




版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
湖北省武漢市重點(diǎn)中學(xué)2025屆高三暑假自主學(xué)習(xí)測(cè)試數(shù)學(xué)試題試卷注意事項(xiàng)1.考生要認(rèn)真填寫考場(chǎng)號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無(wú)效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.要得到函數(shù)的圖象,只需將函數(shù)的圖象()A.向右平移個(gè)單位 B.向右平移個(gè)單位C.向左平移個(gè)單位 D.向左平移個(gè)單位2.已知集合,則元素個(gè)數(shù)為()A.1 B.2 C.3 D.43.已知,,分別為內(nèi)角,,的對(duì)邊,,,的面積為,則()A. B.4 C.5 D.4.如圖,正方體的底面與正四面體的底面在同一平面上,且,若正方體的六個(gè)面所在的平面與直線相交的平面?zhèn)€數(shù)分別記為,則下列結(jié)論正確的是()A. B. C. D.5.已知函數(shù),對(duì)任意的,,當(dāng)時(shí),,則下列判斷正確的是()A. B.函數(shù)在上遞增C.函數(shù)的一條對(duì)稱軸是 D.函數(shù)的一個(gè)對(duì)稱中心是6.年某省將實(shí)行“”的新高考模式,即語(yǔ)文、數(shù)學(xué)、英語(yǔ)三科必選,物理、歷史二選一,化學(xué)、生物、政治、地理四選二,若甲同學(xué)選科沒有偏好,且不受其他因素影響,則甲同學(xué)同時(shí)選擇歷史和化學(xué)的概率為A. B. C. D.7.上世紀(jì)末河南出土的以鶴的尺骨(翅骨)制成的“骨笛”(圖1),充分展示了我國(guó)古代高超的音律藝術(shù)及先進(jìn)的數(shù)學(xué)水平,也印證了我國(guó)古代音律與歷法的密切聯(lián)系.圖2為骨笛測(cè)量“春(秋)分”,“夏(冬)至”的示意圖,圖3是某骨笛的部分測(cè)量數(shù)據(jù)(骨笛的彎曲忽略不計(jì)),夏至(或冬至)日光(當(dāng)日正午太陽(yáng)光線)與春秋分日光(當(dāng)日正午太陽(yáng)光線)的夾角等于黃赤交角.由歷法理論知,黃赤交角近1萬(wàn)年持續(xù)減小,其正切值及對(duì)應(yīng)的年代如下表:黃赤交角正切值0.4390.4440.4500.4550.461年代公元元年公元前2000年公元前4000年公元前6000年公元前8000年根據(jù)以上信息,通過(guò)計(jì)算黃赤交角,可估計(jì)該骨笛的大致年代是()A.公元前2000年到公元元年 B.公元前4000年到公元前2000年C.公元前6000年到公元前4000年 D.早于公元前6000年8.三棱柱中,底面邊長(zhǎng)和側(cè)棱長(zhǎng)都相等,,則異面直線與所成角的余弦值為()A. B. C. D.9.若函數(shù)f(x)=a|2x-4|(a>0,a≠1)滿足f(1)=,則f(x)的單調(diào)遞減區(qū)間是()A.(-∞,2] B.[2,+∞)C.[-2,+∞) D.(-∞,-2]10.阿基米德(公元前287年—公元前212年)是古希臘偉大的哲學(xué)家、數(shù)學(xué)家和物理學(xué)家,他和高斯、牛頓并列被稱為世界三大數(shù)學(xué)家.據(jù)說(shuō),他自己覺得最為滿意的一個(gè)數(shù)學(xué)發(fā)現(xiàn)就是“圓柱內(nèi)切球體的體積是圓柱體積的三分之二,并且球的表面積也是圓柱表面積的三分之二”.他特別喜歡這個(gè)結(jié)論,要求后人在他的墓碑上刻著一個(gè)圓柱容器里放了一個(gè)球,如圖,該球頂天立地,四周碰邊,表面積為的圓柱的底面直徑與高都等于球的直徑,則該球的體積為()A. B. C. D.11.已知是等差數(shù)列的前項(xiàng)和,若,設(shè),則數(shù)列的前項(xiàng)和取最大值時(shí)的值為()A.2020 B.20l9 C.2018 D.201712.若實(shí)數(shù)x,y滿足條件,目標(biāo)函數(shù),則z的最大值為()A. B.1 C.2 D.0二、填空題:本題共4小題,每小題5分,共20分。13.正四棱柱中,,.若是側(cè)面內(nèi)的動(dòng)點(diǎn),且,則與平面所成角的正切值的最大值為___________.14.已知定義在的函數(shù)滿足,且當(dāng)時(shí),,則的解集為__________________.15.設(shè)為偶函數(shù),且當(dāng)時(shí),;當(dāng)時(shí),.關(guān)于函數(shù)的零點(diǎn),有下列三個(gè)命題:①當(dāng)時(shí),存在實(shí)數(shù)m,使函數(shù)恰有5個(gè)不同的零點(diǎn);②若,函數(shù)的零點(diǎn)不超過(guò)4個(gè),則;③對(duì),,函數(shù)恰有4個(gè)不同的零點(diǎn),且這4個(gè)零點(diǎn)可以組成等差數(shù)列.其中,正確命題的序號(hào)是_______.16.對(duì)任意正整數(shù),函數(shù),若,則的取值范圍是_________;若不等式恒成立,則的最大值為_________.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知,.(1)解;(2)若,證明:.18.(12分)已知橢圓的右焦點(diǎn)為,過(guò)點(diǎn)且與軸垂直的直線被橢圓截得的線段長(zhǎng)為,且與短軸兩端點(diǎn)的連線相互垂直.(1)求橢圓的方程;(2)若圓上存在兩點(diǎn),,橢圓上存在兩個(gè)點(diǎn)滿足:三點(diǎn)共線,三點(diǎn)共線,且,求四邊形面積的取值范圍.19.(12分)已知拋物線,焦點(diǎn)為,直線交拋物線于兩點(diǎn),交拋物線的準(zhǔn)線于點(diǎn),如圖所示,當(dāng)直線經(jīng)過(guò)焦點(diǎn)時(shí),點(diǎn)恰好是的中點(diǎn),且.(1)求拋物線的方程;(2)點(diǎn)是原點(diǎn),設(shè)直線的斜率分別是,當(dāng)直線的縱截距為1時(shí),有數(shù)列滿足,設(shè)數(shù)列的前n項(xiàng)和為,已知存在正整數(shù)使得,求m的值.20.(12分)已知數(shù)列的前項(xiàng)和為,且點(diǎn)在函數(shù)的圖像上;(1)求數(shù)列的通項(xiàng)公式;(2)設(shè)數(shù)列滿足:,,求的通項(xiàng)公式;(3)在第(2)問(wèn)的條件下,若對(duì)于任意的,不等式恒成立,求實(shí)數(shù)的取值范圍;21.(12分)已知矩陣不存在逆矩陣,且非零特低值對(duì)應(yīng)的一個(gè)特征向量,求的值.22.(10分)在中,,是邊上一點(diǎn),且,.(1)求的長(zhǎng);(2)若的面積為14,求的長(zhǎng).
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.D【解析】
直接根據(jù)三角函數(shù)的圖象平移規(guī)則得出正確的結(jié)論即可;【詳解】解:函數(shù),要得到函數(shù)的圖象,只需將函數(shù)的圖象向左平移個(gè)單位.故選:D.本題考查三角函數(shù)圖象平移的應(yīng)用問(wèn)題,屬于基礎(chǔ)題.2.B【解析】
作出兩集合所表示的點(diǎn)的圖象,可得選項(xiàng).【詳解】由題意得,集合A表示以原點(diǎn)為圓心,以2為半徑的圓,集合B表示函數(shù)的圖象上的點(diǎn),作出兩集合所表示的點(diǎn)的示意圖如下圖所示,得出兩個(gè)圖象有兩個(gè)交點(diǎn):點(diǎn)A和點(diǎn)B,所以兩個(gè)集合有兩個(gè)公共元素,所以元素個(gè)數(shù)為2,故選:B.本題考查集合的交集運(yùn)算,關(guān)鍵在于作出集合所表示的點(diǎn)的圖象,再運(yùn)用數(shù)形結(jié)合的思想,屬于基礎(chǔ)題.3.D【解析】
由正弦定理可知,從而可求出.通過(guò)可求出,結(jié)合余弦定理即可求出的值.【詳解】解:,即,即.,則.,解得.,故選:D.本題考查了正弦定理,考查了余弦定理,考查了三角形的面積公式,考查同角三角函數(shù)的基本關(guān)系.本題的關(guān)鍵是通過(guò)正弦定理結(jié)合已知條件,得到角的正弦值余弦值.4.A【解析】
根據(jù)題意,畫出幾何位置圖形,由圖形的位置關(guān)系分別求得的值,即可比較各選項(xiàng).【詳解】如下圖所示,平面,從而平面,易知與正方體的其余四個(gè)面所在平面均相交,∴,∵平面,平面,且與正方體的其余四個(gè)面所在平面均相交,∴,∴結(jié)合四個(gè)選項(xiàng)可知,只有正確.故選:A.本題考查了空間幾何體中直線與平面位置關(guān)系的判斷與綜合應(yīng)用,對(duì)空間想象能力要求較高,屬于中檔題.5.D【解析】
利用輔助角公式將正弦函數(shù)化簡(jiǎn),然后通過(guò)題目已知條件求出函數(shù)的周期,從而得到,即可求出解析式,然后利用函數(shù)的性質(zhì)即可判斷.【詳解】,又,即,有且僅有滿足條件;又,則,,函數(shù),對(duì)于A,,故A錯(cuò)誤;對(duì)于B,由,解得,故B錯(cuò)誤;對(duì)于C,當(dāng)時(shí),,故C錯(cuò)誤;對(duì)于D,由,故D正確.故選:D本題考查了簡(jiǎn)單三角恒等變換以及三角函數(shù)的性質(zhì),熟記性質(zhì)是解題的關(guān)鍵,屬于基礎(chǔ)題.6.B【解析】
甲同學(xué)所有的選擇方案共有種,甲同學(xué)同時(shí)選擇歷史和化學(xué)后,只需在生物、政治、地理三科中再選擇一科即可,共有種選擇方案,根據(jù)古典概型的概率計(jì)算公式,可得甲同學(xué)同時(shí)選擇歷史和化學(xué)的概率,故選B.7.D【解析】
先理解題意,然后根據(jù)題意建立平面幾何圖形,在利用三角函數(shù)的知識(shí)計(jì)算出冬至日光與春秋分日光的夾角,即黃赤交角,即可得到正確選項(xiàng).【詳解】解:由題意,可設(shè)冬至日光與垂直線夾角為,春秋分日光與垂直線夾角為,則即為冬至日光與春秋分日光的夾角,即黃赤交角,將圖3近似畫出如下平面幾何圖形:則,,.,估計(jì)該骨笛的大致年代早于公元前6000年.故選:.本題考查利用三角函數(shù)解決實(shí)際問(wèn)題的能力,運(yùn)用了兩角和與差的正切公式,考查了轉(zhuǎn)化思想,數(shù)學(xué)建模思想,以及數(shù)學(xué)運(yùn)算能力,屬中檔題.8.B【解析】
設(shè),,,根據(jù)向量線性運(yùn)算法則可表示出和;分別求解出和,,根據(jù)向量夾角的求解方法求得,即可得所求角的余弦值.【詳解】設(shè)棱長(zhǎng)為1,,,由題意得:,,,又即異面直線與所成角的余弦值為:本題正確選項(xiàng):本題考查異面直線所成角的求解,關(guān)鍵是能夠通過(guò)向量的線性運(yùn)算、數(shù)量積運(yùn)算將問(wèn)題轉(zhuǎn)化為向量夾角的求解問(wèn)題.9.B【解析】由f(1)=得a2=,∴a=或a=-(舍),即f(x)=(.由于y=|2x-4|在(-∞,2]上單調(diào)遞減,在[2,+∞)上單調(diào)遞增,所以f(x)在(-∞,2]上單調(diào)遞增,在[2,+∞)上單調(diào)遞減,故選B.10.C【解析】
設(shè)球的半徑為R,根據(jù)組合體的關(guān)系,圓柱的表面積為,解得球的半徑,再代入球的體積公式求解.【詳解】設(shè)球的半徑為R,根據(jù)題意圓柱的表面積為,解得,所以該球的體積為.故選:C本題主要考查組合體的表面積和體積,還考查了對(duì)數(shù)學(xué)史了解,屬于基礎(chǔ)題.11.B【解析】
根據(jù)題意計(jì)算,,,計(jì)算,,,得到答案.【詳解】是等差數(shù)列的前項(xiàng)和,若,故,,,,故,當(dāng)時(shí),,,,,當(dāng)時(shí),,故前項(xiàng)和最大.故選:.本題考查了數(shù)列和的最值問(wèn)題,意在考查學(xué)生對(duì)于數(shù)列公式方法的綜合應(yīng)用.12.C【解析】
畫出可行域和目標(biāo)函數(shù),根據(jù)平移得到最大值.【詳解】若實(shí)數(shù)x,y滿足條件,目標(biāo)函數(shù)如圖:當(dāng)時(shí)函數(shù)取最大值為故答案選C求線性目標(biāo)函數(shù)的最值:當(dāng)時(shí),直線過(guò)可行域且在軸上截距最大時(shí),值最大,在軸截距最小時(shí),z值最?。划?dāng)時(shí),直線過(guò)可行域且在軸上截距最大時(shí),值最小,在軸上截距最小時(shí),值最大.二、填空題:本題共4小題,每小題5分,共20分。13.2.【解析】
如圖,以為原點(diǎn)建立空間直角坐標(biāo)系,設(shè)點(diǎn),由得,證明為與平面所成角,令,用三角函數(shù)表示出,求解三角函數(shù)的最大值得到結(jié)果.【詳解】如圖,以為原點(diǎn)建立空間直角坐標(biāo)系,設(shè)點(diǎn),則,,又,得即;又平面,為與平面所成角,令,當(dāng)時(shí),最大,即與平面所成角的正切值的最大值為2.故答案為:2本題主要考查了立體幾何中的動(dòng)點(diǎn)問(wèn)題,考查了直線與平面所成角的計(jì)算.對(duì)于這類題,一般是建立空間直角坐標(biāo),在動(dòng)點(diǎn)坐標(biāo)內(nèi)引入?yún)?shù),將最值問(wèn)題轉(zhuǎn)化為函數(shù)的最值問(wèn)題求解,考查了學(xué)生的運(yùn)算求解能力和直觀想象能力.14.【解析】
由已知得出函數(shù)是偶函數(shù),再得出函數(shù)的單調(diào)性,得出所解不等式的等價(jià)的不等式,可得解集.【詳解】因?yàn)槎x在的函數(shù)滿足,所以函數(shù)是偶函數(shù),又當(dāng)時(shí),,得時(shí),,所以函數(shù)在上單調(diào)遞減,所以函數(shù)在上單調(diào)遞減,函數(shù)在上單調(diào)遞增,所以不等式等價(jià)于,即或,解得或,所以不等式的解集為:.故答案為:.本題考查抽象函數(shù)的不等式的求解,關(guān)鍵得出函數(shù)的奇偶性,單調(diào)性,屬于中檔題.15.①②③【解析】
根據(jù)偶函數(shù)的圖象關(guān)于軸對(duì)稱,利用已知中的條件作出偶函數(shù)的圖象,利用圖象對(duì)各個(gè)選項(xiàng)進(jìn)行判斷即可.【詳解】解:當(dāng)時(shí)又因?yàn)闉榕己瘮?shù)可畫出的圖象,如下所示:可知當(dāng)時(shí)有5個(gè)不同的零點(diǎn);故①正確;若,函數(shù)的零點(diǎn)不超過(guò)4個(gè),即,與的交點(diǎn)不超過(guò)4個(gè),時(shí)恒成立又當(dāng)時(shí),在上恒成立在上恒成立由于偶函數(shù)的圖象,如下所示:直線與圖象的公共點(diǎn)不超過(guò)個(gè),則,故②正確;對(duì),偶函數(shù)的圖象,如下所示:,使得直線與恰有4個(gè)不同的交點(diǎn)點(diǎn),且相鄰點(diǎn)之間的距離相等,故③正確.故答案為:①②③本題考查函數(shù)方程思想,數(shù)形結(jié)合思想,屬于難題.16.【解析】
將代入求解即可;當(dāng)為奇數(shù)時(shí),,則轉(zhuǎn)化為,設(shè),由單調(diào)性求得的最小值;同理,當(dāng)為偶數(shù)時(shí),,則轉(zhuǎn)化為,設(shè),利用導(dǎo)函數(shù)求得的最小值,進(jìn)而比較得到的最大值.【詳解】由題,,解得.當(dāng)為奇數(shù)時(shí),,由,得,而函數(shù)為單調(diào)遞增函數(shù),所以,所以;當(dāng)為偶數(shù)時(shí),,由,得,設(shè),,單調(diào)遞增,,所以,綜上可知,若不等式恒成立,則的最大值為.故答案為:(1);(2)本題考查利用導(dǎo)函數(shù)求最值,考查分類討論思想和轉(zhuǎn)化思想.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(1);(2)見解析.【解析】
(1)在不等式兩邊平方化簡(jiǎn)轉(zhuǎn)化為二次不等式,解此二次不等式即可得出結(jié)果;(2)利用絕對(duì)值三角不等式可證得成立.【詳解】(1),,由得,不等式兩邊平方得,即,解得或.因此,不等式的解集為;(2),,由絕對(duì)值三角不等式可得.因此,.本題考查含絕對(duì)值不等式的求解,同時(shí)也考查了利用絕對(duì)值三角不等式證明不等式,考查推理能力與運(yùn)算求解能力,屬于中等題.18.(1);(2)【解析】
(1)又題意知,,及即可求得,從而得橢圓方程.(2)分三種情況:直線斜率不存在時(shí),的斜率為0時(shí),的斜率存在且不為0時(shí),設(shè)出直線方程,聯(lián)立方程組,用韋達(dá)定理和弦長(zhǎng)公式以及四邊形的面積公式計(jì)算即可.【詳解】(1)由焦點(diǎn)與短軸兩端點(diǎn)的連線相互垂直及橢圓的對(duì)稱性可知,,∵過(guò)點(diǎn)且與軸垂直的直線被橢圓截得的線段長(zhǎng)為.又,解得.∴橢圓的方程為(2)由(1)可知圓的方程為,(i)當(dāng)直線的斜率不存在時(shí),直線的斜率為0,此時(shí)(ii)當(dāng)直線的斜率為零時(shí),.(iii)當(dāng)直線的斜率存在且不等于零時(shí),設(shè)直線的方程為,聯(lián)立,得,設(shè)的橫坐標(biāo)分別為,則.所以,(注:的長(zhǎng)度也可以用點(diǎn)到直線的距離和勾股定理計(jì)算.)由可得直線的方程為,聯(lián)立橢圓的方程消去,得設(shè)的橫坐標(biāo)為,則..綜上,由(i)(ii)(ⅲ)得的取值范圍是.本題考查橢圓的標(biāo)準(zhǔn)方程與幾何性質(zhì)、直線與圓錐曲線的位置關(guān)系的應(yīng)用問(wèn)題,解答此類題目,通常利用的關(guān)系,確定橢圓方程是基礎(chǔ);通過(guò)聯(lián)立直線方程與橢圓方程建立方程組,應(yīng)用一元二次方程根與系數(shù),得到目標(biāo)函數(shù)解析式,運(yùn)用函數(shù)知識(shí)求解;本題是難題.19.(1)(2)【解析】
(1)設(shè)出直線的方程,再與拋物線聯(lián)立方程組,進(jìn)而求得點(diǎn)的坐標(biāo),結(jié)合弦長(zhǎng)即可求得拋物線的方程;(2)設(shè)直線的方程,運(yùn)用韋達(dá)定理可得,可得之間的關(guān)系,再運(yùn)用進(jìn)行裂項(xiàng),可求得,解不等式求得的值.【詳解】解:(1)設(shè)過(guò)拋物線焦點(diǎn)的直線方程為,與拋物線方程聯(lián)立得:,設(shè),所以,,,所以拋物線方程為(2)設(shè)直線方程為,,,,,,由得.本題考查了直線與拋物線的關(guān)系,考查了韋達(dá)定理和運(yùn)用裂項(xiàng)法求數(shù)列的和,考查了運(yùn)算能力,屬于中檔題.20.(1)(2)當(dāng)n為偶數(shù)時(shí),;當(dāng)n為奇數(shù)時(shí),.(3)【解析】
(1)根據(jù),討論與兩種情況,即可求得數(shù)列的通項(xiàng)公式;(2)由(1)利用遞推公式及累加法,即可求得當(dāng)n為奇數(shù)或偶數(shù)時(shí)的通項(xiàng)公式.也可利用數(shù)學(xué)歸納法,先猜想出通項(xiàng)公式,再用數(shù)學(xué)歸納法證明.(3)分類討論,當(dāng)n為奇數(shù)或偶數(shù)時(shí),分別求得的最大值,即可求得的取值范圍.【詳解】(1)由題意可知,.當(dāng)時(shí),,當(dāng)時(shí),也滿足上式.所以.(2)解法一:由(1)可知,即.當(dāng)時(shí),,①當(dāng)時(shí),,所以,②當(dāng)時(shí),,③當(dāng)時(shí),,所以,④……當(dāng)時(shí),n為偶數(shù)當(dāng)時(shí),n為偶數(shù)所以以上個(gè)式子相加,得.又,所以當(dāng)n為偶數(shù)時(shí),.同理,當(dāng)n為奇
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 舉行迎五一活動(dòng)方案
- 義工帶領(lǐng)活動(dòng)方案
- 義烏團(tuán)建互動(dòng)活動(dòng)方案
- 臨武儺戲班隊(duì)活動(dòng)方案
- 軟件開發(fā)企業(yè)數(shù)據(jù)安全與風(fēng)險(xiǎn)管理體系
- 美術(shù)培訓(xùn)機(jī)構(gòu)財(cái)務(wù)管理與成本控制
- 2025至2030年中國(guó)鹽酸乙胺丁醇片行業(yè)發(fā)展動(dòng)態(tài)分析及發(fā)展前景預(yù)測(cè)報(bào)告
- 人工智能企業(yè)數(shù)據(jù)資源管理與應(yīng)用優(yōu)化
- DeepSeek-AI大模型賦能制造企業(yè)采購(gòu)流程體系優(yōu)化總體規(guī)劃方案
- 天然氣生產(chǎn)安全操作規(guī)程的標(biāo)準(zhǔn)化管理
- 春香傳(主演:王志萍-陳娜君)
- 儀器校準(zhǔn)管理課件
- 2023年杭州市濱江區(qū)數(shù)學(xué)六下期末質(zhì)量跟蹤監(jiān)視試題含解析
- 特種設(shè)備日管控、周排查、月調(diào)度模板
- 普通外科學(xué)科建設(shè)課件
- 圖解C編程知到章節(jié)答案智慧樹2023年寧波大學(xué)
- 濕潤(rùn)燒傷膏外治WagnerⅠ~Ⅱ級(jí)糖尿病足正邪分爭(zhēng)期潰瘍的療效觀察
- 滬科版八、九年級(jí)物理實(shí)驗(yàn)?zāi)夸浄诸惣皟x器
- 國(guó)開電大《工程數(shù)學(xué)(本)》形成性考核作業(yè)5答案
- GB/T 11693-1994船用法蘭焊接單面座板
- 《催化劑的制備》課件
評(píng)論
0/150
提交評(píng)論