的零點(diǎn)個(gè)數(shù).【詳解】(1)因?yàn)椋裕?,.所以曲線在點(diǎn)處的切線為;(2)因?yàn)?,令,得或.列表如下?極大值極小值所以,函數(shù)的單調(diào)遞增區(qū)間為和,單調(diào)遞減區(qū)間為,所以,當(dāng)時(shí),函數(shù)有極小值;(3)當(dāng)時(shí),,且.由(2)可知,函數(shù)在上單調(diào)遞增,所以函數(shù)的零點(diǎn)個(gè)數(shù)為.本題考查利用導(dǎo)數(shù)求函數(shù)的切線方程、極值以及利用導(dǎo)數(shù)研究函數(shù)的零點(diǎn)問題,考查分析問題和解決問題的能力,屬于中等題.18.(1)證明見解析;(2)【解析】
(1)根據(jù)余弦定理,可得,利用//,可得//平面,然后利用線面平行的性質(zhì)定理,//,最后可得結(jié)果.(2)根據(jù)二面角平面角大小為,可知N為的中點(diǎn),然后利用建系,計(jì)算以及平面的一個(gè)法向量,利用向量的夾角公式,可得結(jié)果.【詳解】(1)不妨設(shè),則,在中,,則,因?yàn)?,所以,因?yàn)?/,且A、B、M、N四點(diǎn)共面,所以//平面.又平面平面,所以//.而,.(2)因?yàn)槠矫嫫矫?,且,所以平面,,因?yàn)?,所以平面,,因?yàn)?,平面與平面夾角為,所以,在中,易知N為的中點(diǎn),如圖,建立空間直角坐標(biāo)系,則,,,,,,,,設(shè)平面的一個(gè)法向量為,則由,令,得.設(shè)與平面所成角為,則.本題考查線面平行的性質(zhì)定理以及線面角,熟練掌握利用建系的方法解決幾何問題,將幾何問題代數(shù)化,化繁為簡,屬中檔題.19.(1)(2)證明見解析【解析】
(1)將表示為分段函數(shù)的形式,由此求得不等式的解集.(2)利用絕對值三角不等式求得的最小值,利用分析法,結(jié)合基本不等式,證得不等式成立.【詳解】(1),不等式,即或或,即有或或,所以所求不等式的解集為.(2),,因?yàn)?,,所以要證,只需證,即證,因?yàn)?,所以只要證,即證,即證,因?yàn)?,所以只需證,因?yàn)?,所以成立,所?本小題主要考查絕對值不等式的解法,考查分析法證明不等式,考查基本不等式的運(yùn)用,屬于中檔題.20.(Ⅰ)C的方程為,焦點(diǎn)F的坐標(biāo)為(1,0);(Ⅱ)1【解析】
(Ⅰ)根據(jù)拋物線定義求出p,即可求C的方程及焦點(diǎn)F的坐標(biāo);
(Ⅱ)設(shè)點(diǎn)A(x1,y1),B(x1,y1),由已知得Q(?1,?1),由題意直線AB斜率存在且不為0,設(shè)直線AB的方程為y=k(x+1)?1(k≠0),與拋物線聯(lián)立可得ky1-4y+4k-8=0,利用韋達(dá)定理以及弦長公式,轉(zhuǎn)化求解|MF|?|NF|的值.【詳解】(Ⅰ)由已知得,所以p=1.所以拋物線C的方程為,焦點(diǎn)F的坐標(biāo)為(1,0);(II)設(shè)點(diǎn)A(x1,y1),B(x1,y1),由已知得Q(?1,?1),由題意直線AB斜率存在且不為0.設(shè)直線AB的方程為y=k(x+1)?1(k≠0).由得,則,.因?yàn)辄c(diǎn)A,B在拋物線C上,所以,.因?yàn)镻F⊥x軸,所以,所以|MF|?|NF|的值為1.本題考查拋物線的定義、標(biāo)準(zhǔn)方程及直線與拋物線中的定值問題,常用韋達(dá)定理設(shè)而不求來求解,本題解題關(guān)鍵是找出弦長與斜率之間的關(guān)系進(jìn)行求解,屬于中等題.21.(1)(2)【解析】試題分析:(1)因?yàn)锳B⊥AC,A1B⊥平面ABC,所以以A為坐標(biāo)原點(diǎn),分別以AC、AB所在直線分別為x軸和y軸,以過A,且平行于BA1的直線為z軸建立空間直角坐標(biāo)系,由AB=AC=A1B=2求出所要用到的點(diǎn)的坐標(biāo),求出棱AA1與BC上的兩個(gè)向量,由向量的夾角求棱AA1與BC所成的角的大小;
(2)設(shè)棱B1C1上的一點(diǎn)P,由向量共線得到P點(diǎn)的坐標(biāo),然后求出兩個(gè)平面PAB與平面ABA1的一個(gè)法向量,把二面角P-AB-A1的平面角的余弦值為,轉(zhuǎn)化為它們法向量所成角的余弦值,由此確定出P點(diǎn)的坐標(biāo).試題解析:解(1)如圖,以為原點(diǎn)建立空間直角坐標(biāo)系,則,.,故與棱所成的角是.(2)為棱中點(diǎn),設(shè),則.設(shè)平面的法向量為,,則,故而平面的法向量是,則,解得,即為棱中點(diǎn),其坐標(biāo)為.點(diǎn)睛:本題主要考查線面垂直的
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年線管器項(xiàng)目可行性研究報(bào)告
- 2024年獨(dú)立網(wǎng)面護(hù)翼項(xiàng)目可行性研究報(bào)告
- 2024年法蘭軟管項(xiàng)目可行性研究報(bào)告
- 專銷合同范例
- 債權(quán)質(zhì)押合同范例
- 工程承臺合同范例
- 2024年全芪降糖片項(xiàng)目可行性研究報(bào)告
- 二年級數(shù)學(xué)計(jì)算題專項(xiàng)練習(xí)1000題匯編
- 2024至2030年高溫料項(xiàng)目投資價(jià)值分析報(bào)告
- 與人合作股合同范例
- 2024屆新高考英語練習(xí):動詞的時(shí)態(tài)和語態(tài)
- 2021年普通高等學(xué)校招生全國統(tǒng)一考試(新高考全國II卷) 英語 Word版無答案
- 初中數(shù)學(xué)“實(shí)踐與綜合應(yīng)用”領(lǐng)域課程研究
- 美容皮膚科培訓(xùn)課件
- 全過程工程咨詢實(shí)施規(guī)劃
- 海洋水產(chǎn)養(yǎng)殖碳足跡評估與減緩策略
- 數(shù)字媒體藝術(shù)課件
- 海洋科普趣味知識講座
- 靜脈輸液操作課件
- 安全生產(chǎn)培訓(xùn)(完整版)課件
- 【瑞幸咖啡財(cái)務(wù)分析報(bào)告(附財(cái)務(wù)報(bào)表)5300字(論文)】
評論
0/150
提交評論