版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2025屆湖北省宜昌第二中學(xué)高三第二次質(zhì)量考評(píng)數(shù)學(xué)試題試卷注意事項(xiàng)1.考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回.2.答題前,請(qǐng)務(wù)必將自己的姓名、準(zhǔn)考證號(hào)用0.5毫米黑色墨水的簽字筆填寫(xiě)在試卷及答題卡的規(guī)定位置.3.請(qǐng)認(rèn)真核對(duì)監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號(hào)與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對(duì)應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動(dòng),請(qǐng)用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無(wú)效.5.如需作圖,須用2B鉛筆繪、寫(xiě)清楚,線條、符號(hào)等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知復(fù)數(shù),若,則的值為()A.1 B. C. D.2.斜率為1的直線l與橢圓相交于A、B兩點(diǎn),則的最大值為A.2 B. C. D.3.如圖所示點(diǎn)是拋物線的焦點(diǎn),點(diǎn)、分別在拋物線及圓的實(shí)線部分上運(yùn)動(dòng),且總是平行于軸,則的周長(zhǎng)的取值范圍是()A. B. C. D.4.已知不同直線、與不同平面、,且,,則下列說(shuō)法中正確的是()A.若,則 B.若,則C.若,則 D.若,則5.已知拋物線上一點(diǎn)到焦點(diǎn)的距離為,分別為拋物線與圓上的動(dòng)點(diǎn),則的最小值為()A. B. C. D.6.已知定義在R上的偶函數(shù)滿足,當(dāng)時(shí),,函數(shù)(),則函數(shù)與函數(shù)的圖象的所有交點(diǎn)的橫坐標(biāo)之和為()A.2 B.4 C.5 D.67.已知復(fù)數(shù)(為虛數(shù)單位)在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)的坐標(biāo)是()A. B. C. D.8.盒中裝有形狀、大小完全相同的5張“刮刮卡”,其中只有2張“刮刮卡”有獎(jiǎng),現(xiàn)甲從盒中隨機(jī)取出2張,則至少有一張有獎(jiǎng)的概率為()A. B. C. D.9.設(shè)f(x)是定義在R上的偶函數(shù),且在(0,+∞)單調(diào)遞減,則()A. B.C. D.10.在函數(shù):①;②;③;④中,最小正周期為的所有函數(shù)為()A.①②③ B.①③④ C.②④ D.①③11.已知將函數(shù)(,)的圖象向右平移個(gè)單位長(zhǎng)度后得到函數(shù)的圖象,若和的圖象都關(guān)于對(duì)稱(chēng),則的值為()A.2 B.3 C.4 D.12.若等差數(shù)列的前項(xiàng)和為,且,,則的值為().A.21 B.63 C.13 D.84二、填空題:本題共4小題,每小題5分,共20分。13.已知三棱錐的四個(gè)頂點(diǎn)都在球O的球面上,,,,,E,F(xiàn)分別為,的中點(diǎn),,則球O的體積為_(kāi)_____.14.已知向量,,則______.15.在直角坐標(biāo)系中,某等腰直角三角形的兩個(gè)頂點(diǎn)坐標(biāo)分別為,函數(shù)的圖象經(jīng)過(guò)該三角形的三個(gè)頂點(diǎn),則的解析式為_(kāi)__________.16.設(shè)為互不相等的正實(shí)數(shù),隨機(jī)變量和的分布列如下表,若記,分別為的方差,則_____.(填>,<,=)三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知橢圓:的左、右焦點(diǎn)分別為,,焦距為2,且經(jīng)過(guò)點(diǎn),斜率為的直線經(jīng)過(guò)點(diǎn),與橢圓交于,兩點(diǎn).(1)求橢圓的方程;(2)在軸上是否存在點(diǎn),使得以,為鄰邊的平行四邊形是菱形?如果存在,求出的取值范圍,如果不存在,請(qǐng)說(shuō)明理由.18.(12分)已知函數(shù).(1)若函數(shù)的圖象與軸有且只有一個(gè)公共點(diǎn),求實(shí)數(shù)的取值范圍;(2)若對(duì)任意成立,求實(shí)數(shù)的取值范圍.19.(12分)已知函數(shù).(1)若曲線存在與軸垂直的切線,求的取值范圍.(2)當(dāng)時(shí),證明:.20.(12分)已知在多面體中,平面平面,且四邊形為正方形,且//,,,點(diǎn),分別是,的中點(diǎn).(1)求證:平面;(2)求平面與平面所成的銳二面角的余弦值.21.(12分)在平面直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為.(1)求曲線C的極坐標(biāo)方程和直線l的直角坐標(biāo)方程;(2)若射線與曲線C交于點(diǎn)A(不同于極點(diǎn)O),與直線l交于點(diǎn)B,求的最大值.22.(10分)已知橢圓()的半焦距為,原點(diǎn)到經(jīng)過(guò)兩點(diǎn),的直線的距離為.(Ⅰ)求橢圓的離心率;(Ⅱ)如圖,是圓的一條直徑,若橢圓經(jīng)過(guò),兩點(diǎn),求橢圓的方程.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.D【解析】由復(fù)數(shù)模的定義可得:,求解關(guān)于實(shí)數(shù)的方程可得:.本題選擇D選項(xiàng).2.C【解析】
設(shè)出直線的方程,代入橢圓方程中消去y,根據(jù)判別式大于0求得t的范圍,進(jìn)而利用弦長(zhǎng)公式求得|AB|的表達(dá)式,利用t的范圍求得|AB|的最大值.【詳解】解:設(shè)直線l的方程為y=x+t,代入y2=1,消去y得x2+2tx+t2﹣1=0,由題意得△=(2t)2﹣1(t2﹣1)>0,即t2<1.弦長(zhǎng)|AB|=4.故選:C.本題主要考查了橢圓的應(yīng)用,直線與橢圓的關(guān)系.常需要把直線與橢圓方程聯(lián)立,利用韋達(dá)定理,判別式找到解決問(wèn)題的突破口.3.B【解析】
根據(jù)拋物線方程求得焦點(diǎn)坐標(biāo)和準(zhǔn)線方程,結(jié)合定義表示出;根據(jù)拋物線與圓的位置關(guān)系和特點(diǎn),求得點(diǎn)橫坐標(biāo)的取值范圍,即可由的周長(zhǎng)求得其范圍.【詳解】拋物線,則焦點(diǎn),準(zhǔn)線方程為,根據(jù)拋物線定義可得,圓,圓心為,半徑為,點(diǎn)、分別在拋物線及圓的實(shí)線部分上運(yùn)動(dòng),解得交點(diǎn)橫坐標(biāo)為2.點(diǎn)、分別在兩個(gè)曲線上,總是平行于軸,因而兩點(diǎn)不能重合,不能在軸上,則由圓心和半徑可知,則的周長(zhǎng)為,所以,故選:B.本題考查了拋物線定義、方程及幾何性質(zhì)的簡(jiǎn)單應(yīng)用,圓的幾何性質(zhì)應(yīng)用,屬于中檔題.4.C【解析】
根據(jù)空間中平行關(guān)系、垂直關(guān)系的相關(guān)判定和性質(zhì)可依次判斷各個(gè)選項(xiàng)得到結(jié)果.【詳解】對(duì)于,若,則可能為平行或異面直線,錯(cuò)誤;對(duì)于,若,則可能為平行、相交或異面直線,錯(cuò)誤;對(duì)于,若,且,由面面垂直的判定定理可知,正確;對(duì)于,若,只有當(dāng)垂直于的交線時(shí)才有,錯(cuò)誤.故選:.本題考查空間中線面關(guān)系、面面關(guān)系相關(guān)命題的辨析,關(guān)鍵是熟練掌握空間中的平行關(guān)系與垂直關(guān)系的相關(guān)命題.5.D【解析】
利用拋物線的定義,求得p的值,由利用兩點(diǎn)間距離公式求得,根據(jù)二次函數(shù)的性質(zhì),求得,由取得最小值為,求得結(jié)果.【詳解】由拋物線焦點(diǎn)在軸上,準(zhǔn)線方程,則點(diǎn)到焦點(diǎn)的距離為,則,所以拋物線方程:,設(shè),圓,圓心為,半徑為1,則,當(dāng)時(shí),取得最小值,最小值為,故選D.該題考查的是有關(guān)距離的最小值問(wèn)題,涉及到的知識(shí)點(diǎn)有拋物線的定義,點(diǎn)到圓上的點(diǎn)的距離的最小值為其到圓心的距離減半徑,二次函數(shù)的最小值,屬于中檔題目.6.B【解析】
由函數(shù)的性質(zhì)可得:的圖像關(guān)于直線對(duì)稱(chēng)且關(guān)于軸對(duì)稱(chēng),函數(shù)()的圖像也關(guān)于對(duì)稱(chēng),由函數(shù)圖像的作法可知兩個(gè)圖像有四個(gè)交點(diǎn),且兩兩關(guān)于直線對(duì)稱(chēng),則與的圖像所有交點(diǎn)的橫坐標(biāo)之和為4得解.【詳解】由偶函數(shù)滿足,可得的圖像關(guān)于直線對(duì)稱(chēng)且關(guān)于軸對(duì)稱(chēng),函數(shù)()的圖像也關(guān)于對(duì)稱(chēng),函數(shù)的圖像與函數(shù)()的圖像的位置關(guān)系如圖所示,可知兩個(gè)圖像有四個(gè)交點(diǎn),且兩兩關(guān)于直線對(duì)稱(chēng),則與的圖像所有交點(diǎn)的橫坐標(biāo)之和為4.故選:B本題主要考查了函數(shù)的性質(zhì),考查了數(shù)形結(jié)合的思想,掌握函數(shù)的性質(zhì)是解題的關(guān)鍵,屬于中檔題.7.A【解析】
直接利用復(fù)數(shù)代數(shù)形式的乘除運(yùn)算化簡(jiǎn),求得的坐標(biāo)得出答案.【詳解】解:,在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)的坐標(biāo)是.故選:A.本題考查復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查復(fù)數(shù)的代數(shù)表示法及其幾何意義,屬于基礎(chǔ)題.8.C【解析】
先計(jì)算出總的基本事件的個(gè)數(shù),再計(jì)算出兩張都沒(méi)獲獎(jiǎng)的個(gè)數(shù),根據(jù)古典概型的概率,求出兩張都沒(méi)有獎(jiǎng)的概率,由對(duì)立事件的概率關(guān)系,即可求解.【詳解】從5張“刮刮卡”中隨機(jī)取出2張,共有種情況,2張均沒(méi)有獎(jiǎng)的情況有(種),故所求概率為.故選:C.本題考查古典概型的概率、對(duì)立事件的概率關(guān)系,意在考查數(shù)學(xué)建模、數(shù)學(xué)計(jì)算能力,屬于基礎(chǔ)題.9.D【解析】
利用是偶函數(shù)化簡(jiǎn),結(jié)合在區(qū)間上的單調(diào)性,比較出三者的大小關(guān)系.【詳解】是偶函數(shù),,而,因?yàn)樵谏线f減,,即.故選:D本小題主要考查利用函數(shù)的奇偶性和單調(diào)性比較大小,屬于基礎(chǔ)題.10.A【解析】逐一考查所給的函數(shù):,該函數(shù)為偶函數(shù),周期;將函數(shù)圖象x軸下方的圖象向上翻折即可得到的圖象,該函數(shù)的周期為;函數(shù)的最小正周期為;函數(shù)的最小正周期為;綜上可得最小正周期為的所有函數(shù)為①②③.本題選擇A選項(xiàng).點(diǎn)睛:求三角函數(shù)式的最小正周期時(shí),要盡可能地化為只含一個(gè)三角函數(shù)的式子,否則很容易出現(xiàn)錯(cuò)誤.一般地,經(jīng)過(guò)恒等變形成“y=Asin(ωx+φ),y=Acos(ωx+φ),y=Atan(ωx+φ)”的形式,再利用周期公式即可.11.B【解析】
因?yàn)閷⒑瘮?shù)(,)的圖象向右平移個(gè)單位長(zhǎng)度后得到函數(shù)的圖象,可得,結(jié)合已知,即可求得答案.【詳解】將函數(shù)(,)的圖象向右平移個(gè)單位長(zhǎng)度后得到函數(shù)的圖象,又和的圖象都關(guān)于對(duì)稱(chēng),由,得,,即,又,.故選:B.本題主要考查了三角函數(shù)圖象平移和根據(jù)圖象對(duì)稱(chēng)求參數(shù),解題關(guān)鍵是掌握三角函數(shù)圖象平移的解法和正弦函數(shù)圖象的特征,考查了分析能力和計(jì)算能力,屬于基礎(chǔ)題.12.B【解析】
由已知結(jié)合等差數(shù)列的通項(xiàng)公式及求和公式可求,,然后結(jié)合等差數(shù)列的求和公式即可求解.【詳解】解:因?yàn)椋?,所以,解可得,,,則.故選:B.本題主要考查等差數(shù)列的通項(xiàng)公式及求和公式的簡(jiǎn)單應(yīng)用,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
可證,則為的外心,又則平面即可求出,的值,再由勾股定理求出外接球的半徑,最后根據(jù)體積公式計(jì)算可得.【詳解】解:,,,因?yàn)闉榈闹悬c(diǎn),所以為的外心,因?yàn)?,所以點(diǎn)在內(nèi)的投影為的外心,所以平面,平面,所以,所以,又球心在上,設(shè),則,所以,所以球O體積,.故答案為:本題考查多面體外接球體積的求法,考查空間想象能力與思維能力,考查計(jì)算能力,屬于中檔題.14.【解析】
求出,然后由模的平方轉(zhuǎn)化為向量的平方,利用數(shù)量積的運(yùn)算計(jì)算.【詳解】由題意得,.,.,,.故答案為:.本題考查求向量的模,掌握數(shù)量積的定義與運(yùn)算律是解題基礎(chǔ).本題關(guān)鍵是用數(shù)量積的定義把模的運(yùn)算轉(zhuǎn)化為數(shù)量積的運(yùn)算.15.【解析】
結(jié)合題意先畫(huà)出直角坐標(biāo)系,點(diǎn)出所有可能組成等腰直角三角形的點(diǎn),采用排除法最終可確定為點(diǎn),再由函數(shù)性質(zhì)進(jìn)一步求解參數(shù)即可【詳解】等腰直角三角形的第三個(gè)頂點(diǎn)可能的位置如下圖中的點(diǎn),其中點(diǎn)與已有的兩個(gè)頂點(diǎn)橫坐標(biāo)重復(fù),舍去;若為點(diǎn)則點(diǎn)與點(diǎn)的中間位置的點(diǎn)的縱坐標(biāo)必然大于或小于,不可能為,因此點(diǎn)也舍去,只有點(diǎn)滿足題意.此時(shí)點(diǎn)為最大值點(diǎn),所以,又,則,所以點(diǎn),之間的圖像單調(diào),將,代入的表達(dá)式有由知,因此.故答案為:本題考查由三角函數(shù)圖像求解解析式,數(shù)形結(jié)合思想,屬于中檔題16.>【解析】
根據(jù)方差計(jì)算公式,計(jì)算出的表達(dá)式,由此利用差比較法,比較出兩者的大小關(guān)系.【詳解】,故.,.要比較的大小,只需比較與,兩者作差并化簡(jiǎn)得①,由于為互不相等的正實(shí)數(shù),故,也即,也即.故答案為:本小題主要考查隨機(jī)變量期望和方差的計(jì)算,考查差比較法比較大小,考查運(yùn)算求解能力,屬于難題.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(1)(2)存在;實(shí)數(shù)的取值范圍是【解析】
(1)根據(jù)橢圓定義計(jì)算,再根據(jù),,的關(guān)系計(jì)算即可得出橢圓方程;(2)設(shè)直線方程為,與橢圓方程聯(lián)立方程組,求出的范圍,根據(jù)根與系數(shù)的關(guān)系求出的中點(diǎn)坐標(biāo),求出的中垂線與軸的交點(diǎn)橫,得出關(guān)于的函數(shù),利用基本不等式得出的范圍.【詳解】(1)由題意可知,,.又,,,橢圓的方程為:.(2)若存在點(diǎn),使得以,為鄰邊的平行四邊形是菱形,則為線段的中垂線與軸的交點(diǎn).設(shè)直線的方程為:,,,,,聯(lián)立方程組,消元得:,△,又,故.由根與系數(shù)的關(guān)系可得,設(shè)的中點(diǎn)為,,則,,線段的中垂線方程為:,令可得,即.,故,當(dāng)且僅當(dāng)即時(shí)取等號(hào),,且.的取值范圍是,.本題主要考查了橢圓的性質(zhì),考查直線與橢圓的位置關(guān)系,意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平和分析推理能力.18.(1)(2)【解析】
(1)求出及其導(dǎo)函數(shù),利用研究的單調(diào)性和最值,根據(jù)零點(diǎn)存在定理和零點(diǎn)定義可得的范圍.(2)令,題意說(shuō)明時(shí),恒成立.同樣求出導(dǎo)函數(shù),由研究的單調(diào)性,通過(guò)分類(lèi)討論可得的單調(diào)性得出結(jié)論.【詳解】解(1)函數(shù)所以討論:①當(dāng)時(shí),無(wú)零點(diǎn);②當(dāng)時(shí),,所以在上單調(diào)遞增.取,則又,所以,此時(shí)函數(shù)有且只有一個(gè)零點(diǎn);③當(dāng)時(shí),令,解得(舍)或當(dāng)時(shí),,所以在上單調(diào)遞減;當(dāng)時(shí),所以在上單調(diào)遞增.據(jù)題意,得,所以(舍)或綜上,所求實(shí)數(shù)的取值范圍為.(2)令,根據(jù)題意知,當(dāng)時(shí),恒成立.又討論:①若,則當(dāng)時(shí),恒成立,所以在上是增函數(shù).又函數(shù)在上單調(diào)遞增,在上單調(diào)遞增,所以存在使,不符合題意.②若,則當(dāng)時(shí),恒成立,所以在上是增函數(shù),據(jù)①求解知,不符合題意.③若,則當(dāng)時(shí),恒有,故在上是減函數(shù),于是“對(duì)任意成立”的充分條件是“”,即,解得,故綜上,所求實(shí)數(shù)的取值范圍是.本題考查函數(shù)零點(diǎn)問(wèn)題,考查不等式恒成立問(wèn)題,考查用導(dǎo)數(shù)研究函數(shù)的單調(diào)性.解題關(guān)鍵是通過(guò)分類(lèi)討論研究函數(shù)的單調(diào)性.本題難度較大,考查掌握轉(zhuǎn)化與化歸思想,考查學(xué)生分析問(wèn)題解決問(wèn)題的能力.19.(1)(2)證明見(jiàn)解析【解析】
(1)在上有解,,設(shè),求導(dǎo)根據(jù)函數(shù)的單調(diào)性得到最值,得到答案.(2)證明,只需證,記,求導(dǎo)得到函數(shù)的單調(diào)性,得到函數(shù)的最小值,得到證明.【詳解】(1)由題可得,在上有解,則,令,,當(dāng)時(shí),單調(diào)遞增;當(dāng)時(shí),單調(diào)遞減.所以是的最大值點(diǎn),所以.(2)由,所以,要證明,只需證,即證.記在上單調(diào)遞增,且,當(dāng)時(shí),單調(diào)遞減;當(dāng)時(shí),單調(diào)遞增.所以是的最小值點(diǎn),,則,故.本題考查了函數(shù)的切線問(wèn)題,證明不等式,意在考查學(xué)生的綜合應(yīng)用能力和轉(zhuǎn)化能力.20.(1)證明見(jiàn)解析;(2).【解析】
(1)構(gòu)造直線所在平面,由面面平行推證線面平行;(2)以為坐標(biāo)原點(diǎn),建立空間直角坐標(biāo)系,分別求出兩個(gè)平面的法向量,再由法向量之間的夾角,求得二面角的余弦值.【詳解】(1)過(guò)點(diǎn)交于點(diǎn),連接,如下圖所示:因?yàn)槠矫嫫矫?,且交線為,又四邊形為正方形,故可得,故可得平面,又平面,故可得.在三角形中,因?yàn)闉橹悬c(diǎn),,故可得//,為中點(diǎn);又因?yàn)樗倪呅螢榈妊菪?,是的中點(diǎn),故可得//;又,且平面,平面,故面面,
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 校園心理健康合同:校園心理健康服務(wù)承包協(xié)議
- 新疆維吾爾自治區(qū)勞動(dòng)合同范本樣本
- 山林承包合同使用指南
- 2024年范文生態(tài)園土地承包合同
- 2024試析《物業(yè)服務(wù)合同》的解除或終止問(wèn)題
- 2024小吃加盟合同范本
- 物業(yè)管理服務(wù)協(xié)議參考樣本
- 個(gè)人建房施工合同范本
- 2024廣告設(shè)計(jì)類(lèi)合同范本
- 解除版權(quán)買(mǎi)賣(mài)合同協(xié)議
- 期刊編輯的學(xué)術(shù)期刊編輯規(guī)范考核試卷
- T-CCSAS014-2022《化工企業(yè)承包商安全管理指南》
- 電梯安全總監(jiān)和安全員的任命文件
- SL-T+62-2020水工建筑物水泥灌漿施工技術(shù)規(guī)范
- 2024年安徽省普通高中學(xué)業(yè)水平選擇性考試 歷史試卷
- 電子商務(wù)師職業(yè)技能等級(jí)證書(shū)培訓(xùn)方案
- JBT 14615-2024 內(nèi)燃機(jī) 活塞運(yùn)動(dòng)組件 清潔度限值及測(cè)定方法(正式版)
- DL5009.2-2013電力建設(shè)安全工作規(guī)程第2部分:電力線路
- 理智與情感:愛(ài)情的心理文化之旅智慧樹(shù)知到期末考試答案章節(jié)答案2024年昆明理工大學(xué)
- GA/T 2097-2023執(zhí)法辦案管理場(chǎng)所信息應(yīng)用技術(shù)要求
- GB 20052-2024電力變壓器能效限定值及能效等級(jí)
評(píng)論
0/150
提交評(píng)論