版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2023-2024學(xué)年湖南省岳陽市長煉中學(xué)中考數(shù)學(xué)模試卷注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.如圖的幾何體中,主視圖是中心對稱圖形的是()A. B. C. D.2.如圖,I是?ABC的內(nèi)心,AI向延長線和△ABC的外接圓相交于點D,連接BI,BD,DC下列說法中錯誤的一項是()A.線段DB繞點D順時針旋轉(zhuǎn)一定能與線段DC重合B.線段DB繞點D順時針旋轉(zhuǎn)一定能與線段DI熏合C.∠CAD繞點A順時針旋轉(zhuǎn)一定能與∠DAB重合D.線段ID繞點I順時針旋轉(zhuǎn)一定能與線段IB重合3.如圖,在?ABCD中,BF平分∠ABC,交AD于點F,CE平分∠BCD,交AD于點E,若AB=6,EF=2,則BC的長為()A.8 B.10 C.12 D.144.從﹣1,2,3,﹣6這四個數(shù)中任選兩數(shù),分別記作m,n,那么點(m,n)在函數(shù)y=圖象上的概率是()A. B. C. D.5.關(guān)于x的一元二次方程(m﹣2)x2+(2m﹣1)x+m﹣2=0有兩個不相等的正實數(shù)根,則m的取值范圍是()A.m> B.m>且m≠2 C.﹣<m<2 D.<m<26.已知二次函數(shù)y=ax2+bx+c(a≠1)的圖象如圖所示,給出以下結(jié)論:①a+b+c<1;②a﹣b+c<1;③b+2a<1;④abc>1.其中所有正確結(jié)論的序號是()A.③④ B.②③ C.①④ D.①②③7.如圖,數(shù)軸上的A、B、C、D四點中,與數(shù)﹣表示的點最接近的是()A.點A B.點B C.點C D.點D8.的相反數(shù)是()A. B.2 C. D.9.根據(jù)下表中的二次函數(shù)的自變量與函數(shù)的對應(yīng)值,可判斷該二次函數(shù)的圖象與軸().
…
…
…
…A.只有一個交點 B.有兩個交點,且它們分別在軸兩側(cè)C.有兩個交點,且它們均在軸同側(cè) D.無交點10.已知一元二次方程2x2+2x﹣1=0的兩個根為x1,x2,且x1<x2,下列結(jié)論正確的是()A.x1+x2=1 B.x1?x2=﹣1 C.|x1|<|x2| D.x12+x1=二、填空題(共7小題,每小題3分,滿分21分)11.用配方法解方程3x2﹣6x+1=0,則方程可變形為(x﹣__)2=__.12.如果不等式無解,則a的取值范圍是________13.如圖,在ABCD中,AB=6cm,AD=9cm,∠BAD的平分線交BC于點E,交DC的延長線于點F,BG⊥AE,垂足為G,BG=cm,則EF+CF的長為cm.14.如圖,正方形ABCD的邊長為3,點E,F(xiàn)分別在邊BCCD上,BE=CF=1,小球P從點E出發(fā)沿直線向點F運動,完成第1次與邊的碰撞,每當(dāng)碰到正方形的邊時反彈,反彈時反射角等于入射角,則小球P與正方形的邊第2次碰撞到__邊上,小球P與正方形的邊完成第5次碰撞所經(jīng)過的路程為__.15.計算:2(a-b)+3b=___________.16.圓錐的底面半徑為2,母線長為6,則它的側(cè)面積為_____.17.在一個不透明的袋子里裝有一個黑球和兩個白球,它們除顏色外都相同,隨機從中摸出一個球,記下顏色后放回袋子中,充分搖勻后,再隨機摸出一個球,兩次都摸到黑球的概率是__________.三、解答題(共7小題,滿分69分)18.(10分)如圖,已知△ABC內(nèi)接于⊙O,BC交直徑AD于點E,過點C作AD的垂線交AB的延長線于點G,垂足為F.連接OC.(1)若∠G=48°,求∠ACB的度數(shù);(1)若AB=AE,求證:∠BAD=∠COF;(3)在(1)的條件下,連接OB,設(shè)△AOB的面積為S1,△ACF的面積為S1.若tan∠CAF=,求的值.19.(5分)如圖,AB是⊙O的直徑,C是弧AB的中點,弦CD與AB相交于E.若∠AOD=45°,求證:CE=ED;(2)若AE=EO,求tan∠AOD的值.20.(8分)(1)計算:﹣22+|﹣4|+()-1+2tan60°(2)求不等式組的解集.21.(10分)某居民小區(qū)一處圓柱形的輸水管道破裂,維修人員為更換管道,需確定管道圓形截面的半徑,下面是水平放置的破裂管道有水部分的截面.若這個輸水管道有水部分的水面寬,水面最深地方的高度為4cm,求這個圓形截面的半徑.22.(10分)地球環(huán)境問題已經(jīng)成為我們?nèi)找骊P(guān)注的問題.學(xué)校為了普及生態(tài)環(huán)保知識,提高學(xué)生生態(tài)環(huán)境保護意識,舉辦了“我參與,我環(huán)?!钡闹R競賽.以下是從初一、初二兩個年級隨機抽取20名同學(xué)的測試成績進行調(diào)查分析,成績?nèi)缦拢撼跻唬?688936578948968955089888989779487889291初二:7497968998746976727899729776997499739874(1)根據(jù)上面的數(shù)據(jù),將下列表格補充完整;整理、描述數(shù)據(jù):成績x人數(shù)班級初一1236初二011018(說明:成績90分及以上為優(yōu)秀,80~90分為良好,60~80分為合格,60分以下為不合格)分析數(shù)據(jù):年級平均數(shù)中位數(shù)眾數(shù)初一8488.5初二84.274(2)得出結(jié)論:你認為哪個年級掌握生態(tài)環(huán)保知識水平較好并說明理由.(至少從兩個不同的角度說明推斷的合理性).23.(12分)如圖,AB是⊙O的直徑,點E是上的一點,∠DBC=∠BED.求證:BC是⊙O的切線;已知AD=3,CD=2,求BC的長.24.(14分)已知,拋物線y=﹣x2+bx+c經(jīng)過點A(﹣1,0)和C(0,3).(1)求拋物線的解析式;(2)設(shè)點M在拋物線的對稱軸上,當(dāng)△MAC是以AC為直角邊的直角三角形時,求點M的坐標(biāo).
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、C【解析】解:球是主視圖是圓,圓是中心對稱圖形,故選C.2、D【解析】解:∵I是△ABC的內(nèi)心,∴AI平分∠BAC,BI平分∠ABC,∴∠BAD=∠CAD,∠ABI=∠CBI,故C正確,不符合題意;∴=,∴BD=CD,故A正確,不符合題意;∵∠DAC=∠DBC,∴∠BAD=∠DBC.∵∠IBD=∠IBC+∠DBC,∠BID=∠ABI+∠BAD,∴∠DBI=∠DIB,∴BD=DI,故B正確,不符合題意.故選D.點睛:本題考查了三角形的內(nèi)切圓和內(nèi)心的,以及等腰三角形的判定與性質(zhì),同弧所對的圓周角相等.3、B【解析】試題分析:根據(jù)平行四邊形的性質(zhì)可知AB=CD,AD∥BC,AD=BC,然后根據(jù)平行線的性質(zhì)和角平分線的性質(zhì)可知AB=AF,DE=CD,因此可知AF+DE=AD+EF=2AB=12,解得AD=BC=12-2=10.故選B.點睛:此題主要考查了平行四邊形的性質(zhì)和等腰三角形的性質(zhì),解題關(guān)鍵是把所求線段轉(zhuǎn)化為題目中已知的線段,根據(jù)等量代換可求解.4、B【解析】
首先根據(jù)題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結(jié)果與點(m,n)恰好在反比例函數(shù)y=圖象上的情況,再利用概率公式即可求得答案.【詳解】解:畫樹狀圖得:∵共有12種等可能的結(jié)果,點(m,n)恰好在反比例函數(shù)y=圖象上的有:(2,3),(﹣1,﹣6),(3,2),(﹣6,﹣1),∴點(m,n)在函數(shù)y=圖象上的概率是:.故選B.【點睛】此題考查了列表法或樹狀圖法求概率.用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.5、D【解析】
根據(jù)一元二次方程的根的判別式的意義得到m-2≠0且Δ=(2m-1)2-4(m-2)(m-2)>0,解得m>且m≠﹣2,再利用根與系數(shù)的關(guān)系得到,m﹣2≠0,解得<m<2,即可求出答案.【詳解】解:由題意可知:m-2≠0且Δ=(2m﹣1)2﹣4(m﹣2)2=12m﹣15>0,∴m>且m≠﹣2,∵(m﹣2)x2+(2m﹣1)x+m﹣2=0有兩個不相等的正實數(shù)根,∴﹣>0,m﹣2≠0,∴<m<2,∵m>,∴<m<2,故選:D.【點睛】本題主要考查對根的判別式和根與系數(shù)的關(guān)系的理解能力及計算能力,掌握根據(jù)方程根的情況確定方程中字母系數(shù)的取值范圍是解題的關(guān)鍵.6、C【解析】試題分析:由拋物線的開口方向判斷a的符號,由拋物線與y軸的交點判斷c的符號,然后根據(jù)對稱軸及拋物線與x軸交點情況進行推理,進而對所得結(jié)論進行判斷.解:①當(dāng)x=1時,y=a+b+c=1,故本選項錯誤;②當(dāng)x=﹣1時,圖象與x軸交點負半軸明顯大于﹣1,∴y=a﹣b+c<1,故本選項正確;③由拋物線的開口向下知a<1,∵對稱軸為1>x=﹣>1,∴2a+b<1,故本選項正確;④對稱軸為x=﹣>1,∴a、b異號,即b>1,∴abc<1,故本選項錯誤;∴正確結(jié)論的序號為②③.故選B.點評:二次函數(shù)y=ax2+bx+c系數(shù)符號的確定:(1)a由拋物線開口方向確定:開口方向向上,則a>1;否則a<1;(2)b由對稱軸和a的符號確定:由對稱軸公式x=﹣b2a判斷符號;(3)c由拋物線與y軸的交點確定:交點在y軸正半軸,則c>1;否則c<1;(4)當(dāng)x=1時,可以確定y=a+b+C的值;當(dāng)x=﹣1時,可以確定y=a﹣b+c的值.7、B【解析】
,計算-1.732與-3,-2,-1的差的絕對值,確定絕對值最小即可.【詳解】,,,,因為0.268<0.732<1.268,所以表示的點與點B最接近,故選B.8、D【解析】
因為-+=0,所以-的相反數(shù)是.故選D.9、B【解析】
根據(jù)表中數(shù)據(jù)可得拋物線的對稱軸為x=1,拋物線的開口方向向上,再根據(jù)拋物線的對稱性即可作出判斷.【詳解】解:由題意得拋物線的對稱軸為x=1,拋物線的開口方向向上則該二次函數(shù)的圖像與軸有兩個交點,且它們分別在軸兩側(cè)故選B.【點睛】本題考查二次函數(shù)的性質(zhì),屬于基礎(chǔ)應(yīng)用題,只需學(xué)生熟練掌握拋物線的對稱性,即可完成.10、D【解析】【分析】直接利用根與系數(shù)的關(guān)系對A、B進行判斷;由于x1+x2<0,x1x2<0,則利用有理數(shù)的性質(zhì)得到x1、x2異號,且負數(shù)的絕對值大,則可對C進行判斷;利用一元二次方程解的定義對D進行判斷.【詳解】根據(jù)題意得x1+x2=﹣=﹣1,x1x2=﹣,故A、B選項錯誤;∵x1+x2<0,x1x2<0,∴x1、x2異號,且負數(shù)的絕對值大,故C選項錯誤;∵x1為一元二次方程2x2+2x﹣1=0的根,∴2x12+2x1﹣1=0,∴x12+x1=,故D選項正確,故選D.【點睛】本題考查了一元二次方程的解、一元二次方程根與系數(shù)的關(guān)系,熟練掌握相關(guān)內(nèi)容是解題的關(guān)鍵.二、填空題(共7小題,每小題3分,滿分21分)11、1【解析】原方程為3x2?6x+1=0,二次項系數(shù)化為1,得x2?2x=?,即x2?2x+1=?+1,所以(x?1)2=.故答案為:1,.12、a≥1【解析】
將不等式組解出來,根據(jù)不等式組無解,求出a的取值范圍.【詳解】解得,∵無解,∴a≥1.故答案為a≥1.【點睛】本題考查了解一元一次不等式組,解題的關(guān)鍵是熟練的掌握解一元一次不等式組的運算法則.13、5【解析】分析:∵AF是∠BAD的平分線,∴∠BAF=∠FAD.∵ABCD中,AB∥DC,∴∠FAD=∠AEB.∴∠BAF=∠AEB.∴△BAE是等腰三角形,即BE=AB=6cm.同理可證△CFE也是等腰三角形,且△BAE∽△CFE.∵BC=AD=9cm,∴CE=CF=3cm.∴△BAE和△CFE的相似比是2:1.∵BG⊥AE,BG=cm,∴由勾股定理得EG=2cm.∴AE=4cm.∴EF=2cm.∴EF+CF=5cm.14、AB,【解析】
根據(jù)已知中的點E,F(xiàn)的位置,可知入射角的正切值為,通過相似三角形,來確定反射后的點的位置.再由勾股定理就可以求出小球第5次碰撞所經(jīng)過路程的總長度.【詳解】根據(jù)已知中的點E,F的位置,可知入射角的正切值為,第一次碰撞點為F,在反射的過程中,根據(jù)入射角等于反射角及平行關(guān)系的三角形的相似可得,第二次碰撞點為G,在AB上,且AG=AB,第三次碰撞點為H,在AD上,且AH=AD,第四次碰撞點為M,在DC上,且DM=DC,第五次碰撞點為N,在AB上,且BN=AB,第六次回到E點,BE=BC.由勾股定理可以得出EF=,FG=,GH=,HM=,MN=,NE=,故小球第5次經(jīng)過的路程為:++++=,故答案為AB,.【點睛】本題考查了正方形與軸對稱的性質(zhì),解題的關(guān)鍵是熟練的掌握正方形與軸對稱的性質(zhì).15、2a+b.【解析】
先去括號,再合并同類項即可得出答案.【詳解】原式=2a-2b+3b=2a+b.故答案為:2a+b.16、12π.【解析】試題分析:根據(jù)圓錐的底面半徑為2,母線長為6,直接利用圓錐的側(cè)面積公式求出它的側(cè)面積.解:根據(jù)圓錐的側(cè)面積公式:πrl=π×2×6=12π,故答案為12π.考點:圓錐的計算.17、1【解析】
首先根據(jù)題意列表,由列表求得所有等可能的結(jié)果與兩次都摸到黑球的情況,然后利用概率公式求解即可求得答案.注意此題屬于放回實驗.【詳解】列表得:第一次第二次黑白白黑黑,黑白,黑白,黑白黑,白白,白白,白白黑,白白,白白,白∵共有9種等可能的結(jié)果,兩次都摸到黑球的只有1種情況,∴兩次都摸到黑球的概率是19故答案為:19【點睛】考查概率的計算,掌握概率等于所求情況數(shù)與總情況數(shù)之比是解題的關(guān)鍵.三、解答題(共7小題,滿分69分)18、(1)48°(1)證明見解析(3)【解析】
(1)連接CD,根據(jù)圓周角定理和垂直的定義可得結(jié)論;
(1)先根據(jù)等腰三角形的性質(zhì)得:∠ABE=∠AEB,再證明∠BCG=∠DAC,可得,則所對的圓周角相等,根據(jù)同弧所對的圓周角和圓心角的關(guān)系可得結(jié)論;
(3)過O作OG⊥AB于G,證明△COF≌△OAG,則OG=CF=x,AG=OF,設(shè)OF=a,則OA=OC=1x-a,根據(jù)勾股定理列方程得:(1x-a)1=x1+a1,則a=x,代入面積公式可得結(jié)論.【詳解】(1)連接CD,∵AD是⊙O的直徑,∴∠ACD=90°,∴∠ACB+∠BCD=90°,∵AD⊥CG,∴∠AFG=∠G+∠BAD=90°,∵∠BAD=∠BCD,∴∠ACB=∠G=48°;(1)∵AB=AE,∴∠ABE=∠AEB,∵∠ABC=∠G+∠BCG,∠AEB=∠ACB+∠DAC,由(1)得:∠G=∠ACB,∴∠BCG=∠DAC,∴,∵AD是⊙O的直徑,AD⊥PC,∴,∴,∴∠BAD=1∠DAC,∵∠COF=1∠DAC,∴∠BAD=∠COF;(3)過O作OG⊥AB于G,設(shè)CF=x,∵tan∠CAF==,∴AF=1x,∵OC=OA,由(1)得:∠COF=∠OAG,∵∠OFC=∠AGO=90°,∴△COF≌△OAG,∴OG=CF=x,AG=OF,設(shè)OF=a,則OA=OC=1x﹣a,Rt△COF中,CO1=CF1+OF1,∴(1x﹣a)1=x1+a1,a=x,∴OF=AG=x,∵OA=OB,OG⊥AB,∴AB=1AG=x,∴.【點睛】圓的綜合題,考查了三角形的面積、垂徑定理、角平分線的性質(zhì)、三角形全等的性質(zhì)和判定以及解直角三角形,解題的關(guān)鍵是:(1)根據(jù)圓周角定理找出∠ACB+∠BCD=90°;(1)根據(jù)外角的性質(zhì)和圓的性質(zhì)得:;(3)利用三角函數(shù)設(shè)未知數(shù),根據(jù)勾股定理列方程解決問題.19、(1)見解析;(2)tan∠AOD=.【解析】
(1)作DF⊥AB于F,連接OC,則△ODF是等腰直角三角形,得出OC=OD=DF,由垂徑定理得出∠COE=90°,證明△DEF∽△CEO得出,即可得出結(jié)論;(2)由題意得OE=OA=OC,同(1)得△DEF∽△CEO,得出,設(shè)⊙O的半徑為2a(a>0),則OD=2a,EO=a,設(shè)EF=x,則DF=2x,在Rt△ODF中,由勾股定理求出x=a,得出DF=a,OF=EF+EO=a,由三角函數(shù)定義即可得出結(jié)果.【詳解】(1)證明:作DF⊥AB于F,連接OC,如圖所示:則∠DFE=90°,∵∠AOD=45°,∴△ODF是等腰直角三角形,∴OC=OD=DF,∵C是弧AB的中點,∴OC⊥AB,∴∠COE=90°,∵∠DEF=∠CEO,∴△DEF∽△CEO,∴,∴CE=ED;(2)如圖所示:∵AE=EO,∴OE=OA=OC,同(1)得:,△DEF∽△CEO,∴,設(shè)⊙O的半徑為2a(a>0),則OD=2a,EO=a,設(shè)EF=x,則DF=2x,在Rt△ODF中,由勾股定理得:(2x)2+(x+a)2=(2a)2,解得:x=a,或x=﹣a(舍去),∴DF=a,OF=EF+EO=a,∴.【點睛】本題考查了等腰直角三角形的判定與性質(zhì)、相似三角形的判定與性質(zhì)、勾股定理、垂徑定理、三角函數(shù)等知識,熟練掌握相似三角形的判定與性質(zhì)、勾股定理是關(guān)鍵.20、(1)1;(2)-1≤x<1.【解析】試題分析:(1)、首先根據(jù)絕對值、冪、三角函數(shù)的計算法則得出各式的值,然后進行求和得出答案;(2)、分半求出每個不等式的解,然后得出不等式組的解.試題解析:解:(1)、(2)、由得:x<1,由得:x≥-1,∴不等式的解集:-1≤x<1.21、這個圓形截面的半徑為10cm.【解析】分析:先作輔助線,利用垂徑定理求出半徑,再根據(jù)勾股定理計算.解答:解:如圖,OE⊥AB交AB于點D,則DE=4,AB=16,AD=8,設(shè)半徑為R,∴OD=OE-DE=R-4,由勾股定理得,OA2=AD2+OD2,即R2=82+(R-4)2,解得,R=10cm.22、(1)1,2,19;(2)初一年級掌握生態(tài)環(huán)保知識水平較好.【解析】
(1)根據(jù)初一、初二同學(xué)的測試成績以及眾數(shù)與中位數(shù)的定義即可完成表格;(2)根據(jù)平均數(shù)、眾數(shù)、中位數(shù)的統(tǒng)計意義回答.【詳解】(1)補全表格如下:整理、描述數(shù)據(jù):初一成績x滿足10≤x≤19的有:1119191119191711,共1個.故答案為:1.分析數(shù)據(jù):在761193657194196195501911191929417119291中,19出現(xiàn)的次數(shù)最多,故眾數(shù)為19;把初二的抽查成績從小到大排列為:6972727374747474767671199697979191999999,第10個數(shù)為76,第11個數(shù)為71,故中位數(shù)為:(76+71)÷2=2.故答案為:19,2.(2)初一年級掌握生態(tài)環(huán)保知識水平較好.因為兩個年級的平均數(shù)相差不大,但是初一年級同學(xué)的中位數(shù)是11.5,眾數(shù)是19,初二年級同學(xué)的中位數(shù)是2,眾數(shù)是74,即初一年級同學(xué)的中位數(shù)與眾數(shù)明顯高于初二年級同學(xué)的成績,所以初一年級掌握生態(tài)環(huán)保知識水平較好.
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024甲乙雙方關(guān)于智能穿戴設(shè)備研發(fā)與銷售的合同
- 小學(xué)生表達能力與其未來發(fā)展的關(guān)系研究
- 小學(xué)生情緒管理與性格培養(yǎng)
- 洛陽職業(yè)技術(shù)學(xué)院《信息系統(tǒng)》2023-2024學(xué)年第一學(xué)期期末試卷
- 2025版出租車合資購買與智能交通系統(tǒng)建設(shè)合同3篇
- 崇明低碳生活方式的推廣與節(jié)能減排行動
- 2025年度生豬養(yǎng)殖基地與飼料供應(yīng)商合作協(xié)議3篇
- 專業(yè)音響設(shè)備買賣協(xié)議(定制版)版B版
- 荊州職業(yè)技術(shù)學(xué)院《精細化工設(shè)備》2023-2024學(xué)年第一學(xué)期期末試卷
- 個人房屋轉(zhuǎn)讓合同書模板
- 高一期末家長會課件
- 文化藝術(shù)中心行業(yè)技術(shù)創(chuàng)新及應(yīng)用
- 2024年航空職業(yè)技能鑒定考試-航空乘務(wù)員危險品歷年考試高頻考點試題附帶答案
- 精神病院設(shè)置可行性方案
- 2024版全文:中國2型糖尿病預(yù)防及治療指南
- 《工程地質(zhì)勘察 》課件
- 小兒腸梗阻護理查房
- 小學(xué)音樂《編花籃》
- 污水處理站管理制度及操作規(guī)程
- 廣東省(廣州市)職業(yè)技能鑒定申請表-模板
- 漳州市醫(yī)療保險參保人員門診特殊病種申請表
評論
0/150
提交評論