




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
廣東省廣州市海珠區(qū)2024年中考沖刺卷數(shù)學(xué)試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請(qǐng)按照題號(hào)順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(共10小題,每小題3分,共30分)1.如圖,兩個(gè)同心圓(圓心相同半徑不同的圓)的半徑分別為6cm和3cm,大圓的弦AB與小圓相切,則劣弧AB的長(zhǎng)為()A.2πcm B.4πcm C.6πcm D.8πcm2.如圖,某廠生產(chǎn)一種扇形折扇,OB=10cm,AB=20cm,其中裱花的部分是用紙糊的,若扇子完全打開攤平時(shí)紙面面積為πcm2,則扇形圓心角的度數(shù)為()A.120° B.140° C.150° D.160°3.據(jù)報(bào)道,目前我國“天河二號(hào)”超級(jí)計(jì)算機(jī)的運(yùn)算速度位居全球第一,其運(yùn)算速度達(dá)到了每秒338600000億次,數(shù)字338600000用科學(xué)記數(shù)法可簡(jiǎn)潔表示為()A.3.386×108 B.0.3386×109 C.33.86×107 D.3.386×1094.一個(gè)幾何體的三視圖如圖所示,這個(gè)幾何體是()A.棱柱B.正方形C.圓柱D.圓錐5.如圖,點(diǎn)A、B、C是⊙O上的三點(diǎn),且四邊形ABCO是平行四邊形,OF⊥OC交圓O于點(diǎn)F,則∠BAF等于()A.12.5° B.15° C.20° D.22.5°6.不等式組的解集在數(shù)軸上表示為()A. B. C. D.7.如圖,△ABC中,∠B=70°,則∠BAC=30°,將△ABC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)得△EDC.當(dāng)點(diǎn)B的對(duì)應(yīng)點(diǎn)D恰好落在AC上時(shí),∠CAE的度數(shù)是()A.30° B.40° C.50° D.60°8.關(guān)于的方程有實(shí)數(shù)根,則整數(shù)的最大值是()A.6 B.7 C.8 D.99.直線y=x+4與x軸、y軸分別交于點(diǎn)A和點(diǎn)B,點(diǎn)C,D分別為線段AB,OB的中點(diǎn),點(diǎn)P為OA上一動(dòng)點(diǎn),PC+PD值最小時(shí)點(diǎn)P的坐標(biāo)為()A.(-3,0) B.(-6,0) C.(-,0) D.(-,0)10.如圖,已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,給出以下四個(gè)結(jié)論:①abc=0,②a+b+c>0,③a>b,④4ac﹣b2<0;其中正確的結(jié)論有()A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11.已知a+=2,求a2+=_____.12.在一個(gè)不透明的盒子中裝有8個(gè)白球,若干個(gè)黃球,它們除顏色不同外,其余均相同.若從中隨機(jī)摸出一個(gè)球,它是白球的概率為,則黃球的個(gè)數(shù)為______.13.如圖,在平面直角坐標(biāo)系中,△的頂點(diǎn)、在坐標(biāo)軸上,點(diǎn)的坐標(biāo)是(2,2).將△ABC沿軸向左平移得到△A1B1C1,點(diǎn)落在函數(shù)y=-.如果此時(shí)四邊形的面積等于,那么點(diǎn)的坐標(biāo)是________.14.比較大?。?_________(填<,>或=).15.有五張分別印有等邊三角形、正方形、正五邊形、矩形、正六邊形圖案的卡片(這些卡片除圖案不同外,其余均相同).現(xiàn)將有圖案的一面朝下任意擺放,從中任意抽取一張,抽到卡片的圖案既是中心對(duì)稱圖形,又是軸對(duì)稱圖形的概率為_____.16.如圖,扇形OAB的圓心角為30°,半徑為1,將它沿箭頭方向無滑動(dòng)滾動(dòng)到O′A′B′的位置時(shí),則點(diǎn)O到點(diǎn)O′所經(jīng)過的路徑長(zhǎng)為_____.三、解答題(共8題,共72分)17.(8分)數(shù)學(xué)課上,李老師和同學(xué)們做一個(gè)游戲:他在三張硬紙片上分別寫出一個(gè)代數(shù)式,背面分別標(biāo)上序號(hào)①、②、③,擺成如圖所示的一個(gè)等式,然后翻開紙片②是4x1+5x+6,翻開紙片③是3x1﹣x﹣1.解答下列問題求紙片①上的代數(shù)式;若x是方程1x=﹣x﹣9的解,求紙片①上代數(shù)式的值.18.(8分)已知,如圖1,直線y=x+3與x軸、y軸分別交于A、C兩點(diǎn),點(diǎn)B在x軸上,點(diǎn)B的橫坐標(biāo)為,拋物線經(jīng)過A、B、C三點(diǎn).點(diǎn)D是直線AC上方拋物線上任意一點(diǎn).(1)求拋物線的函數(shù)關(guān)系式;(2)若P為線段AC上一點(diǎn),且S△PCD=2S△PAD,求點(diǎn)P的坐標(biāo);(3)如圖2,連接OD,過點(diǎn)A、C分別作AM⊥OD,CN⊥OD,垂足分別為M、N.當(dāng)AM+CN的值最大時(shí),求點(diǎn)D的坐標(biāo).19.(8分)已知,如圖,在四邊形ABCD中,∠ADB=∠ACB,延長(zhǎng)AD、BC相交于點(diǎn)E.求證:△ACE∽△BDE;BE?DC=AB?DE.20.(8分)如圖,吊車在水平地面上吊起貨物時(shí),吊繩BC與地面保持垂直,吊臂AB與水平線的夾角為64°,吊臂底部A距地面1.5m.(計(jì)算結(jié)果精確到0.1m,參考數(shù)據(jù)sin64°≈0.90,cos64°≈0.44,tan64°≈2.05)(1)當(dāng)?shù)醣鄣撞緼與貨物的水平距離AC為5m時(shí),吊臂AB的長(zhǎng)為m.(2)如果該吊車吊臂的最大長(zhǎng)度AD為20m,那么從地面上吊起貨物的最大高度是多少?(吊鉤的長(zhǎng)度與貨物的高度忽略不計(jì))21.(8分)如圖,把兩個(gè)邊長(zhǎng)相等的等邊△ABC和△ACD拼成菱形ABCD,點(diǎn)E、F分別是CB、DC延長(zhǎng)上的動(dòng)點(diǎn),且始終保持BE=CF,連結(jié)AE、AF、EF.求證:AEF是等邊三角形.22.(10分)P是⊙O內(nèi)一點(diǎn),過點(diǎn)P作⊙O的任意一條弦AB,我們把PA?PB的值稱為點(diǎn)P關(guān)于⊙O的“冪值”(1)⊙O的半徑為6,OP=1.①如圖1,若點(diǎn)P恰為弦AB的中點(diǎn),則點(diǎn)P關(guān)于⊙O的“冪值”為_____;②判斷當(dāng)弦AB的位置改變時(shí),點(diǎn)P關(guān)于⊙O的“冪值”是否為定值,若是定值,證明你的結(jié)論;若不是定值,求點(diǎn)P關(guān)于⊙0的“冪值”的取值范圍;(2)若⊙O的半徑為r,OP=d,請(qǐng)參考(1)的思路,用含r、d的式子表示點(diǎn)P關(guān)于⊙O的“冪值”或“冪值”的取值范圍_____;(3)在平面直角坐標(biāo)系xOy中,C(1,0),⊙C的半徑為3,若在直線y=x+b上存在點(diǎn)P,使得點(diǎn)P關(guān)于⊙C的“冪值”為6,請(qǐng)直接寫出b的取值范圍_____.23.(12分)如圖,在平面直角坐標(biāo)系中,已知△ABC三個(gè)頂點(diǎn)的坐標(biāo)分別是A(2,2),B(4,0),C(4,﹣4).請(qǐng)?jiān)趫D中,畫出△ABC向左平移6個(gè)單位長(zhǎng)度后得到的△A1B1C1;以點(diǎn)O為位似中心,將△ABC縮小為原來的,得到△A2B2C2,請(qǐng)?jiān)趫D中y軸右側(cè),畫出△A2B2C2,并求出∠A2C2B2的正弦值.24.先化簡(jiǎn),再求值:,其中a為不等式組的整數(shù)解.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、B【解析】
首先連接OC,AO,由切線的性質(zhì),可得OC⊥AB,根據(jù)已知條件可得:OA=2OC,進(jìn)而求出∠AOC的度數(shù),則圓心角∠AOB可求,根據(jù)弧長(zhǎng)公式即可求出劣弧AB的長(zhǎng).【詳解】解:如圖,連接OC,AO,
∵大圓的一條弦AB與小圓相切,
∴OC⊥AB,
∵OA=6,OC=3,
∴OA=2OC,
∴∠A=30°,
∴∠AOC=60°,
∴∠AOB=120°,
∴劣弧AB的長(zhǎng)==4π,
故選B.【點(diǎn)睛】本題考查切線的性質(zhì),弧長(zhǎng)公式,熟練掌握切線的性質(zhì)是解題關(guān)鍵.2、C【解析】
根據(jù)扇形的面積公式列方程即可得到結(jié)論.【詳解】∵OB=10cm,AB=20cm,∴OA=OB+AB=30cm,設(shè)扇形圓心角的度數(shù)為α,∵紙面面積為πcm2,∴,∴α=150°,故選:C.【點(diǎn)睛】本題考了扇形面積的計(jì)算的應(yīng)用,解題的關(guān)鍵是熟練掌握扇形面積計(jì)算公式:扇形的面積=.3、A【解析】
科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時(shí),要看把原數(shù)變成a時(shí),小數(shù)點(diǎn)移動(dòng)了多少位,n的絕對(duì)值與小數(shù)點(diǎn)移動(dòng)的位數(shù)相同.當(dāng)原數(shù)絕對(duì)值>1時(shí),n是正數(shù);當(dāng)原數(shù)的絕對(duì)值<1時(shí),n是負(fù)數(shù).【詳解】解:數(shù)字338600000用科學(xué)記數(shù)法可簡(jiǎn)潔表示為3.386×108故選:A【點(diǎn)睛】本題考查科學(xué)記數(shù)法—表示較大的數(shù).4、C【解析】試題解析:根據(jù)主視圖和左視圖為矩形可判斷出該幾何體是柱體,根據(jù)俯視圖是圓可判斷出該幾何體為圓柱.故選C.5、B【解析】
解:連接OB,∵四邊形ABCO是平行四邊形,∴OC=AB,又OA=OB=OC,∴OA=OB=AB,∴△AOB為等邊三角形,∵OF⊥OC,OC∥AB,∴OF⊥AB,∴∠BOF=∠AOF=30°,由圓周角定理得∠BAF=∠BOF=15°故選:B6、A【解析】
根據(jù)不等式組的解集在數(shù)軸上表示的方法即可解答.【詳解】∵x≥﹣2,故以﹣2為實(shí)心端點(diǎn)向右畫,x<1,故以1為空心端點(diǎn)向左畫.故選A.【點(diǎn)睛】本題考查了不等式組解集的在數(shù)軸上的表示方法,不等式的解集在數(shù)軸上表示方法為:>、≥向右畫,<、≤向左畫,“≤”、“≥”要用實(shí)心圓點(diǎn)表示;“<”、“>”要用空心圓點(diǎn)表示.7、C【解析】
由三角形內(nèi)角和定理可得∠ACB=80°,由旋轉(zhuǎn)的性質(zhì)可得AC=CE,∠ACE=∠ACB=80°,由等腰的性質(zhì)可得∠CAE=∠AEC=50°.【詳解】∵∠B=70°,∠BAC=30°∴∠ACB=80°∵將△ABC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)得△EDC.∴AC=CE,∠ACE=∠ACB=80°∴∠CAE=∠AEC=50°故選C.【點(diǎn)睛】本題考查了旋轉(zhuǎn)的性質(zhì),等腰三角形的性質(zhì),熟練運(yùn)用旋轉(zhuǎn)的性質(zhì)是本題的關(guān)鍵.8、C【解析】
方程有實(shí)數(shù)根,應(yīng)分方程是一元二次方程與不是一元二次方程,兩種情況進(jìn)行討論,當(dāng)不是一元二次方程時(shí),a-6=0,即a=6;當(dāng)是一元二次方程時(shí),有實(shí)數(shù)根,則△≥0,求出a的取值范圍,取最大整數(shù)即可.【詳解】當(dāng)a-6=0,即a=6時(shí),方程是-1x+6=0,解得x=;
當(dāng)a-6≠0,即a≠6時(shí),△=(-1)2-4(a-6)×6=201-24a≥0,解上式,得≈1.6,
取最大整數(shù),即a=1.故選C.9、C【解析】
作點(diǎn)D關(guān)于x軸的對(duì)稱點(diǎn)D′,連接CD′交x軸于點(diǎn)P,此時(shí)PC+PD值最小,如圖所示.直線y=x+4與x軸、y軸的交點(diǎn)坐標(biāo)為A(﹣6,0)和點(diǎn)B(0,4),因點(diǎn)C、D分別為線段AB、OB的中點(diǎn),可得點(diǎn)C(﹣3,1),點(diǎn)D(0,1).再由點(diǎn)D′和點(diǎn)D關(guān)于x軸對(duì)稱,可知點(diǎn)D′的坐標(biāo)為(0,﹣1).設(shè)直線CD′的解析式為y=kx+b,直線CD′過點(diǎn)C(﹣3,1),D′(0,﹣1),所以,解得:,即可得直線CD′的解析式為y=﹣x﹣1.令y=﹣x﹣1中y=0,則0=﹣x﹣1,解得:x=﹣,所以點(diǎn)P的坐標(biāo)為(﹣,0).故答案選C.考點(diǎn):一次函數(shù)圖象上點(diǎn)的坐標(biāo)特征;軸對(duì)稱-最短路線問題.10、C【解析】
根據(jù)圖像可得:a<0,b<0,c=0,即abc=0,則①正確;當(dāng)x=1時(shí),y<0,即a+b+c<0,則②錯(cuò)誤;根據(jù)對(duì)稱軸可得:-b2a=-3根據(jù)函數(shù)與x軸有兩個(gè)交點(diǎn)可得:b2故選C.【點(diǎn)睛】本題考查二次函數(shù)的性質(zhì).能通過圖象分析a,b,c的正負(fù),以及通過一些特殊點(diǎn)的位置得出a,b,c之間的關(guān)系是解題關(guān)鍵.二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11、1【解析】試題分析:∵==4,∴=4-1=1.故答案為1.考點(diǎn):完全平方公式.12、1【解析】首先設(shè)黃球的個(gè)數(shù)為x個(gè),然后根據(jù)概率公式列方程即可求得答案.解:設(shè)黃球的個(gè)數(shù)為x個(gè),根據(jù)題意得:=2/3解得:x=1.∴黃球的個(gè)數(shù)為1.13、(-5,)【解析】分析:依據(jù)點(diǎn)B的坐標(biāo)是(2,2),BB2∥AA2,可得點(diǎn)B2的縱坐標(biāo)為2,再根據(jù)點(diǎn)B2落在函數(shù)y=﹣的圖象上,即可得到BB2=AA2=5=CC2,依據(jù)四邊形AA2C2C的面積等于,可得OC=,進(jìn)而得到點(diǎn)C2的坐標(biāo)是(﹣5,).詳解:如圖,∵點(diǎn)B的坐標(biāo)是(2,2),BB2∥AA2,∴點(diǎn)B2的縱坐標(biāo)為2.又∵點(diǎn)B2落在函數(shù)y=﹣的圖象上,∴當(dāng)y=2時(shí),x=﹣3,∴BB2=AA2=5=CC2.又∵四邊形AA2C2C的面積等于,∴AA2×OC=,∴OC=,∴點(diǎn)C2的坐標(biāo)是(﹣5,).故答案為(﹣5,).點(diǎn)睛:本題主要考查了反比例函數(shù)的綜合題的知識(shí),解答本題的關(guān)鍵是熟練掌握反比例函數(shù)的性質(zhì)以及平移的性質(zhì).在平面直角坐標(biāo)系內(nèi),把一個(gè)圖形各個(gè)點(diǎn)的橫坐標(biāo)都加上(或減去)一個(gè)整數(shù)a,相應(yīng)的新圖形就是把原圖形向右(或向左)平移a個(gè)單位長(zhǎng)度.14、<【解析】【分析】根據(jù)實(shí)數(shù)大小比較的方法進(jìn)行比較即可得答案.【詳解】∵32=9,9<10,∴3<,故答案為:<.【點(diǎn)睛】本題考查了實(shí)數(shù)大小的比較,熟練掌握實(shí)數(shù)大小比較的方法是解題的關(guān)鍵.15、【解析】
判斷出即是中心對(duì)稱,又是軸對(duì)稱圖形的個(gè)數(shù),然后結(jié)合概率計(jì)算公式,計(jì)算,即可.【詳解】解:等邊三角形、正方形、正五邊形、矩形、正六邊形圖案中既是中心對(duì)稱圖形,又是軸對(duì)稱圖形是:正方形、矩形、正六邊形共3種,故從中任意抽取一張,抽到卡片的圖案既是中心對(duì)稱圖形,又是軸對(duì)稱圖形的概率為:.故答案為.【點(diǎn)睛】考查中心對(duì)稱圖形和軸對(duì)稱圖形的判定,考查概率計(jì)算公式,難度中等.16、【解析】
點(diǎn)O到點(diǎn)O′所經(jīng)過的路徑長(zhǎng)分三段,先以A為圓心,1為半徑,圓心角為90度的弧長(zhǎng),再平移了AB弧的長(zhǎng),最后以B為圓心,1為半徑,圓心角為90度的弧長(zhǎng).根據(jù)弧長(zhǎng)公式計(jì)算即可.【詳解】解:∵扇形OAB的圓心角為30°,半徑為1,∴AB弧長(zhǎng)=∴點(diǎn)O到點(diǎn)O′所經(jīng)過的路徑長(zhǎng)=故答案為:【點(diǎn)睛】本題考查了弧長(zhǎng)公式:.也考查了旋轉(zhuǎn)的性質(zhì)和圓的性質(zhì).三、解答題(共8題,共72分)17、(1)7x1+4x+4;(1)55.【解析】
(1)根據(jù)整式加法的運(yùn)算法則,將(4x1+5x+6)+(3x1﹣x﹣1)即可求得紙片①上的代數(shù)式;(1)先解方程1x=﹣x﹣9,再代入紙片①的代數(shù)式即可求解.【詳解】解:(1)紙片①上的代數(shù)式為:(4x1+5x+6)+(3x1﹣x﹣1)=4x1+5x+6+3x1-x-1=7x1+4x+4(1)解方程:1x=﹣x﹣9,解得x=﹣3代入紙片①上的代數(shù)式得7x1+4x+4=7×(-3)2+4×(-3)+4=63-11+4=55即紙片①上代數(shù)式的值為55.【點(diǎn)睛】本題考查了整式加減混合運(yùn)算,解一元一次方程,代數(shù)式求值,在解題的過程中要牢記并靈活運(yùn)用整式加減混合運(yùn)算的法則.特別是對(duì)于含括號(hào)的運(yùn)算,在去括號(hào)時(shí),一定要注意符號(hào)的變化.18、(1)y=﹣x2﹣x+3;(2)點(diǎn)P的坐標(biāo)為(﹣,1);(3)當(dāng)AM+CN的值最大時(shí),點(diǎn)D的坐標(biāo)為(,).【解析】
(1)利用一次函數(shù)圖象上點(diǎn)的坐標(biāo)特征可求出點(diǎn)A、C的坐標(biāo),由點(diǎn)B所在的位置結(jié)合點(diǎn)B的橫坐標(biāo)可得出點(diǎn)B的坐標(biāo),根據(jù)點(diǎn)A、B、C的坐標(biāo),利用待定系數(shù)法即可求出拋物線的函數(shù)關(guān)系式;(2)過點(diǎn)P作PE⊥x軸,垂足為點(diǎn)E,則△APE∽△ACO,由△PCD、△PAD有相同的高且S△PCD=2S△PAD,可得出CP=2AP,利用相似三角形的性質(zhì)即可求出AE、PE的長(zhǎng)度,進(jìn)而可得出點(diǎn)P的坐標(biāo);(3)連接AC交OD于點(diǎn)F,由點(diǎn)到直線垂線段最短可找出當(dāng)AC⊥OD時(shí)AM+CN取最大值,過點(diǎn)D作DQ⊥x軸,垂足為點(diǎn)Q,則△DQO∽△AOC,根據(jù)相似三角形的性質(zhì)可設(shè)點(diǎn)D的坐標(biāo)為(﹣3t,4t),利用二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征可得出關(guān)于t的一元二次方程,解之取其負(fù)值即可得出t值,再將其代入點(diǎn)D的坐標(biāo)即可得出結(jié)論.【詳解】(1)∵直線y=x+3與x軸、y軸分別交于A、C兩點(diǎn),∴點(diǎn)A的坐標(biāo)為(﹣4,0),點(diǎn)C的坐標(biāo)為(0,3).∵點(diǎn)B在x軸上,點(diǎn)B的橫坐標(biāo)為,∴點(diǎn)B的坐標(biāo)為(,0),設(shè)拋物線的函數(shù)關(guān)系式為y=ax2+bx+c(a≠0),將A(﹣4,0)、B(,0)、C(0,3)代入y=ax2+bx+c,得:,解得:,∴拋物線的函數(shù)關(guān)系式為y=﹣x2﹣x+3;(2)如圖1,過點(diǎn)P作PE⊥x軸,垂足為點(diǎn)E,∵△PCD、△PAD有相同的高,且S△PCD=2S△PAD,∴CP=2AP,∵PE⊥x軸,CO⊥x軸,∴△APE∽△ACO,∴,∴AE=AO=,PE=CO=1,∴OE=OA﹣AE=,∴點(diǎn)P的坐標(biāo)為(﹣,1);(3)如圖2,連接AC交OD于點(diǎn)F,∵AM⊥OD,CN⊥OD,∴AF≥AM,CF≥CN,∴當(dāng)點(diǎn)M、N、F重合時(shí),AM+CN取最大值,過點(diǎn)D作DQ⊥x軸,垂足為點(diǎn)Q,則△DQO∽△AOC,∴,∴設(shè)點(diǎn)D的坐標(biāo)為(﹣3t,4t).∵點(diǎn)D在拋物線y=﹣x2﹣x+3上,∴4t=﹣3t2+t+3,解得:t1=﹣(不合題意,舍去),t2=,∴點(diǎn)D的坐標(biāo)為(,),故當(dāng)AM+CN的值最大時(shí),點(diǎn)D的坐標(biāo)為(,).【點(diǎn)睛】本題考查了待定系數(shù)法求二次函數(shù)解析式、一次(二次)函數(shù)圖象上點(diǎn)的坐標(biāo)特征、三角形的面積以及相似三角形的性質(zhì),解題的關(guān)鍵是:(1)根據(jù)點(diǎn)A、B、C的坐標(biāo),利用待定系數(shù)法求出拋物線的函數(shù)關(guān)系式;(2)利用相似三角形的性質(zhì)找出AE、PE的長(zhǎng);(3)利用相似三角形的性質(zhì)設(shè)點(diǎn)D的坐標(biāo)為(﹣3t,4t).19、(1)答案見解析;(2)答案見解析.【解析】
(1)根據(jù)鄰補(bǔ)角的定義得到∠BDE=∠ACE,即可得到結(jié)論;(2)根據(jù)相似三角形的性質(zhì)得到,由于∠E=∠E,得到△ECD∽△EAB,由相似三角形的性質(zhì)得到,等量代換得到,即可得到結(jié)論.本題解析:【詳解】證明:(1)∵∠ADB=∠ACB,∴∠BDE=∠ACE,又∵∠E=∠E,∴△ACE∽△BDE;(2)∵△ACE∽△BDE∴,∵∠E=∠E,∴△ECD∽△EAB,∴,∴BE?DC=AB?DE.【點(diǎn)睛】本題考查相似三角形的判定與性質(zhì),熟練掌握判定定理是關(guān)鍵.20、(1)11.4;(2)19.5m.【解析】
(1)根據(jù)直角三角形的性質(zhì)和三角函數(shù)解答即可;
(2)過點(diǎn)D作DH⊥地面于H,利用直角三角形的性質(zhì)和三角函數(shù)解答即可.【詳解】解:(1)在Rt△ABC中,∵∠BAC=64°,AC=5m,∴AB=ACcos64°故答案為:11.4;(2)過點(diǎn)D作DH⊥地面于H,交水平線于點(diǎn)E,在Rt△ADE中,∵AD=20m,∠DAE=64°,EH=1.5m,∴DE=sin64°×AD≈20×0.9≈18(m),即DH=DE+EH=18+1.5=19.5(m),答:如果該吊車吊臂的最大長(zhǎng)度AD為20m,那么從地面上吊起貨物的最大高度是19.5m.【點(diǎn)睛】本題考查解直角三角形、銳角三角函數(shù)等知識(shí),解題的關(guān)鍵是添加輔助線,構(gòu)造直角三角形.21、見解析【解析】分析:由等邊三角形的性質(zhì)即可得出∠ABE=∠ACF,由全等三角形的性質(zhì)即可得出結(jié)論.詳解:證明:∵△ABC和△ACD均為等邊三角形∴AB=AC,∠ABC=∠ACD=60°,∴∠ABE=∠ACF=120°,∵BE=CF,∴△ABE≌△ACF,∴AE=AF,∴∠EAB=∠FAC,∴∠EAF=∠BAC=60°,∴△AEF是等邊三角形.點(diǎn)睛:此題是四邊形綜合題,主要考查了等邊三角形的性質(zhì)和全等三角形的判定和性質(zhì),直角三角形的性質(zhì),相似三角形的判定和性質(zhì),解題關(guān)鍵是判斷出△ABE≌△ACF.22、(1)①20;②當(dāng)弦AB的位置改變時(shí),點(diǎn)P關(guān)于⊙O的“冪值”為定值,證明見解析;(2)點(diǎn)P關(guān)于⊙O的“冪值”為r2﹣d2;(3)﹣3≤b≤.【解析】【詳解】(1)①如圖1所示:連接OA、OB、OP.由等腰三角形的三線合一的性質(zhì)得到△PBO為直角三角形,然后依據(jù)勾股定理可求得PB的長(zhǎng),然后依據(jù)冪值的定義求解即可;②過點(diǎn)P作⊙O的弦A′B′⊥OP,連接AA′、BB′.先證明△APA′∽△B′PB,依據(jù)相似三角形的性質(zhì)得到PA?PB=PA′?PB′從而得出結(jié)論;(2)連接OP、過點(diǎn)P作AB⊥OP,交圓O與A、B兩點(diǎn).由等腰三角形三線合一的性質(zhì)可知AP=PB,然后在Rt△APO中,依據(jù)勾股定理可知AP2=OA2-OP2,然后將d、r代入可得到問題的答案;(3)過點(diǎn)C作CP⊥AB,先求得OP的解析式,然后由直線AB和OP的解析式,得到點(diǎn)P的坐標(biāo),然后由題意圓的冪值為6,半徑為1可求得d的值,再結(jié)合兩點(diǎn)間的距離公式可得到關(guān)于b的方程,從而可求得b的極值,據(jù)此即可確定出b的取值范圍.【詳解】(1)①如圖1所示:連接OA、OB、OP,∵OA=OB,P為AB的中點(diǎn),∴OP⊥AB,∵在△PBO中,由勾股定理得:PB==2,∴PA=PB=2,∴⊙O的“冪值”=2×2=20,故答案為:20;②當(dāng)弦AB的位置改變時(shí),點(diǎn)P關(guān)于⊙O的“冪值”為定值,證明如下:如圖,AB為⊙O中過點(diǎn)P的任意一條弦,且不與OP垂直,過點(diǎn)P作⊙O的弦A′B′⊥OP,連接AA′、BB′,∵在⊙O中,∠AA′P=∠B′BP,∠APA′=∠B
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025-2030年中國聚苯硫醚市場(chǎng)十三五規(guī)劃及投資風(fēng)險(xiǎn)評(píng)估報(bào)告
- 2025-2030年中國稀土磁鋼行業(yè)運(yùn)營狀況與發(fā)展?jié)摿Ψ治鰣?bào)告
- 2025-2030年中國祛斑養(yǎng)顏保健品行業(yè)運(yùn)行狀況及前景趨勢(shì)分析報(bào)告
- 2025-2030年中國電腦電源市場(chǎng)運(yùn)行動(dòng)態(tài)與營銷策略研究報(bào)告
- 2025-2030年中國電子駐車制動(dòng)器EPB市場(chǎng)運(yùn)營狀況與發(fā)展?jié)摿Ψ治鰣?bào)告
- 邢臺(tái)學(xué)院《工程結(jié)構(gòu)抗震設(shè)計(jì)原理》2023-2024學(xué)年第二學(xué)期期末試卷
- 湖北民族大學(xué)《數(shù)據(jù)庫原理及應(yīng)用》2023-2024學(xué)年第二學(xué)期期末試卷
- 云南師范大學(xué)《電力系統(tǒng)分析》2023-2024學(xué)年第二學(xué)期期末試卷
- 武漢科技職業(yè)學(xué)院《動(dòng)物試驗(yàn)設(shè)計(jì)與統(tǒng)計(jì)分析》2023-2024學(xué)年第二學(xué)期期末試卷
- 四川藝術(shù)職業(yè)學(xué)院《針灸學(xué)(實(shí)驗(yàn))》2023-2024學(xué)年第二學(xué)期期末試卷
- 高壓電工證考試題庫及答案(完整版)
- 精索靜脈曲張臨床路徑表單
- 2024年山東圣翰財(cái)貿(mào)職業(yè)學(xué)院?jiǎn)握芯C合素質(zhì)考試題庫含答案(綜合卷)
- 委外催收機(jī)構(gòu)入圍項(xiàng)目投標(biāo)技術(shù)方案(技術(shù)標(biāo))
- 肝與膽病辨證課件
- (正式版)JBT 2930-2024 低壓電器產(chǎn)品型號(hào)編制方法
- 工程機(jī)械作業(yè)安全培訓(xùn)
- 部編版語文七年級(jí)下冊(cè)第三單元大單元整體教學(xué)設(shè)計(jì)
- 塑料件外觀檢驗(yàn)規(guī)范
- 消費(fèi)者行為學(xué)教案-消費(fèi)群體與消費(fèi)者行為教案
- 《經(jīng)營模式淺談》課件
評(píng)論
0/150
提交評(píng)論