2021-2022學年山東省臨沂市郯城縣中考數學模擬預測試卷含解析_第1頁
2021-2022學年山東省臨沂市郯城縣中考數學模擬預測試卷含解析_第2頁
2021-2022學年山東省臨沂市郯城縣中考數學模擬預測試卷含解析_第3頁
2021-2022學年山東省臨沂市郯城縣中考數學模擬預測試卷含解析_第4頁
2021-2022學年山東省臨沂市郯城縣中考數學模擬預測試卷含解析_第5頁
已閱讀5頁,還剩22頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2021-2022學年山東省臨沂市郯城縣中考數學模擬預測試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.將弧長為2πcm、圓心角為120°的扇形圍成一個圓錐的側面,則這個圓錐的高是()A.cm B.2cm C.2cm D.cm2.下列計算正確的是()A.a2?a3=a6 B.(a2)3=a6 C.a2+a2=a3 D.a6÷a2=a33.已知am=2,an=3,則a3m+2n的值是()A.24 B.36 C.72 D.64.下列運算中,計算結果正確的是()A.a2?a3=a6B.a2+a3=a5C.(a2)3=a6D.a12÷a6=a25.已知反比例函數y=﹣,當﹣3<x<﹣2時,y的取值范圍是()A.0<y<1 B.1<y<2 C.2<y<3 D.﹣3<y<﹣26.在同一平面直角坐標系中,一次函數y=kx﹣2k和二次函數y=﹣kx2+2x﹣4(k是常數且k≠0)的圖象可能是()A. B.C. D.7.如圖,已知的周長等于,則它的內接正六邊形ABCDEF的面積是()A. B. C. D.8.下列各式計算正確的是()A. B. C. D.9.已知:如圖,在扇形中,,半徑,將扇形沿過點的直線折疊,點恰好落在弧上的點處,折痕交于點,則弧的長為()A. B. C. D.10.罰球是籃球比賽中得分的一個組成部分,罰球命中率的高低對籃球比賽的結果影響很大.如圖是對某球員罰球訓練時命中情況的統(tǒng)計:下面三個推斷:①當罰球次數是500時,該球員命中次數是411,所以“罰球命中”的概率是0.822;②隨著罰球次數的增加,“罰球命中”的頻率總在0.812附近擺動,顯示出一定的穩(wěn)定性,可以估計該球員“罰球命中”的概率是0.812;③由于該球員“罰球命中”的頻率的平均值是0.1,所以“罰球命中”的概率是0.1.其中合理的是()A.① B.② C.①③ D.②③11.下列美麗的圖案中,不是軸對稱圖形的是()A. B. C. D.12.若(x﹣1)0=1成立,則x的取值范圍是()A.x=﹣1 B.x=1 C.x≠0 D.x≠1二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,在每個小正方形的邊長為1的網格中,點A,B,C,D均在格點上,AB與CD相交于點E.(1)AB的長等于_____;(2)點F是線段DE的中點,在線段BF上有一點P,滿足,請在如圖所示的網格中,用無刻度的直尺,畫出點P,并簡要說明點P的位置是如何找到的(不要求證明)_____.14.計算的結果是____.15.如圖,已知拋物線與坐標軸分別交于A,B,C三點,在拋物線上找到一點D,使得∠DCB=∠ACO,則D點坐標為____________________.16.如圖,反比例函數y=的圖象上,點A是該圖象第一象限分支上的動點,連結AO并延長交另一支于點B,以AB為斜邊作等腰直角△ABC,頂點C在第四象限,AC與x軸交于點P,連結BP,在點A運動過程中,當BP平分∠ABC時,點A的坐標為_____.17.如圖,是矗立在高速公路水平地面上的交通警示牌,經測量得到如下數據:AM=4米,AB=8米,∠MAD=45°,∠MBC=30°,則警示牌的高CD為_______米(結果保留根號).18.在△ABC中,∠C=90°,若tanA=,則sinB=______.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)在平面直角坐標系中,△ABC的頂點坐標是A(﹣2,3),B(﹣4,﹣1),C(2,0).點P(m,n)為△ABC內一點,平移△ABC得到△A1B1C1,使點P(m,n)移到P(m+6,n+1)處.(1)畫出△A1B1C1(2)將△ABC繞坐標點C逆時針旋轉90°得到△A2B2C,畫出△A2B2C;(3)在(2)的條件下求BC掃過的面積.20.(6分)全民學習、終身學習是學習型社會的核心內容,努力建設學習型家庭也是一個重要組成部分.為了解“學習型家庭”情況,對部分家庭五月份的平均每天看書學習時間進行了一次抽樣調查,并根據收集的數據繪制了下面兩幅不完整的統(tǒng)計圖,請根據圖中提供的信息,解答下列問題:本次抽樣調查了個家庭;將圖①中的條形圖補充完整;學習時間在2~2.5小時的部分對應的扇形圓心角的度數是度;若該社區(qū)有家庭有3000個,請你估計該社區(qū)學習時間不少于1小時的約有多少個家庭?21.(6分)如圖1,經過原點O的拋物線y=ax2+bx(a≠0)與x軸交于另一點A(,0),在第一象限內與直線y=x交于點B(2,t).(1)求這條拋物線的表達式;(2)在第四象限內的拋物線上有一點C,滿足以B,O,C為頂點的三角形的面積為2,求點C的坐標;(3)如圖2,若點M在這條拋物線上,且∠MBO=∠ABO,在(2)的條件下,是否存在點P,使得△POC∽△MOB?若存在,求出點P的坐標;若不存在,請說明理由.22.(8分)解方程:3x2﹣2x﹣2=1.23.(8分)某市旅游部門統(tǒng)計了今年“五?一”放假期間該市A、B、C、D四個旅游景區(qū)的旅游人數,并繪制出如圖所示的條形統(tǒng)計圖和扇形統(tǒng)計圖,根據圖中的信息解答下列問題:(1)求今年“五?一”放假期間該市這四個景點共接待游客的總人數;(2)扇形統(tǒng)計圖中景點A所對應的圓心角的度數是多少,請直接補全條形統(tǒng)計圖;(3)根據預測,明年“五?一”放假期間將有90萬游客選擇到該市的這四個景點旅游,請你估計有多少人會選擇去景點D旅游?24.(10分)我市某中學藝術節(jié)期間,向全校學生征集書畫作品.九年級美術王老師從全年級14個班中隨機抽取了4個班,對征集到的作品的數量進行了分析統(tǒng)計,制作了如下兩幅不完整的統(tǒng)計圖.王老師采取的調查方式是(填“普查”或“抽樣調查”),王老師所調查的4個班征集到作品共件,其中b班征集到作品件,請把圖2補充完整;王老師所調查的四個班平均每個班征集作品多少件?請估計全年級共征集到作品多少件?如果全年級參展作品中有5件獲得一等獎,其中有3名作者是男生,2名作者是女生.現在要在其中抽兩人去參加學??偨Y表彰座談會,請直接寫出恰好抽中一男一女的概率.25.(10分)今年3月12日植樹節(jié)期間,學校預購進A、B兩種樹苗,若購進A種樹苗3棵,B種樹苗5棵,需2100元,若購進A種樹苗4棵,B種樹苗10棵,需3800元.(1)求購進A、B兩種樹苗的單價;(2)若該單位準備用不多于8000元的錢購進這兩種樹苗共30棵,求A種樹苗至少需購進多少棵?26.(12分)已知:如圖,在直角梯形ABCD中,AD∥BC,∠ABC=90°,DE⊥AC于點F,交BC于點G,交AB的延長線于點E,且AE=AC.求證:BG=FG;若AD=DC=2,求AB的長.27.(12分)已知:不等式≤2+x(1)求不等式的解;(2)若實數a滿足a>2,說明a是否是該不等式的解.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、B【解析】

由弧長公式可求解圓錐母線長,再由弧長可求解圓錐底面半徑長,再運用勾股定理即可求解圓錐的高.【詳解】解:設圓錐母線長為Rcm,則2π=,解得R=3cm;設圓錐底面半徑為rcm,則2π=2πr,解得r=1cm.由勾股定理可得圓錐的高為=2cm.故選擇B.【點睛】本題考查了圓錐的概念和弧長的計算.2、B【解析】試題解析:A.故錯誤.B.正確.C.不是同類項,不能合并,故錯誤.D.故選B.點睛:同底數冪相乘,底數不變,指數相加.同底數冪相除,底數不變,指數相減.3、C【解析】試題解析:∵am=2,an=3,

∴a3m+2n

=a3m?a2n

=(am)3?(an)2

=23×32

=8×9

=1.故選C.4、C【解析】

根據同底數冪相乘,底數不變指數相加;冪的乘方,底數不變指數相減;同底數冪相除,底數不變指數相減對各選項分析判斷即可得解.【詳解】A、a2?a3=a2+3=a5,故本選項錯誤;B、a2+a3不能進行運算,故本選項錯誤;C、(a2)3=a2×3=a6,故本選項正確;D、a12÷a6=a12﹣6=a6,故本選項錯誤.故選:C.【點睛】本題考查了同底數冪的乘法、冪的乘方、同底數冪的除法,熟練掌握運算法則是解題的關鍵.5、C【解析】分析:由題意易得當﹣3<x<﹣2時,函數的圖象位于第二象限,且y隨x的增大而增大,再計算出當x=-3和x=-2時對應的函數值,即可作出判斷了.詳解:∵在中,﹣6<0,∴當﹣3<x<﹣2時函數的圖象位于第二象限內,且y隨x的增大而增大,∵當x=﹣3時,y=2,當x=﹣2時,y=3,∴當﹣3<x<﹣2時,2<y<3,故選C.點睛:熟悉“反比例函數的圖象和性質”是正確解答本題的關鍵.6、C【解析】

根據一次函數與二次函數的圖象的性質,求出k的取值范圍,再逐項判斷即可.【詳解】解:A、由一次函數圖象可知,k>0,∴﹣k<0,∴二次函數的圖象開口應該向下,故A選項不合題意;B、由一次函數圖象可知,k>0,∴﹣k<0,-=>0,∴二次函數的圖象開口向下,且對稱軸在x軸的正半軸,故B選項不合題意;C、由一次函數圖象可知,k<0,∴﹣k>0,-=<0,,∴二次函數的圖象開口向上,且對稱軸在x軸的負半軸,一次函數必經過點(2,0),當x=2時,二次函數值y=﹣4k>0,故C選項符合題意;D、由一次函數圖象可知,k<0,∴﹣k>0,-=<0,,∴二次函數的圖象開口向上,且對稱軸在x軸的負半軸,一次函數必經過點(2,0),當x=2時,二次函數值y=﹣4k>0,故D選項不合題意;故選:C.【點睛】本題考查一次函數與二次函數的圖象和性質,解決此題的關鍵是熟記圖象的性質,此外,還要主要二次函數的對稱軸、兩圖象的交點的位置等.7、C【解析】

過點O作OH⊥AB于點H,連接OA,OB,由⊙O的周長等于6πcm,可得⊙O的半徑,又由圓的內接多邊形的性質可得∠AOB=60°,即可證明△AOB是等邊三角形,根據等邊三角形的性質可求出OH的長,根據S正六邊形ABCDEF=6S△OAB即可得出答案.【詳解】過點O作OH⊥AB于點H,連接OA,OB,設⊙O的半徑為r,∵⊙O的周長等于6πcm,∴2πr=6π,解得:r=3,∴⊙O的半徑為3cm,即OA=3cm,∵六邊形ABCDEF是正六邊形,∴∠AOB=×360°=60°,OA=OB,∴△OAB是等邊三角形,∴AB=OA=3cm,∵OH⊥AB,∴AH=AB,∴AB=OA=3cm,∴AH=cm,OH==cm,∴S正六邊形ABCDEF=6S△OAB=6××3×=(cm2).故選C.【點睛】此題考查了正多邊形與圓的性質.此題難度適中,注意掌握數形結合思想的應用.8、B【解析】A選項中,∵不是同類二次根式,不能合并,∴本選項錯誤;B選項中,∵,∴本選項正確;C選項中,∵,而不是等于,∴本選項錯誤;D選項中,∵,∴本選項錯誤;故選B.9、D【解析】

如圖,連接OD.根據折疊的性質、圓的性質推知△ODB是等邊三角形,則易求∠AOD=110°-∠DOB=50°;然后由弧長公式弧長的公式來求的長【詳解】解:如圖,連接OD.解:如圖,連接OD.

根據折疊的性質知,OB=DB.

又∵OD=OB,

∴OD=OB=DB,即△ODB是等邊三角形,

∴∠DOB=60°.

∵∠AOB=110°,

∴∠AOD=∠AOB-∠DOB=50°,

∴的長為=5π.

故選D.【點睛】本題考查了弧長的計算,翻折變換(折疊問題).折疊是一種對稱變換,它屬于軸對稱,折疊前后圖形的形狀和大小不變,位置變化,對應邊和對應角相等.所以由折疊的性質推知△ODB是等邊三角形是解答此題的關鍵之處.10、B【解析】

根據圖形和各個小題的說法可以判斷是否正確,從而解答本題【詳解】當罰球次數是500時,該球員命中次數是411,所以此時“罰球命中”的頻率是:411÷500=0.822,但“罰球命中”的概率不一定是0.822,故①錯誤;隨著罰球次數的增加,“罰球命中”的頻率總在0.2附近擺動,顯示出一定的穩(wěn)定性,可以估計該球員“罰球命中”的概率是0.2.故②正確;雖然該球員“罰球命中”的頻率的平均值是0.1,但是“罰球命中”的概率不是0.1,故③錯誤.故選:B.【點睛】此題考查了頻數和頻率的意義,解題的關鍵在于利用頻率估計概率.11、A【解析】

根據軸對稱圖形的概念對各選項分析判斷即可得解.【詳解】解:A、不是軸對稱圖形,故本選項正確;B、是軸對稱圖形,故本選項錯誤;C、是軸對稱圖形,故本選項錯誤;D、是軸對稱圖形,故本選項錯誤.故選A.【點睛】本題考查了軸對稱圖形的概念,軸對稱圖形的關鍵是尋找對稱軸,圖形兩部分折疊后可重合.12、D【解析】試題解析:由題意可知:x-1≠0,

x≠1

故選D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、見圖形【解析】分析:(Ⅰ)利用勾股定理計算即可;(Ⅱ)連接AC、BD.易知:AC∥BD,可得:EC:ED=AC:BD=3:1,取格點G、H,連接GH交DE于F,因為DG∥CH,所以FD:FC=DG:CH=5:8,可得DF=EF.取格點I、J,連接IJ交BD于K,因為BI∥DJ,所以BK:DK=BI:DJ=5:2,連接EK交BF于P,可證BP:PF=5:3;詳解:(Ⅰ)AB的長==;(Ⅱ)由題意:連接AC、BD.易知:AC∥BD,可得:EC:ED=AC:BD=3:1.取格點G、H,連接GH交DE于F.∵DG∥CH,∴FD:FC=DG:CH=5:8,可得DF=EF.取格點I、J,連接IJ交BD于K.∵BI∥DJ,∴BK:DK=BI:DJ=5:2.連接EK交BF于P,可證BP:PF=5:3.故答案為(Ⅰ);(Ⅱ)由題意:連接AC、BD.易知:AC∥BD,可得:EC:ED=AC:BD=3:1,取格點G、H,連接GH交DE于F.因為DG∥CH,所以FD:FC=DG:CH=5:8,可得DF=EF.取格點I、J,連接IJ交BD于K.因為BI∥DJ,所以BK:DK=BI:DJ=5:2,連接EK交BF于P,可證BP:PF=5:3.點睛:本題考查了作圖﹣應用與設計,平行線分線段成比例定理等知識,解題的關鍵是靈活運用所學知識解決問題,所以中考??碱}型.14、【解析】原式=,故答案為.15、(,),(-4,-5)【解析】

求出點A、B、C的坐標,當D在x軸下方時,設直線CD與x軸交于點E,由于∠DCB=∠ACO.所以tan∠DCB=tan∠ACO,從而可求出E的坐標,再求出CE的直線解析式,聯立拋物線即可求出D的坐標,再由對稱性即可求出D在x軸上方時的坐標.【詳解】令y=0代入y=-x2-2x+3,∴x=-3或x=1,∴OA=1,OB=3,令x=0代入y=-x2-2x+3,∴y=3,∴OC=3,當點D在x軸下方時,∴設直線CD與x軸交于點E,過點E作EG⊥CB于點G,∵OB=OC,∴∠CBO=45°,∴BG=EG,OB=OC=3,∴由勾股定理可知:BC=3,設EG=x,∴CG=3-x,∵∠DCB=∠ACO.∴tan∠DCB=tan∠ACO=,∴,∴x=,∴BE=x=,∴OE=OB-BE=,∴E(-,0),設CE的解析式為y=mx+n,交拋物線于點D2,把C(0,3)和E(-,0)代入y=mx+n,∴,解得:.∴直線CE的解析式為:y=2x+3,聯立解得:x=-4或x=0,∴D2的坐標為(-4,-5)設點E關于BC的對稱點為F,連接FB,∴∠FBC=45°,∴FB⊥OB,∴FB=BE=,∴F(-3,)設CF的解析式為y=ax+b,把C(0,3)和(-3,)代入y=ax+b解得:,∴直線CF的解析式為:y=x+3,聯立解得:x=0或x=-∴D1的坐標為(-,)故答案為(-,)或(-4,-5)【點睛】本題考查二次函數的綜合問題,解題的關鍵是根據對稱性求出相關點的坐標,利用直線解析式以及拋物線的解析式即可求出點D的坐標.16、(,)【解析】分析:連接OC,過點A作AE⊥x軸于E,過點C作CF⊥x軸于F,則有△AOE≌△OCF,進而可得出AE=OF、OE=CF,根據角平分線的性質可得出,設點A的坐標為(a,)(a>0),由可求出a值,進而得到點A的坐標.詳解:連接OC,過點A作AE⊥x軸于E,過點C作CF⊥x軸于F,如圖所示.∵△ABC為等腰直角三角形,∴OA=OC,OC⊥AB,∴∠AOE+∠COF=90°.∵∠COF+∠OCF=90°,∴∠AOE=∠OCF.在△AOE和△OCF中,,∴△AOE≌△OCF(AAS),∴AE=OF,OE=CF.∵BP平分∠ABC,∴,∴.設點A的坐標為(a,),∴,解得:a=或a=-(舍去),∴=,∴點A的坐標為(,),故答案為:((,)).點睛:本題考查了反比例函數圖象上點的坐標特征、全等三角形的判定與性質、角平分線的性質以及等腰直角三角形性質的綜合運用,構造全等三角形,利用全等三角形的對應邊相等是解題的關鍵.17、一4【解析】

分析:利用特殊三角函數值,解直角三角形,AM=MD,再用正切函數,利用MB求CM,作差可求DC.【詳解】因為∠MAD=45°,AM=4,所以MD=4,因為AB=8,所以MB=12,因為∠MBC=30°,所以CM=MBtan30°=4.所以CD=4-4.【點睛】本題考查了解直角三角形的應用,熟練掌握三角函數的相關定義以及變形是解題的關鍵.18、【解析】分析:直接根據題意表示出三角形的各邊,進而利用銳角三角函數關系得出答案.詳解:如圖所示:∵∠C=90°,tanA=,∴設BC=x,則AC=2x,故AB=x,則sinB=.故答案為:.點睛:此題主要考查了銳角三角函數關系,正確表示各邊長是解題關鍵.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)見解析;(2)見解析;(3).【解析】

(1)根據P(m,n)移到P(m+6,n+1)可知△ABC向右平移6個單位,向上平移了一個單位,由圖形平移的性質即可得出點A1,B1,C1的坐標,再順次連接即可;(2)根據圖形旋轉的性質畫出旋轉后的圖形即可;(3)先求出BC長,再利用扇形面積公式,列式計算即可得解.【詳解】解:(1)平移△ABC得到△A1B1C1,點P(m,n)移到P(m+6,n+1)處,∴△ABC向右平移6個單位,向上平移了一個單位,∴A1(4,4),B1(2,0),C1(8,1);順次連接A1,B1,C1三點得到所求的△A1B1C1(2)如圖所示:△A2B2C即為所求三角形.(3)BC的長為:BC掃過的面積【點睛】本題考查了利用旋轉變換作圖,利用平移變換作圖,比較簡單,熟練掌握網格結構,準確找出對應點的位置是解題的關鍵.20、(1)200;(2)見解析;(3)36;(4)該社區(qū)學習時間不少于1小時的家庭約有2100個.【解析】

(1)根據1.5~2小時的圓心角度數求出1.5~2小時所占的百分比,再用1.5~2小時的人數除以所占的百分比,即可得出本次抽樣調查的總家庭數;(2)用抽查的總人數乘以學習0.5-1小時的家庭所占的百分比求出學習0.5-1小時的家庭數,再用總人數減去其它家庭數,求出學習2-2.5小時的家庭數,從而補全統(tǒng)計圖;(3)用360°乘以學習時間在2~2.5小時所占的百分比,即可求出學習時間在2~2.5小時的部分對應的扇形圓心角的度數;(4)用該社區(qū)所有家庭數乘以學習時間不少于1小時的家庭數所占的百分比即可得出答案.【詳解】解:(1)本次抽樣調查的家庭數是:30÷=200(個);故答案為200;(2)學習0.5﹣1小時的家庭數有:200×=60(個),學習2﹣2.5小時的家庭數有:200﹣60﹣90﹣30=20(個),補圖如下:(3)學習時間在2~2.5小時的部分對應的扇形圓心角的度數是:360×=36°;故答案為36;(4)根據題意得:3000×=2100(個).答:該社區(qū)學習時間不少于1小時的家庭約有2100個.【點睛】本題考查條形統(tǒng)計圖、扇形統(tǒng)計圖及相關計算.在扇形統(tǒng)計圖中,每部分占總部分的百分比等于該部分所對應的扇形圓心角的度數與360°的比.21、(1)y=2x2﹣3x;(2)C(1,﹣1);(3)(,)或(﹣,).【解析】

(1)由直線解析式可求得B點坐標,由A、B坐標,利用待定系數法可求得拋物線的表達式;(2)過C作CD∥y軸,交x軸于點E,交OB于點D,過B作BF⊥CD于點F,可設出C點坐標,利用C點坐標可表示出CD的長,從而可表示出△BOC的面積,由條件可得到關于C點坐標的方程,可求得C點坐標;(3)設MB交y軸于點N,則可證得△ABO≌△NBO,可求得N點坐標,可求得直線BN的解析式,聯立直線BM與拋物線解析式可求得M點坐標,過M作MG⊥y軸于點G,由B、C的坐標可求得OB和OC的長,由相似三角形的性質可求得的值,當點P在第一象限內時,過P作PH⊥x軸于點H,由條件可證得△MOG∽△POH,由的值,可求得PH和OH,可求得P點坐標;當P點在第三象限時,同理可求得P點坐標.【詳解】(1)∵B(2,t)在直線y=x上,∴t=2,∴B(2,2),把A、B兩點坐標代入拋物線解析式可得:,解得:,∴拋物線解析式為;(2)如圖1,過C作CD∥y軸,交x軸于點E,交OB于點D,過B作BF⊥CD于點F,∵點C是拋物線上第四象限的點,∴可設C(t,2t2﹣3t),則E(t,0),D(t,t),∴OE=t,BF=2﹣t,CD=t﹣(2t2﹣3t)=﹣2t2+4t,∴S△OBC=S△CDO+S△CDB=CD?OE+CD?BF=(﹣2t2+4t)(t+2﹣t)=﹣2t2+4t,∵△OBC的面積為2,∴﹣2t2+4t=2,解得t1=t2=1,∴C(1,﹣1);(3)存在.設MB交y軸于點N,如圖2,∵B(2,2),∴∠AOB=∠NOB=45°,在△AOB和△NOB中,∵∠AOB=∠NOB,OB=OB,∠ABO=∠NBO,∴△AOB≌△NOB(ASA),∴ON=OA=,∴N(0,),∴可設直線BN解析式為y=kx+,把B點坐標代入可得2=2k+,解得k=,∴直線BN的解析式為,聯立直線BN和拋物線解析式可得:,解得:或,∴M(,),∵C(1,﹣1),∴∠COA=∠AOB=45°,且B(2,2),∴OB=,OC=,∵△POC∽△MOB,∴,∠POC=∠BOM,當點P在第一象限時,如圖3,過M作MG⊥y軸于點G,過P作PH⊥x軸于點H,如圖3∵∠COA=∠BOG=45°,∴∠MOG=∠POH,且∠PHO=∠MGO,∴△MOG∽△POH,∴∵M(,),∴MG=,OG=,∴PH=MG=,OH=OG=,∴P(,);當點P在第三象限時,如圖4,過M作MG⊥y軸于點G,過P作PH⊥y軸于點H,同理可求得PH=MG=,OH=OG=,∴P(﹣,);綜上可知:存在滿足條件的點P,其坐標為(,)或(﹣,).【點睛】本題為二次函數的綜合應用,涉及待定系數法、三角形的面積、二次函數的性質、全等三角形的判定和性質、相似三角形的判定和性質、方程思想及分類討論思想等知識.在(1)中注意待定系數法的應用,在(2)中用C點坐標表示出△BOC的面積是解題的關鍵,在(3)中確定出點P的位置,構造相似三角形是解題的關鍵,注意分兩種情況.22、【解析】

先找出a,b,c,再求出b2-4ac=28,根據公式即可求出答案.【詳解】解:x==即∴原方程的解為.【點睛】本題考查對解一元二次方程-提公因式法、公式法,因式分解法等知識點的理解和掌握,能熟練地運用公式法解一元二次方程是解此題的關鍵.23、(1)60人;(2)144°,補全圖形見解析;(3)15萬人.【解析】

(1)用B景點人數除以其所占百分比可得;(2)用360°乘以A景點人數所占比例即可,根據各景點人數之和等于總人數求得C的人數即可補全條形圖;(3)用總人數乘以樣本中D景點人數所占比例【詳解】(1)今年“五?一”放假期間該市這四個景點共接待游客的總人數為18÷30%=60萬人;(2)扇形統(tǒng)計圖中景點A所對應的圓心角的度數是360°×=144°,C景點人數為60﹣(24+18+10)=8萬人,補全圖形如下:(3)估計選擇去景點D旅游的人數為90×=15(萬人).【點睛】本題考查的是條形統(tǒng)計圖和扇形統(tǒng)計圖的綜合運用.讀懂統(tǒng)計圖,從不同的統(tǒng)計圖中得到必要的信息是解決問題的關鍵.條形統(tǒng)計圖能清楚地表示出每個項目的數據;扇形統(tǒng)計圖直接反映部分占總體的百分比大?。?4、(1)抽樣調查;12;3;(2)60;(3).【解析】試題分析:(1)根據只抽取了4個班可知是抽樣調查,根據C在扇形圖中的角度求出所占的份數,再根據C的人數是5,列式進行計算即可求出作品的件數,然后減去A、C、D的件數即為B的件數;(2)求出平均每一個班的作品件數,然后乘以班級數14,計算即可得解;(3)畫出樹狀圖或列出圖表,再根據概率公式列式進行計算即可得解.試題解析:(1)抽樣調查,所調查的4個班征集到作品數為:5÷=12件,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論