2024屆陜西省渭南市中考數(shù)學適應性模擬試題含解析_第1頁
2024屆陜西省渭南市中考數(shù)學適應性模擬試題含解析_第2頁
2024屆陜西省渭南市中考數(shù)學適應性模擬試題含解析_第3頁
2024屆陜西省渭南市中考數(shù)學適應性模擬試題含解析_第4頁
2024屆陜西省渭南市中考數(shù)學適應性模擬試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2024屆陜西省渭南市中考數(shù)學適應性模擬試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.如圖,等腰直角三角形的頂點A、C分別在直線a、b上,若a∥b,∠1=30°,則∠2的度數(shù)為()A.30° B.15° C.10° D.20°2.許昌市2017年國內生產(chǎn)總值完成1915.5億元,同比增長9.3%,增速居全省第一位,用科學記數(shù)法表示1915.5億應為()A.1915.15×108 B.19.155×1010C.1.9155×1011 D.1.9155×10123.如圖,將△ABE向右平移2cm得到△DCF,如果△ABE的周長是16cm,那么四邊形ABFD的周長是(

)A.16cm B.18cm C.20cm D.21cm4.若等式x2+ax+19=(x﹣5)2﹣b成立,則a+b的值為()A.16 B.﹣16 C.4 D.﹣45.在同一坐標系中,反比例函數(shù)y=與二次函數(shù)y=kx2+k(k≠0)的圖象可能為()A. B.C. D.6.如圖,在△ABC中,點D是AB邊上的一點,若∠ACD=∠B,AD=1,AC=2,△ADC的面積為1,則△BCD的面積為()A.1 B.2 C.3 D.47.如圖,AB與⊙O相切于點A,BO與⊙O相交于點C,點D是優(yōu)弧AC上一點,∠CDA=27°,則∠B的大小是()A.27° B.34° C.36° D.54°8.如圖是由若干個小正方體塊搭成的幾何體的俯視圖,小正方塊中的數(shù)字表示在該位置的小正方體塊的個數(shù),那么這個幾何體的主視圖是()A. B. C. D.9.如圖,兩個等直徑圓柱構成如圖所示的T形管道,則其俯視圖正確的是()A.B.C.D.10.2017年新設了雄安新區(qū),周邊經(jīng)濟受到刺激綜合實力大幅躍升,其中某地區(qū)生產(chǎn)總值預計可增長到305.5億元其中305.5億用科學記數(shù)法表示為()A.305.5×104B.3.055×102C.3.055×1010D.3.055×1011二、填空題(共7小題,每小題3分,滿分21分)11.已知點,在二次函數(shù)的圖象上,若,則__________.(填“”“”“”)12.如圖,在Rt△ABC中,D,E為斜邊AB上的兩個點,且BD=BC,AE=AC,則∠DCE的大小等于__________度.13.一個正方形AOBC各頂點的坐標分別為A(0,3),O(0,0),B(3,0),C(3,3).若以原點為位似中心,將這個正方形的邊長縮小為原來的,則新正方形的中心的坐標為_____.14.已知一組數(shù)據(jù),,﹣2,3,1,6的中位數(shù)為1,則其方差為____.15.因式分解:.16.二次函數(shù)的圖象與x軸有____個交點

.17.如圖,某校根據(jù)學生上學方式的一次抽樣調查結果,繪制出一個未完成的扇形統(tǒng)計圖,若該校共有學生1500人,則據(jù)此估計步行的有_____.三、解答題(共7小題,滿分69分)18.(10分)解不等式組并寫出它的所有整數(shù)解.19.(5分)如圖,在△ABC中,以AB為直徑的⊙O交BC于點D,交CA的延長線于點E,過點D作DH⊥AC于點H,且DH是⊙O的切線,連接DE交AB于點F.(1)求證:DC=DE;(2)若AE=1,,求⊙O的半徑.20.(8分)實踐:如圖△ABC是直角三角形,∠ACB=90°,利用直尺和圓規(guī)按下列要求作圖,并在圖中標明相應的字母.(保留作圖痕跡,不寫作法)作∠BAC的平分線,交BC于點O.以O為圓心,OC為半徑作圓.綜合運用:在你所作的圖中,AB與⊙O的位置關系是_____.(直接寫出答案)若AC=5,BC=12,求⊙O的半徑.21.(10分)某校在一次大課間活動中,采用了四鐘活動形式:A、跑步,B、跳繩,C、做操,D、游戲.全校學生都選擇了一種形式參與活動,小杰對同學們選用的活動形式進行了隨機抽樣調查,根據(jù)調查統(tǒng)計結果,繪制了不完整的統(tǒng)計圖.請結合統(tǒng)計圖,回答下列問題:(1)這次調查中,一共調查了多少名學生?(2)求出扇形統(tǒng)計圖中“B:跳繩”所對扇形的圓心角的度數(shù),并補全條形圖;(3)若該校有2000名學生,請估計選擇“A:跑步”的學生約有多少人?22.(10分)某班為了解學生一學期做義工的時間情況,對全班50名學生進行調查,按做義工的時間(單位:小時),將學生分成五類:類(),類(),類(),類(),類(),繪制成尚不完整的條形統(tǒng)計圖如圖11.根據(jù)以上信息,解答下列問題:類學生有人,補全條形統(tǒng)計圖;類學生人數(shù)占被調查總人數(shù)的%;從該班做義工時間在的學生中任選2人,求這2人做義工時間都在中的概率.23.(12分)已知:如圖,在正方形ABCD中,點E、F分別是AB、BC邊的中點,AF與CE交點G,求證:AG=CG.24.(14分)某地區(qū)教育部門為了解初中數(shù)學課堂中學生參與情況,并按“主動質疑、獨立思考、專注聽講、講解題目”四個項目進行評價.檢測小組隨機抽查部分學校若干名學生,并將抽查學生的課堂參與情況繪制成如圖所示的扇形統(tǒng)計圖和條形統(tǒng)計圖(均不完整).請根據(jù)統(tǒng)計圖中的信息解答下列問題:本次抽查的樣本容量是

;在扇形統(tǒng)計圖中,“主動質疑”對應的圓心角為

度;將條形統(tǒng)計圖補充完整;如果該地區(qū)初中學生共有60000名,那么在課堂中能“獨立思考”的學生約有多少人?

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、B【解析】分析:由等腰直角三角形的性質和平行線的性質求出∠ACD=60°,即可得出∠2的度數(shù).詳解:如圖所示:∵△ABC是等腰直角三角形,∴∠BAC=90°,∠ACB=45°,∴∠1+∠BAC=30°+90°=120°,∵a∥b,∴∠ACD=180°-120°=60°,∴∠2=∠ACD-∠ACB=60°-45°=15°;故選B.點睛:本題考查了平行線的性質、等腰直角三角形的性質;熟練掌握等腰直角三角形的性質,由平行線的性質求出∠ACD的度數(shù)是解決問題的關鍵.2、C【解析】

科學記數(shù)法的表示形式為的形式,其中為整數(shù).確定的值時,要看把原數(shù)變成時,小數(shù)點移動了多少位,的絕對值與小數(shù)點移動的位數(shù)相同.當原數(shù)絕對值>1時,是正數(shù);當原數(shù)的絕對值<1時,是負數(shù).【詳解】用科學記數(shù)法表示1915.5億應為1.9155×1011,故選C.【點睛】考查科學記數(shù)法,掌握絕對值大于1的數(shù)的表示方法是解題的關鍵.3、C【解析】試題分析:已知,△ABE向右平移2cm得到△DCF,根據(jù)平移的性質得到EF=AD=2cm,AE=DF,又因△ABE的周長為16cm,所以AB+BC+AC=16cm,則四邊形ABFD的周長=AB+BC+CF+DF+AD=16cm+2cm+2cm=20cm.故答案選C.考點:平移的性質.4、D【解析】分析:已知等式利用完全平方公式整理后,利用多項式相等的條件求出a與b的值,即可求出a+b的值.詳解:已知等式整理得:x2+ax+19=(x-5)2-b=x2-10x+25-b,可得a=-10,b=6,則a+b=-10+6=-4,故選D.點睛:此題考查了完全平方公式,熟練掌握完全平方公式是解本題的關鍵.5、D【解析】

根據(jù)k>0,k<0,結合兩個函數(shù)的圖象及其性質分類討論.【詳解】分兩種情況討論:①當k<0時,反比例函數(shù)y=,在二、四象限,而二次函數(shù)y=kx2+k開口向上下與y軸交點在原點下方,D符合;②當k>0時,反比例函數(shù)y=,在一、三象限,而二次函數(shù)y=kx2+k開口向上,與y軸交點在原點上方,都不符.分析可得:它們在同一直角坐標系中的圖象大致是D.故選D.【點睛】本題主要考查二次函數(shù)、反比例函數(shù)的圖象特點.6、C【解析】

∵∠ACD=∠B,∠A=∠A,∴△ACD∽△ABC,∴,∴,∴,∴S△ABC=4,∴S△BCD=S△ABC-S△ACD=4-1=1.故選C考點:相似三角形的判定與性質.7、C【解析】

由切線的性質可知∠OAB=90°,由圓周角定理可知∠BOA=54°,根據(jù)直角三角形兩銳角互余可知∠B=36°.【詳解】解:∵AB與⊙O相切于點A,

∴OA⊥BA.

∴∠OAB=90°.

∵∠CDA=27°,

∴∠BOA=54°.

∴∠B=90°-54°=36°.故選C.考點:切線的性質.8、B【解析】

根據(jù)俯視圖可確定主視圖的列數(shù)和每列小正方體的個數(shù).【詳解】由俯視圖可得,主視圖一共有兩列,左邊一列由兩個小正方體組成,右邊一列由3個小正方體組成.故答案選B.【點睛】由幾何體的俯視圖可確定該幾何體的主視圖和左視圖.9、B【解析】試題分析:三視圖就是主視圖(正視圖)、俯視圖、左視圖的總稱.從物體的前面向后面投射所得的視圖稱主視圖(正視圖)——能反映物體的前面形狀;從物體的上面向下面投射所得的視圖稱俯視圖——能反映物體的上面形狀;從物體的左面向右面投射所得的視圖稱左視圖——能反映物體的左面形狀.故選B考點:三視圖10、C【解析】解:305.5億=3.055×1.故選C.二、填空題(共7小題,每小題3分,滿分21分)11、【解析】拋物線的對稱軸為:x=1,∴當x>1時,y隨x的增大而增大.∴若x1>x2>1

時,y1>y2

.故答案為>12、45【解析】試題解析:設∠DCE=x,∠ACD=y,則∠ACE=x+y,∠BCE=90°-∠ACE=90°-x-y.∵AE=AC,∴∠ACE=∠AEC=x+y,∵BD=BC,∴∠BDC=∠BCD=∠BCE+∠DCE=90°-x-y+x=90°-y.在△DCE中,∵∠DCE+∠CDE+∠DEC=180°,∴x+(90°-y)+(x+y)=180°,解得x=45°,∴∠DCE=45°.考點:1.等腰三角形的性質;2.三角形內角和定理.13、(,)或(﹣,﹣).【解析】

分點A、B、C的對應點在第一象限和第三象限兩種情況,根據(jù)位似變換和正方形的性質解答可得.【詳解】如圖,①當點A、B、C的對應點在第一象限時,由位似比為1:2知點A′(0,)、B′(,0)、C′(,),∴該正方形的中心點的P的坐標為(,);②當點A、B、C的對應點在第三象限時,由位似比為1:2知點A″(0,-)、B″(-,0)、C″(-,-),∴此時新正方形的中心點Q的坐標為(-,-),故答案為(,)或(-,-).【點睛】本題主要考查位似變換,解題的關鍵是熟練掌握位似變換的性質和正方形的性質.14、3【解析】試題分析:∵數(shù)據(jù)﹣3,x,﹣3,3,3,6的中位數(shù)為3,∴,解得x=3,∴數(shù)據(jù)的平均數(shù)=(﹣3﹣3+3+3+3+6)=3,∴方差=[(﹣3﹣3)3+(﹣3﹣3)3+(3﹣3)3+(3﹣3)3+(3﹣3)3+(6﹣3)3]=3.故答案為3.考點:3.方差;3.中位數(shù).15、;【解析】

根據(jù)所給多項式的系數(shù)特點,可以用十字相乘法進行因式分解.【詳解】x2﹣x﹣12=(x﹣4)(x+3).故答案為(x﹣4)(x+3).16、2【解析】【分析】根據(jù)一元二次方程x2+mx+m-2=0的根的判別式的符號進行判定二次函數(shù)y=x2+mx+m-2的圖象與x軸交點的個數(shù).【詳解】二次函數(shù)y=x2+mx+m-2的圖象與x軸交點的縱坐標是零,即當y=0時,x2+mx+m-2=0,∵△=m2-4(m-2)=(m-2)2+4>0,∴一元二次方程x2+mx+m-2=0有兩個不相等是實數(shù)根,即二次函數(shù)y=x2+mx+m-2的圖象與x軸有2個交點,故答案為:2.【點睛】本題考查了拋物線與x軸的交點.二次函數(shù)y=ax2+bx+c(a,b,c是常數(shù),a≠0)的交點與一元二次方程ax2+bx+c=0根之間的關系.△=b2-4ac決定拋物線與x軸的交點個數(shù).△=b2-4ac>0時,拋物線與x軸有2個交點;△=b2-4ac=0時,拋物線與x軸有1個交點;△=b2-4ac<0時,拋物線與x軸沒有交點.17、1【解析】

∵騎車的學生所占的百分比是×100%=35%,∴步行的學生所占的百分比是1﹣10%﹣15%﹣35%=40%,∴若該校共有學生1500人,則據(jù)此估計步行的有1500×40%=1(人),故答案為1.三、解答題(共7小題,滿分69分)18、不等式組的整數(shù)解有﹣1、0、1.【解析】

先解不等式組,求得不等式組的解集,再確定不等式組的整數(shù)解即可.【詳解】,解不等式①可得,x>-2;解不等式②可得,x≤1;∴不等式組的解集為:﹣2<x≤1,∴不等式組的整數(shù)解有﹣1、0、1.【點睛】本題考查了解一元一次不等式組,正確求出每一個不等式解集是基礎,熟知“同大取大;同小取??;大小小大中間找;大大小小找不到”的原則求不等式組的解集是解答本題的關鍵.19、(1)見解析;(2).【解析】

(1)連接OD,由DH⊥AC,DH是⊙O的切線,然后由平行線的判定與性質可證∠C=∠ODB,由圓周角定理可得∠OBD=∠DEC,進而∠C=∠DEC,可證結論成立;(2)證明△OFD∽△AFE,根據(jù)相似三角形的性質即可求出圓的半徑.【詳解】(1)證明:連接OD,由題意得:DH⊥AC,由且DH是⊙O的切線,∠ODH=∠DHA=90°,∴∠ODH=∠DHA=90°,∴OD∥CA,∴∠C=∠ODB,∵OD=OB,∴∠OBD=∠ODB,∴∠OBD=∠C,∵∠OBD=∠DEC,∴∠C=∠DEC,∴DC=DE;(2)解:由(1)可知:OD∥AC,∴∠ODF=∠AEF,∵∠OFD=∠AFE,∴△OFD∽△AFE,∴,∵AE=1,∴OD=,∴⊙O的半徑為.【點睛】本題考查了切線的性質,平行線的判定與性質,等腰三角形的性質與判定,圓周角定理的推論,相似三角形的判定與性質,難度中等,熟練掌握各知識點是解答本題的關鍵.20、(1)作圖見解析;(2)作圖見解析;綜合運用:(1)相切;(2)⊙O的半徑為.【解析】

綜合運用:(1)根據(jù)角平分線上的點到角兩邊的距離相等可得AB與⊙O的位置關系是相切;(2)首先根據(jù)勾股定理計算出AB的長,再設半徑為x,則OC=OD=x,BO=(12-x)再次利用勾股定理可得方程x2+82=(12-x)2,再解方程即可.【詳解】(1)①作∠BAC的平分線,交BC于點O;②以O為圓心,OC為半徑作圓.AB與⊙O的位置關系是相切.(2)相切;∵AC=5,BC=12,∴AD=5,AB==13,∴DB=AB-AD=13-5=8,設半徑為x,則OC=OD=x,BO=(12-x)x2+82=(12-x)2,解得:x=.答:⊙O的半徑為.【點睛】本題考查了1.作圖—復雜作圖;2.角平分線的性質;3.勾股定理;4.切線的判定.21、(1)一共調查了300名學生;(2)36°,補圖見解析;(3)估計選擇“A:跑步”的學生約有800人.【解析】

(1)由跑步的學生數(shù)除以占的百分比求出調查學生總數(shù)即可;(2)求出跳繩學生占的百分比,乘以360°求出占的圓心角度數(shù),補全條形統(tǒng)計圖即可;(3)利用跑步占的百分比,乘以2000即可得到結果.【詳解】(1)根據(jù)題意得:120÷40%=300(名),則一共調查了300名學生;(2)根據(jù)題意得:跳繩學生數(shù)為300﹣(120+60+90)=30(名),則扇形統(tǒng)計圖中“B:跳繩”所對扇形的圓心角的度數(shù)為360°×=36°,;(3)根據(jù)題意得:2000×40%=800(人),則估計選擇“A:跑步”的學生約有800人.【點睛】此題考查了條形統(tǒng)計圖,扇形統(tǒng)計圖,以

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論