版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2022年湖南長沙市瀏陽中考數學全真模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.已知一個正多邊形的一個外角為36°,則這個正多邊形的邊數是()A.8B.9C.10D.112.一個多邊形的每一個外角都等于72°,這個多邊形是()A.正三角形 B.正方形 C.正五邊形 D.正六邊形3.如圖,在△ABC中,AC=BC,∠ACB=90°,點D在BC上,BD=3,DC=1,點P是AB上的動點,則PC+PD的最小值為()A.4 B.5 C.6 D.74.關于x的一元一次不等式≤﹣2的解集為x≥4,則m的值為()A.14 B.7 C.﹣2 D.25.一列快車從甲地駛往乙地,一列特快車從乙地駛往甲地,快車的速度為100千米/小時,特快車的速度為150千米/小時,甲乙兩地之間的距離為1000千米,兩車同時出發(fā),則圖中折線大致表示兩車之間的距離(千米)與快車行駛時間t(小時)之間的函數圖象是A. B.C. D.6.對于二次函數,下列說法正確的是()A.當x>0,y隨x的增大而增大B.當x=2時,y有最大值-3C.圖像的頂點坐標為(-2,-7)D.圖像與x軸有兩個交點7.如圖,在Rt△ABC中,∠ACB=90°,AC=2,以點C為圓心,CB的長為半徑畫弧,與AB邊交于點D,將繞點D旋轉180°后點B與點A恰好重合,則圖中陰影部分的面積為()A. B. C. D.8.一元一次不等式2(1+x)>1+3x的解集在數軸上表示為()A. B. C. D.9.如圖是棋盤的一部分,建立適當的平面直角坐標系,已知棋子“車”的坐標為(-2,1),棋子“馬”的坐標為(3,-1),則棋子“炮”的坐標為()A.(1,1) B.(2,1) C.(2,2) D.(3,1)10.如果零上2℃記作+2℃,那么零下3℃記作()A.-3℃ B.-2℃ C.+3℃ D.+2℃二、填空題(本大題共6個小題,每小題3分,共18分)11.計算()()的結果等于_____.12.圓錐的底面半徑是4cm,母線長是5cm,則圓錐的側面積等于_____cm1.13.如圖,在△ABC中,AB=AC,BE、AD分別是邊AC、BC上的高,CD=2,AC=6,那么CE=________.14.若關于x、y的二元一次方程組的解是,則關于a、b的二元一次方程組的解是_______.15.化簡:3216.如圖,直線a,b被直線c所截,a∥b,∠1=∠2,若∠3=40°,則∠4等于________.三、解答題(共8題,共72分)17.(8分)某縣教育局為了豐富初中學生的大課間活動,要求各學校開展形式多樣的陽光體育活動.某中學就“學生體育活動興趣愛好”的問題,隨機調查了本校某班的學生,并根據調查結果繪制成如下的不完整的扇形統(tǒng)計圖和條形統(tǒng)計圖:(1)在這次調查中,喜歡籃球項目的同學有______人,在扇形統(tǒng)計圖中,“乒乓球”的百分比為______%,如果學校有800名學生,估計全校學生中有______人喜歡籃球項目.(2)請將條形統(tǒng)計圖補充完整.(3)在被調查的學生中,喜歡籃球的有2名女同學,其余為男同學.現要從中隨機抽取2名同學代表班級參加?;@球隊,請直接寫出所抽取的2名同學恰好是1名女同學和1名男同學的概率.18.(8分)如圖,小明的家在某住宅樓AB的最頂層(AB⊥BC),他家的后面有一建筑物CD(CD∥AB),他很想知道這座建筑物的高度,于是在自家陽臺的A處測得建筑物CD的底部C的俯角是43°,頂部D的仰角是25°,他又測得兩建筑物之間的距離BC是28米,請你幫助小明求出建筑物CD的高度(精確到1米).19.(8分)小明隨機調查了若干市民租用共享單車的騎車時間t(單位:分),將獲得的數據分成四組,繪制了如下統(tǒng)計圖(A:0<t≤10,B:10<t≤20,C:20<t≤30,D:t>30),根據圖中信息,解答下列問題:這項被調查的總人數是多少人?試求表示A組的扇形統(tǒng)計圖的圓心角的度數,補全條形統(tǒng)計圖;如果小明想從D組的甲、乙、丙、丁四人中隨機選擇兩人了解平時租用共享單車情況,請用列表或畫樹狀圖的方法求出恰好選中甲的概率.20.(8分)如圖,經過點C(0,﹣4)的拋物線()與x軸相交于A(﹣2,0),B兩點.(1)a0,0(填“>”或“<”);(2)若該拋物線關于直線x=2對稱,求拋物線的函數表達式;(3)在(2)的條件下,連接AC,E是拋物線上一動點,過點E作AC的平行線交x軸于點F.是否存在這樣的點E,使得以A,C,E,F為頂點所組成的四邊形是平行四邊形?若存在,求出滿足條件的點E的坐標;若不存在,請說明理由.21.(8分)如圖,PB與⊙O相切于點B,過點B作OP的垂線BA,垂足為C,交⊙O于點A,連結PA,AO,AO的延長線交⊙O于點E,與PB的延長線交于點D.(1)求證:PA是⊙O的切線;(2)若tan∠BAD=,且OC=4,求BD的長.22.(10分)計算:.先化簡,再求值:,其中.23.(12分)如圖,在四邊形ABCD中,∠ABC=90°,∠CAB=30°,DE⊥AC于E,且AE=CE,若DE=5,EB=12,求四邊形ABCD的周長.24.太陽能光伏建筑是現代綠色環(huán)保建筑之一,老張準備把自家屋頂改建成光伏瓦面,改建前屋頂截面△ABC如圖2所示,BC=10米,∠ABC=∠ACB=36°,改建后頂點D在BA的延長線上,且∠BDC=90°,求改建后南屋面邊沿增加部分AD的長.(結果精確到0.1米)
參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解析】試題分析:已知一個正多邊形的一個外角為36°,則這個正多邊形的邊數是360÷36=10,故選C.考點:多邊形的內角和外角.2、C【解析】
任何多邊形的外角和是360°,用360°除以一個外角度數即可求得多邊形的邊數.【詳解】360°÷72°=1,則多邊形的邊數是1.故選C.【點睛】本題主要考查了多邊形的外角和定理,已知外角求邊數的這種方法是需要熟記的內容.3、B【解析】試題解析:過點C作CO⊥AB于O,延長CO到C′,使OC′=OC,連接DC′,交AB于P,連接CP.此時DP+CP=DP+PC′=DC′的值最?。逥C=1,BC=4,∴BD=3,連接BC′,由對稱性可知∠C′BE=∠CBE=41°,∴∠CBC′=90°,∴BC′⊥BC,∠BCC′=∠BC′C=41°,∴BC=BC′=4,根據勾股定理可得DC′===1.故選B.4、D【解析】
解不等式得到x≥m+3,再列出關于m的不等式求解.【詳解】≤﹣1,m﹣1x≤﹣6,﹣1x≤﹣m﹣6,x≥m+3,∵關于x的一元一次不等式≤﹣1的解集為x≥4,∴m+3=4,解得m=1.故選D.考點:不等式的解集5、C【解析】分三段討論:①兩車從開始到相遇,這段時間兩車距迅速減小;②相遇后向相反方向行駛至特快到達甲地,這段時間兩車距迅速增加;③特快到達甲地至快車到達乙地,這段時間兩車距緩慢增大;結合圖象可得C選項符合題意.故選C.6、B【解析】
二次函數,所以二次函數的開口向下,當x<2,y隨x的增大而增大,選項A錯誤;當x=2時,取得最大值,最大值為-3,選項B正確;頂點坐標為(2,-3),選項C錯誤;頂點坐標為(2,-3),拋物線開口向下可得拋物線與x軸沒有交點,選項D錯誤,故答案選B.考點:二次函數的性質.7、B【解析】
陰影部分的面積=三角形的面積-扇形的面積,根據面積公式計算即可.【詳解】解:由旋轉可知AD=BD,∵∠ACB=90°,AC=2,∴CD=BD,∵CB=CD,∴△BCD是等邊三角形,∴∠BCD=∠CBD=60°,∴BC=AC=2,∴陰影部分的面積=2×2÷2?=2?.故選:B.【點睛】本題考查了旋轉的性質與扇形面積的計算,解題的關鍵是熟練的掌握旋轉的性質與扇形面積的計算.8、B【解析】
按照解一元一次不等式的步驟求解即可.【詳解】去括號,得2+2x>1+3x;移項合并同類項,得x<1,所以選B.【點睛】數形結合思想是初中常用的方法之一.9、B【解析】
直接利用已知點坐標建立平面直角坐標系進而得出答案.【詳解】解:根據棋子“車”的坐標為(-2,1),建立如下平面直角坐標系:∴棋子“炮”的坐標為(2,1),故答案為:B.【點睛】本題考查了坐標確定位置,正確建立平面直角坐標系是解題的關鍵.10、A【解析】
一對具有相反意義的量中,先規(guī)定其中一個為正,則另一個就用負表示.【詳解】∵“正”和“負”相對,∴如果零上2℃記作+2℃,那么零下3℃記作-3℃.故選A.二、填空題(本大題共6個小題,每小題3分,共18分)11、4【解析】
利用平方差公式計算.【詳解】解:原式=()2-()2=7-3=4.故答案為:4.【點睛】本題考查了二次根式的混合運算.12、10π【解析】
解:根據圓錐的側面積公式可得這個圓錐的側面積=?1π?4?5=10π(cm1).故答案為:10π【點睛】本題考查圓錐的計算.13、【解析】∵AB=AC,AD⊥BC,∴BD=CD=2,∵BE、AD分別是邊AC、BC上的高,∴∠ADC=∠BEC=90°,∵∠C=∠C,∴△ACD∽△BCE,∴,∴,∴CE=,故答案為.14、【解析】分析:利用關于x、y的二元一次方程組的解是可得m、n的數值,代入關于a、b的方程組即可求解,利用整體的思想找到兩個方程組的聯系再求解的方法更好.詳解:∵關于x、y的二元一次方程組的解是,∴將解代入方程組可得m=﹣1,n=2∴關于a、b的二元一次方程組整理為:解得:點睛:本題考查二元一次方程組的求解,重點是整體考慮的數學思想的理解運用在此題體現明顯.15、-6【解析】
根據二次根式的乘法運算法則以及絕對值的性質和二次根式的化簡分別化簡整理得出即可:【詳解】32故答案為-616、70°【解析】
試題分析:由平角的定義可知,∠1+∠2+∠3=180°,又∠1=∠2,∠3=40°,所以∠1=(180°-40°)÷2=70°,因為a∥b,所以∠4=∠1=70°.故答案為70°.考點:角的計算;平行線的性質.三、解答題(共8題,共72分)17、(1)5,20,80;(2)圖見解析;(3).【解析】【分析】(1)根據喜歡跳繩的人數以及所占的比例求得總人數,然后用總人數減去喜歡跳繩、乒乓球、其它的人數即可得;(2)用乒乓球的人數除以總人數即可得;(3)用800乘以喜歡籃球人數所占的比例即可得;(4)根據(1)中求得的喜歡籃球的人數即可補全條形圖;(5)畫樹狀圖可得所有可能的情況,根據樹狀圖求得2名同學恰好是1名女同學和1名男同學的結果,根據概率公式進行計算即可.【詳解】(1)調查的總人數為20÷40%=50(人),喜歡籃球項目的同學的人數=50﹣20﹣10﹣15=5(人);(2)“乒乓球”的百分比==20%;(3)800×=80,所以估計全校學生中有80人喜歡籃球項目;(4)如圖所示,(5)畫樹狀圖為:共有20種等可能的結果數,其中所抽取的2名同學恰好是1名女同學和1名男同學的結果數為12,所以所抽取的2名同學恰好是1名女同學和1名男同學的概率=.18、39米【解析】
過點A作AE⊥CD,垂足為點E,在Rt△ADE中,利用三角函數求出的長,在Rt△ACE中,求出的長即可得.【詳解】解:過點A作AE⊥CD,垂足為點E,由題意得,AE=BC=28,∠EAD=25°,∠EAC=43°,在Rt△ADE中,∵,∴,在Rt△ACE中,∵,∴,∴(米),答:建筑物CD的高度約為39米.19、(1)50;(2)108°;(3).【解析】分析:(1)根據B組的人數和所占的百分比,即可求出這次被調查的總人數,從而補全統(tǒng)計圖;用360乘以A組所占的百分比,求出A組的扇形圓心角的度數,再用總人數減去A、B、D組的人數,求出C組的人數;(2)畫出樹狀圖,由概率公式即可得出答案.本題解析:解:(1)調查的總人數是:19÷38%=50(人).C組的人數有50-15-19-4=12(人),補全條形圖如圖所示.(2)畫樹狀圖如下.共有12種等可能的結果,恰好選中甲的結果有6種,∴P(恰好選中甲)=.點睛:本題考查了列表法與樹狀圖、條形統(tǒng)計圖的綜合運用.熟練掌握畫樹狀圖法,讀懂統(tǒng)計圖,從統(tǒng)計圖中得到必要的信息是解決問題的關鍵.20、(1)>,>;(2);(3)E(4,﹣4)或(,4)或(,4).【解析】
(1)由拋物線開口向上,且與x軸有兩個交點,即可做出判斷;(2)根據拋物線的對稱軸及A的坐標,確定出B的坐標,將A,B,C三點坐標代入求出a,b,c的值,即可確定出拋物線解析式;(3)存在,分兩種情況討論:(i)假設存在點E使得以A,C,E,F為頂點所組成的四邊形是平行四邊形,過點C作CE∥x軸,交拋物線于點E,過點E作EF∥AC,交x軸于點F,如圖1所示;(ii)假設在拋物線上還存在點E′,使得以A,C,F′,E′為頂點所組成的四邊形是平行四邊形,過點E′作E′F′∥AC交x軸于點F′,則四邊形ACF′E′即為滿足條件的平行四邊形,可得AC=E′F′,AC∥E′F′,如圖2,過點E′作E′G⊥x軸于點G,分別求出E坐標即可.【詳解】(1)a>0,>0;(2)∵直線x=2是對稱軸,A(﹣2,0),∴B(6,0),∵點C(0,﹣4),將A,B,C的坐標分別代入,解得:,,,∴拋物線的函數表達式為;(3)存在,理由為:(i)假設存在點E使得以A,C,E,F為頂點所組成的四邊形是平行四邊形,過點C作CE∥x軸,交拋物線于點E,過點E作EF∥AC,交x軸于點F,如圖1所示,則四邊形ACEF即為滿足條件的平行四邊形,∵拋物線關于直線x=2對稱,∴由拋物線的對稱性可知,E點的橫坐標為4,又∵OC=4,∴E的縱坐標為﹣4,∴存在點E(4,﹣4);(ii)假設在拋物線上還存在點E′,使得以A,C,F′,E′為頂點所組成的四邊形是平行四邊形,過點E′作E′F′∥AC交x軸于點F′,則四邊形ACF′E′即為滿足條件的平行四邊形,∴AC=E′F′,AC∥E′F′,如圖2,過點E′作E′G⊥x軸于點G,∵AC∥E′F′,∴∠CAO=∠E′F′G,又∵∠COA=∠E′GF′=90°,AC=E′F′,∴△CAO≌△E′F′G,∴E′G=CO=4,∴點E′的縱坐標是4,∴,解得:,,∴點E′的坐標為(,4),同理可得點E″的坐標為(,4).21、(1)證明見解析;(2)【解析】試題分析:(1)連接OB,由SSS證明△PAO≌△PBO,得出∠PAO=∠PBO=90°即可;(2)連接BE,證明△PAC∽△AOC,證出OC是△ABE的中位線,由三角形中位線定理得出BE=2OC,由△DBE∽△DPO可求出.試題解析:(1)連結OB,則OA=OB.如圖1,∵OP⊥AB,∴AC=BC,∴OP是AB的垂直平分線,∴PA=PB.在△PAO和△PBO中,∵,∴△PAO≌△PBO(SSS),∴∠PBO=∠PAO.∵PB為⊙O的切線,B為切點,∴∠PBO=90°,∴∠PAO=90°,即PA⊥OA,∴PA是⊙O的切線;(2)連結BE.如圖2,∵在Rt△AOC中,tan∠BAD=tan∠CAO=,且OC=4,∴AC=1,則BC=1.在Rt△APO中,∵AC⊥OP,∴△PAC∽△AOC,∴AC2=OC?PC,解得PC=9,∴OP=PC+OC=2.在Rt△PBC中,由勾股定理,得PB=,∵AC=BC,OA=OE,即OC為△ABE的中位線.∴OC=BE,OC∥BE,∴BE=2OC=3.∵BE∥OP,∴△DBE∽△DPO,∴,即,解得BD=.22、(1)1;(2)2-1.【解析】
(1)分別計算負指數冪、絕對值、零指數冪、特殊角的三角函數值、立方根;(2)先把括號內通分相減,再計算分式的除法,除以一個分式,等于乘它的分子、分母交換位置.【詳解】(1)原式=3+﹣1﹣2×+1﹣2=3+﹣1﹣+1﹣2=1.(2)原式=[﹣]?=?=,當x=﹣2時,原式===2-1.
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024農村荒山租賃合同
- 2024山林租賃合同范文
- 2024建設工程勘察合同范本怎樣寫
- 2024訂貨購銷合同范本范文
- 2024的廣播電視服務合同
- 2024正式的產品代理合同樣書
- 深圳大學《油畫基礎》2022-2023學年第一學期期末試卷
- 阿姨照顧小孩合同(2篇)
- 魚池合同范本(2篇)
- 初一下學期新學期計劃范文(7篇)
- 秋日私語(完整精確版)克萊德曼(原版)鋼琴雙手簡譜 鋼琴譜
- 辦公室室內裝修工程技術規(guī)范
- 鹽酸安全知識培訓
- 萬盛關于成立醫(yī)療設備公司組建方案(參考模板)
- 消防安全巡查記錄臺帳(共2頁)
- 科技特派員工作調研報告
- 中波廣播發(fā)送系統(tǒng)概述
- 縣疾控中心中層干部競聘上崗實施方案
- 急性心肌梗死精美PPt完整版
- 畢業(yè)設計(論文)基于三菱PLC的交通燈模擬控制
- 物業(yè)日常巡查記錄表.doc
評論
0/150
提交評論