2022屆山東省新泰市宮里鎮(zhèn)初級中學(xué)中考數(shù)學(xué)模試卷含解析_第1頁
2022屆山東省新泰市宮里鎮(zhèn)初級中學(xué)中考數(shù)學(xué)模試卷含解析_第2頁
2022屆山東省新泰市宮里鎮(zhèn)初級中學(xué)中考數(shù)學(xué)模試卷含解析_第3頁
2022屆山東省新泰市宮里鎮(zhèn)初級中學(xué)中考數(shù)學(xué)模試卷含解析_第4頁
2022屆山東省新泰市宮里鎮(zhèn)初級中學(xué)中考數(shù)學(xué)模試卷含解析_第5頁
已閱讀5頁,還剩12頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2022屆山東省新泰市宮里鎮(zhèn)初級中學(xué)中考數(shù)學(xué)模試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.下列各數(shù)是不等式組的解是()A.0 B. C.2 D.32.下列性質(zhì)中菱形不一定具有的性質(zhì)是()A.對角線互相平分 B.對角線互相垂直C.對角線相等 D.既是軸對稱圖形又是中心對稱圖形3.如圖,在邊長為4的正方形ABCD中,E、F是AD邊上的兩個動點,且AE=FD,連接BE、CF、BD,CF與BD交于點H,連接DH,下列結(jié)論正確的是()①△ABG∽△FDG②HD平分∠EHG③AG⊥BE④S△HDG:S△HBG=tan∠DAG⑤線段DH的最小值是2﹣2A.①②⑤ B.①③④⑤ C.①②④⑤ D.①②③④4.估計﹣1的值在()A.1和2之間 B.2和3之間 C.3和4之間 D.4和5之間5.已知M,N,P,Q四點的位置如圖所示,下列結(jié)論中,正確的是()A.∠NOQ=42° B.∠NOP=132°C.∠PON比∠MOQ大 D.∠MOQ與∠MOP互補6.在△ABC中,AB=3,BC=4,AC=2,D,E,F(xiàn)分別為AB,BC,AC中點,連接DF,F(xiàn)E,則四邊形DBEF的周長是(

)A.5 B.7 C.9 D.117.一艘輪船和一艘漁船同時沿各自的航向從港口O出發(fā),如圖所示,輪船從港口O沿北偏西20°的方向行60海里到達點M處,同一時刻漁船已航行到與港口O相距80海里的點N處,若M、N兩點相距100海里,則∠NOF的度數(shù)為()A.50° B.60° C.70° D.80°8.如圖,菱形OABC的頂點C的坐標(biāo)為(3,4),頂點A在x軸的正半軸上.反比例函數(shù)(x>0)的圖象經(jīng)過頂點B,則k的值為A.12 B.20 C.24 D.329.一元二次方程x2+2x﹣15=0的兩個根為()A.x1=﹣3,x2=﹣5B.x1=3,x2=5C.x1=3,x2=﹣5D.x1=﹣3,x2=510.若關(guān)于x的分式方程的解為正數(shù),則滿足條件的正整數(shù)m的值為()A.1,2,3 B.1,2 C.1,3 D.2,3二、填空題(共7小題,每小題3分,滿分21分)11.若使代數(shù)式有意義,則x的取值范圍是_____.12.如圖,Rt△ABC中,∠C=90°,AB=10,,則AC的長為_______.13.已知,大正方形的邊長為4厘米,小正方形的邊長為2厘米,起始狀態(tài)如圖所示,大正方形固定不動,把小正方形向右平移,當(dāng)兩個正方形重疊部分的面積為2平方厘米時,小正方形平移的距離為_____厘米.14.如果小球在如圖所示的地面上自由滾動,并隨機停留在某塊方磚上,每塊方磚大小、質(zhì)地完全一致,那么它最終停留在黑色區(qū)域的概率是__________.15.如圖,AC、BD為圓O的兩條垂直的直徑,動點P從圓心O出發(fā),沿線段OC-A.B.C.D.16.如圖,在矩形ABCD中,AB=4,BC=6,點E為BC的中點,將△ABE沿AE折疊,使點B落在矩形內(nèi)點F處,連接CF,則CF的長度為_____17.如圖,在Rt△ABC中,∠ACB=90°,AC=BC=6cm,動點P從點A出發(fā),沿AB方向以每秒cm的速度向終點B運動;同時,動點Q從點B出發(fā)沿BC方向以每秒lcm的速度向終點C運動,將△PQC沿BC翻折,點P的對應(yīng)點為點P′,設(shè)Q點運動的時間為t秒,若四邊形QP′CP為菱形,則t的值為_____.三、解答題(共7小題,滿分69分)18.(10分)某商人制成了一個如圖所示的轉(zhuǎn)盤,取名為“開心大轉(zhuǎn)盤”,游戲規(guī)定:參與者自由轉(zhuǎn)動轉(zhuǎn)盤,轉(zhuǎn)盤停止后,若指針指向字母“A”,則收費2元,若指針指向字母“B”,則獎勵3元;若指針指向字母“C”,則獎勵1元.一天,前來尋開心的人轉(zhuǎn)動轉(zhuǎn)盤80次,你認為該商人是盈利的可能性大還是虧損的可能性大?為什么?19.(5分)如圖,四邊形ABCD為平行四邊形,∠BAD的角平分線AF交CD于點E,交BC的延長線于點F.(1)求證:BF=CD;(2)連接BE,若BE⊥AF,∠BFA=60°,BE=,求平行四邊形ABCD的周長.20.(8分)如果a2+2a-1=0,求代數(shù)式的值.21.(10分)解不等式組并寫出它的整數(shù)解.22.(10分)某中學(xué)七、八年級各選派10名選手參加知識競賽,計分采用10分制,選手得分均為整數(shù),成績達到6分或6分以上為合格,達到9分或10分為優(yōu)秀,這次競賽后,七、八年級兩支代表隊選手成績分布的條形統(tǒng)計圖和成績統(tǒng)計分析表如下,其中七年級代表隊得6分、10分的選手人數(shù)分別為a、b.隊別平均分中位數(shù)方差合格率優(yōu)秀率七年級6.7m3.4190%n八年級7.17.51.6980%10%(1)請依據(jù)圖表中的數(shù)據(jù),求a、b的值;(2)直接寫出表中的m、n的值;(3)有人說七年級的合格率、優(yōu)秀率均高于八年級;所以七年級隊成績比八年級隊好,但也有人說八年級隊成績比七年級隊好.請你給出兩條支持八年級隊成績好的理由.23.(12分)觀察下列等式:①1×5+4=32;②2×6+4=42;③3×7+4=52;…(1)按照上面的規(guī)律,寫出第⑥個等式:_____;(2)模仿上面的方法,寫出下面等式的左邊:_____=502;(3)按照上面的規(guī)律,寫出第n個等式,并證明其成立.24.(14分)如圖所示,在正方形ABCD中,E,F(xiàn)分別是邊AD,CD上的點,AE=ED,DF=DC,連結(jié)EF并延長交BC的延長線于點G,連結(jié)BE.求證:△ABE∽△DEF.若正方形的邊長為4,求BG的長.

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、D【解析】

求出不等式組的解集,判斷即可.【詳解】,由①得:x>-1,由②得:x>2,則不等式組的解集為x>2,即3是不等式組的解,故選D.【點睛】此題考查了解一元一次不等式組,熟練掌握運算法則是解本題的關(guān)鍵.2、C【解析】

根據(jù)菱形的性質(zhì):①菱形具有平行四邊形的一切性質(zhì);②菱形的四條邊都相等;③菱形的兩條對角線互相垂直,并且每一條對角線平分一組對角;④菱形是軸對稱圖形,它有2條對稱軸,分別是兩條對角線所在直線.【詳解】解:A、菱形的對角線互相平分,此選項正確;B、菱形的對角線互相垂直,此選項正確;C、菱形的對角線不一定相等,此選項錯誤;D、菱形既是軸對稱圖形又是中心對稱圖形,此選項正確;故選C.考點:菱形的性質(zhì)3、B【解析】

首先證明△ABE≌△DCF,△ADG≌△CDG(SAS),△AGB≌△CGB,利用全等三角形的性質(zhì),等高模型、三邊關(guān)系一一判斷即可.【詳解】解:∵四邊形ABCD是正方形,∴AB=CD,∠BAD=∠ADC=90°,∠ADB=∠CDB=45°.∵在△ABE和△DCF中,AB=CD,∠BAD=∠ADC,AE=DF,∴△ABE≌△DCF,∴∠ABE=∠DCF.∵在△ADG和△CDG中,AD=CD,∠ADB=∠CDB,DG=DG,∴△ADG≌△CDG,∴∠DAG=∠DCF,∴∠ABE=∠DAG.∵∠DAG+∠BAH=90°,∴∠BAE+∠BAH=90°,∴∠AHB=90°,∴AG⊥BE,故③正確,同理可證:△AGB≌△CGB.∵DF∥CB,∴△CBG∽△FDG,∴△ABG∽△FDG,故①正確.∵S△HDG:S△HBG=DG:BG=DF:BC=DF:CD=tan∠FCD,∠DAG=∠FCD,∴S△HDG:S△HBG=tan∠FCD=tan∠DAG,故④正確.取AB的中點O,連接OD、OH.∵正方形的邊長為4,∴AO=OH=×4=1,由勾股定理得,OD=,由三角形的三邊關(guān)系得,O、D、H三點共線時,DH最小,DH最小=1-1.無法證明DH平分∠EHG,故②錯誤,故①③④⑤正確.故選B.【點睛】本題考查了相似三角形的判定與性質(zhì),全等三角形的判定與性質(zhì),正方形的性質(zhì),解直角三角形,解題的關(guān)鍵是掌握它們的性質(zhì)進行解題.4、B【解析】

根據(jù),可得答案.【詳解】解:∵,∴,∴∴﹣1的值在2和3之間.故選B.【點睛】本題考查了估算無理數(shù)的大小,先確定的大小,在確定答案的范圍.5、C【解析】試題分析:如圖所示:∠NOQ=138°,選項A錯誤;∠NOP=48°,選項B錯誤;如圖可得∠PON=48°,∠MOQ=42°,所以∠PON比∠MOQ大,選項C正確;由以上可得,∠MOQ與∠MOP不互補,選項D錯誤.故答案選C.考點:角的度量.6、B【解析】試題解析:∵D、E、F分別為AB、BC、AC中點,∴DF=BC=2,DF∥BC,EF=AB=,EF∥AB,∴四邊形DBEF為平行四邊形,∴四邊形DBEF的周長=2(DF+EF)=2×(2+)=1.故選B.7、C【解析】

解:∵OM=60海里,ON=80海里,MN=100海里,∴OM2+ON2=MN2,∴∠MON=90°,∵∠EOM=20°,∴∠NOF=180°﹣20°﹣90°=70°.故選C.【點睛】本題考查直角三角形的判定,掌握方位角的定義及勾股定理逆定理是本題的解題關(guān)鍵.8、D【解析】

如圖,過點C作CD⊥x軸于點D,∵點C的坐標(biāo)為(3,4),∴OD=3,CD=4.∴根據(jù)勾股定理,得:OC=5.∵四邊形OABC是菱形,∴點B的坐標(biāo)為(8,4).∵點B在反比例函數(shù)(x>0)的圖象上,∴.故選D.9、C【解析】

運用配方法解方程即可.【詳解】解:x2+2x﹣15=x2+2x+1-16=(x+1)2-16=0,即(x+1)2=16,解得,x1=3,x2=-5.故選擇C.【點睛】本題考查了解一元二次方程,選擇合適的解方程方法是解題關(guān)鍵.10、C【解析】試題分析:解分式方程得:等式的兩邊都乘以(x﹣2),得x=2(x﹣2)+m,解得x=4﹣m,且x=4﹣m≠2,已知關(guān)于x的分式方的解為正數(shù),得m=1,m=3,故選C.考點:分式方程的解.二、填空題(共7小題,每小題3分,滿分21分)11、x≠﹣2【解析】

直接利用分式有意義則其分母不為零,進而得出答案.【詳解】∵分式有意義,∴x的取值范圍是:x+2≠0,解得:x≠?2.故答案是:x≠?2.【點睛】本題考查了分式有意義的條件,解題的關(guān)鍵是熟練的掌握分式有意義的條件.12、8【解析】

在Rt△ABC中,cosB=,AB=10,可求得BC,再利用勾股定理即可求AC的長.【詳解】∵Rt△ABC中,∠C=90°,AB=10∴cosB=,得BC=6由勾股定理得BC=故答案為8.【點睛】此題主要考查銳角三角函數(shù)在直角三形中的應(yīng)用及勾股定理.13、1或5.【解析】

小正方形的高不變,根據(jù)面積即可求出小正方形平移的距離.【詳解】解:當(dāng)兩個正方形重疊部分的面積為2平方厘米時,重疊部分寬為2÷2=1,①如圖,小正方形平移距離為1厘米;②如圖,小正方形平移距離為4+1=5厘米.故答案為1或5,【點睛】此題考查了平移的性質(zhì),要明確,平移前后圖形的形狀和面積不變.畫出圖形即可直觀解答.14、.【解析】

先求出黑色方磚在整個地面中所占的比值,再根據(jù)其比值即可得出結(jié)論.【詳解】解:∵由圖可知,黑色方磚4塊,共有16塊方磚,∴黑色方磚在整個區(qū)域中所占的比值∴它停在黑色區(qū)域的概率是;故答案為.【點睛】本題考查了概率的求法:如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結(jié)果,那么事件A的概率P(A)=.15、C.【解析】分析:根據(jù)動點P在OC上運動時,∠APB逐漸減小,當(dāng)P在上運動時,∠APB不變,當(dāng)P在DO上運動時,∠APB逐漸增大,即可得出答案.解答:解:當(dāng)動點P在OC上運動時,∠APB逐漸減?。划?dāng)P在上運動時,∠APB不變;當(dāng)P在DO上運動時,∠APB逐漸增大.故選C.16、【解析】

分析題意,如圖所示,連接BF,由翻折變換可知,BF⊥AE,BE=EF,由點E是BC的中點可知BE=3,根據(jù)勾股定理即可求得AE;根據(jù)三角形的面積公式可求得BH,進而可得到BF的長度;結(jié)合題意可知FE=BE=EC,進而可得∠BFC=90°,至此,在Rt△BFC中,利用勾股定理求出CF的長度即可【詳解】如圖,連接BF.∵△AEF是由△ABE沿AE折疊得到的,∴BF⊥AE,BE=EF.∵BC=6,點E為BC的中點,∴BE=EC=EF=3根據(jù)勾股定理有AE=AB+BE代入數(shù)據(jù)求得AE=5根據(jù)三角形的面積公式得BH=即可得BF=由FE=BE=EC,可得∠BFC=90°再由勾股定理有BC-BF=CF代入數(shù)據(jù)求得CF=故答案為【點睛】此題考查矩形的性質(zhì)和折疊問題,解題關(guān)鍵在于利用好折疊的性質(zhì)17、1【解析】作PD⊥BC于D,PE⊥AC于E,如圖,AP=t,BQ=tcm,(0≤t<6)∵∠C=90°,AC=BC=6cm,∴△ABC為直角三角形,∴∠A=∠B=45°,∴△APE和△PBD為等腰直角三角形,∴PE=AE=AP=tcm,BD=PD,∴CE=AC﹣AE=(6﹣t)cm,∵四邊形PECD為矩形,∴PD=EC=(6﹣t)cm,∴BD=(6﹣t)cm,∴QD=BD﹣BQ=(6﹣1t)cm,在Rt△PCE中,PC1=PE1+CE1=t1+(6﹣t)1,在Rt△PDQ中,PQ1=PD1+DQ1=(6﹣t)1+(6﹣1t)1,∵四邊形QPCP′為菱形,∴PQ=PC,∴t1+(6﹣t)1=(6﹣t)1+(6﹣1t)1,∴t1=1,t1=6(舍去),∴t的值為1.故答案為1.【點睛】

此題主要考查了菱形的性質(zhì),勾股定理,關(guān)鍵是要熟記定理的內(nèi)容并會應(yīng)用.三、解答題(共7小題,滿分69分)18、商人盈利的可能性大.【解析】試題分析:根據(jù)幾何概率的定義,面積比即概率.圖中A,B,C所占的面積與總面積之比即為A,B,C各自的概率,算出相應(yīng)的可能性,乘以錢數(shù),比較即可.試題解析:商人盈利的可能性大.商人收費:80××2=80(元),商人獎勵:80××3+80××1=60(元),因為80>60,所以商人盈利的可能性大.19、(1)證明見解析;(2)12【解析】

(1)由平行四邊形的性質(zhì)和角平分線得出∠BAF=∠BFA,即可得出AB=BF;(2)由題意可證△ABF為等邊三角形,點E是AF的中點.可求EF、BF的值,即可得解.【詳解】解:(1)證明:∵四邊形ABCD為平行四邊形,∴AB=CD,∠FAD=∠AFB又∵AF平分∠BAD,∴∠FAD=∠FAB∴∠AFB=∠FAB∴AB=BF∴BF=CD(2)解:由題意可證△ABF為等邊三角形,點E是AF的中點在Rt△BEF中,∠BFA=60°,BE=,可求EF=2,BF=4∴平行四邊形ABCD的周長為1220、1【解析】==1.故答案為1.21、不等式組的解集是5<x≤1,整數(shù)解是6,1【解析】

先分別求出兩個不等式的解,求出解集,再根據(jù)整數(shù)的定義得到答案.【詳解】∵解①得:x>5,解不等式②得:x≤1,∴不等式組的解集是5<x≤1,∴不等式組的整數(shù)解是6,1.【點睛】本題考查求一元一次不等式組,解題的關(guān)鍵是掌握求一元一次不等式組的方法22、(1)a=5,b=1;(2)6;20%;(3)八年級平均分高于七年級,方差小于七年級.【解析】試題分析:(1)根據(jù)題中數(shù)據(jù)求出a與b的值即可;(2)根據(jù)(1)a與b的值,確定出m與n的值即可;(3)從方差,平均分角度考慮,給出兩條支持八年級隊成績好的理由即可.試題解析:(1)根據(jù)題意得:解得a=5,b=1;(2)七年級成績?yōu)?,6,6,6,6,6,7,8,9,10,中位數(shù)為6,即m=6;優(yōu)秀率為=20%,即n=20%;(3)八年級平均分高于七年級,方差小于七年級,成績比較穩(wěn)定,故八年級隊比七年級隊成績好.考點:1.條形統(tǒng)計圖;2.統(tǒng)計表;3.加權(quán)平

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論